ON THE NON-EXISTENCE OF CONJUGATE POINTS

BY
G. J. BUTLER, L. H. ERBE AND R. M. MATHSEN(${ }^{1}$)

In this paper we consider the types of pairs of multiple zeros which a solution to the differential equation

$$
D_{n} y^{(n)}=f\left(t, y, y^{\prime}, \ldots, y^{(n-1)}\right)
$$

can possess on an interval I of the real line. The results obtained generalize those in [2] and (for $n=3$) in [3].
I. Let f satisfy the condition

$$
\begin{equation*}
u_{0} f\left(t, u_{0}, u_{1}, \ldots, u_{n-1}\right)>0 \tag{1.1}
\end{equation*}
$$

for all $t \in I, u_{0} \neq 0$, and all u_{1}, \ldots, u_{n-1}.
Definition. The points $a<b$ in I are said to form $a(\mu, \nu)$ conjugate pair (with respect to solutions of D_{n} on I) in case there exists a non-trivial solution y of D_{n} on $[a, b]$ with

$$
y(a)=y^{\prime}(a)=\cdots=y^{(\mu-1)}(a)=0 \neq y^{(\mu)}(a)
$$

and

$$
y(b)=y^{\prime}(b)=\cdots=y^{(v-1)}(b)=0 \neq y^{(v)}(b) .
$$

Theorem 1.1. Let f satisfy (1.1), let $n=2 k+1$ where k is a positive integer, and let μ, ν be positive integers. Then there do not exist any (μ, ν) conjugate pairs in I if
(a) k is odd, $\mu \geq k+1$, and $\nu \geq k$,
or
(b) k is even, $\mu \geq k$, and $\nu \geq k+1$.

Proof. Let y be a non-trivial solution to D_{n} on [$\left.a, b\right]$, with $a<b$, satisfying $y(t)=y^{\prime}(t)=\cdots=y^{(k-1)}(t)=0$ for $t=a$ and $t=b$. Define

$$
v(t)=\sum_{j=0}^{k-1}(-1)^{j} y^{(2 k-j)}(t) y^{(j)}(t)+(-1)^{k}\left(y^{(k)}(t)\right)^{2} / 2
$$

Then $v^{\prime}(t)=y^{(2 k+1)}(t) y(t)>0$ if $y(t) \neq 0$ by (1.1). Now $v(t)=(-1)^{k}\left(y^{(k)}(t)\right)^{2} / 2$ for $t=a$ and $t=b$. If k is odd and $y^{(k)}(a)=0$, then $v(a)=0$ and $v(b) \leq 0$ which implies $y(t) \equiv 0$ in $[a, b]$. Likewise, if k is even and $y^{(k)}(b)=0$, then $v(b)=0$ and $v(a) \geq 0$ so that again we conclude $y(t) \equiv 0$ on $[a, b]$. This proves (a) and (b).

[^0]Note that in the above proof to get $v(a)=0$ (or $v(b)=0$), it would suffice to have $y^{(2 k-j)}(t) y^{(j)}(t)=0$ for $j=0,1,2, \ldots, k$ and for $t=a$ (or $t=b$). Hence we have the following corollary to the proof of Theorem 1.1.

Corollary 1.2. Let f satisfy (1.1) and let $n=2 k+1$. Then there do not exist points $a<b$ in I and a non-trivial solution y of D_{n} on $[a, b]$ satisfying

$$
y^{(2 k-j)}(a) y^{(j)}(a)=0=y^{(2 k-j)}(b) y^{(j)}(b) \quad \text { for } j=0,1, \ldots, k-1
$$

and either $y^{(k)}(a)=0$ if k is odd, or $y^{(k)}(b)=0$ if k is even.
Theorem 1.3. Let f satisfy (1.1) and let $n=2 k$, where k is an odd positive integer. Then there are no (μ, ν) conjugate pairs in I where $\mu \geq k$ and $\nu \geq k$.

Proof. Let $v(t)=\sum_{j=0}^{k=1}(-1)^{j} y^{(2 k-1-j)}(t) y^{(j)}(t)$, note that $v^{\prime}(t)=y^{(2 k)}(t) y(t)+$ $\left(y^{(k)}(t)\right)^{2}$, and proceed as in the proof of Theorem 1.1.

As a corollary to the proof of Theorem 1.3 we have
Corollary 1.4. Letf satisfy (1.1) and let $n=2 k$ where k is an odd positive integer. Then there do not exist points $a<b$ in I and a non-trivial solution y of D_{n} on $[a, b]$ satisfying

$$
y^{(2 k-1-j)}(a) y^{(j)}(a)=0=y^{(2 k-1-j)}(b) y^{(j)}(b) \quad \text { for } j=0,1, \ldots, k-1
$$

If condition (1.1) is replaced by

$$
\begin{equation*}
u_{0} f\left(t, u_{0}, u_{1}, \ldots, u_{n-1}\right)<0 \tag{1.2}
\end{equation*}
$$

for all $t \in I, u_{0} \neq 0$, and all $u_{1}, u_{2}, \ldots, u_{n-1}$, then results similar to those given above are valid. We here state only the results analogous to Theorems 1.1 and 1.3.

Theorem 1.5. Let f satisfy (1.2), let $n=2 k+1$ where k is a positive integer, and let μ, ν be positive integers. Then there do not exist any (μ, ν) conjugate pairs in I if
(a) k is odd, $\mu \geq k$, and $\nu \geq k+1$.
or
(b) k is even, $\mu \geq k+1$, and $\nu \geq k$.

Theorem 1.6. Let f satisfy (1.2) and let $n=2 k$ where k is an even positive integer. Then there are no (μ, ν) conjugate pairs in I where $\mu \geq k, \nu \geq k$.

We shall give examples in Section 2 to show that one may not allow k to be even in Theorem 1.3 or odd in Theorem 1.6.
II. In this section we will show that Theorem 1.1 can be generalized to a much larger class of conjugate pairs, provided an additional assumption is made regarding solutions of D_{n}. Examples are also given to show that the theorem is not true for the remaining conjugate pairs. The proof will not make use of any auxiliary function $v(t)$.

Theorem 2.1. Letf satisfy (1.1) and assume that no solution of D_{n} has more than a
finite number of zeros on any interval $[a, b] \subseteq I$. Let the positive integers μ, ν satisfy $\mu+\nu \geq n$ with ν odd in case equality holds. Then there are no (μ, ν) conjugate pairs in I.

Proof. We shall first assume that $\mu+\nu=n$ and that $\mu \leq \nu$. If the theorem is false, let y be a non-trivial solution of D_{n} satisfying

$$
\begin{align*}
& y(a)=y^{\prime}(a)=\cdots=y^{(\mu-1)}(a)=0 \neq y^{(\mu)}(a) \tag{2.1}\\
& y(b)=y^{\prime}(b)=\cdots=y^{(\nu-1)}(b)=0 \neq y^{(\nu)}(b) .
\end{align*}
$$

Let $a=a_{1}<a_{2}<\cdots<a_{m}=b$ be the $m(\geq 2)$ zeros of y on $[a, b]$. If $\mu=1$, the MeanValue Theorem implies that y^{\prime} has at least m zeros on $[a, b]$. If $\mu>1$, then, for $1 \leq j \leq \mu-1$, the Mean-Value Theorem implies that $y^{(j)}(t)$ will have at least $m+j$ zeros on $[a, b]$ at the points

$$
\begin{equation*}
a=a(1, j)<a(2, j)<\cdots<a(m+j, j)=b . \tag{2.2}
\end{equation*}
$$

It follows also that $a(i-1, j-1)<a(i, j)<a(i, j-1)$ for $2 \leq i \leq m+j-1,1 \leq j \leq \mu-1$. Now if $\mu<\nu$, then $y^{(\mu)}$ will have at least $m+\mu-1$ zeros at the points

$$
\begin{equation*}
a(1, \mu)<a(2, \mu)<\cdots<a(m+\mu-1, \mu)=b \tag{2.3}
\end{equation*}
$$

Inductively, for $\mu \leq j \leq \nu-1, y^{(j)}$ will have at least $m+\mu-1$ zeros at the points

$$
a(1, j)<a(2, j)<\cdots<a(m+\mu-1, j)=b
$$

where

$$
\begin{align*}
a(1, j-1)<a(1, j)<a(2, j-1)<\cdots & <a(m+\mu-2, j-1)<a(m+\mu-2, j) \\
& <a(m+\mu-1, j-1) \tag{2.4}\\
& =a(m+\mu-1, j)=b .
\end{align*}
$$

Therefore, $y^{(\nu)}$ will have at least $m+\mu-2$ zeros at the points

$$
\begin{equation*}
a(1, \nu)<a(2, \nu)<\cdots<a(m+\mu-2, \nu) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
a<a(1, \nu-1)<a(1, \nu)<a(2, \nu-1)<\cdots<a(m+\mu-2, \nu)<b . \tag{2.6}
\end{equation*}
$$

In case $\mu=\nu$, we may use (2.2) to see that that $y^{(v)}$ will have at least $m+\mu-2$ zeros satisfying (2.5) and (2.6). Now for $j=\nu+1, \nu+2, \ldots, n-1$, applying the MeanValue Theorem successively we conclude that $y^{(j)}$ will have at least $m+n-j-2$ zeros at the points

$$
a(1, j)<a(2, j)<\cdots<a(m+n-j-2, j)
$$

where

$$
\begin{align*}
a<a(1, j-1)<a(1, j)<a(2, j-1)<\cdots & <a(m+n-j-3, j-1) \\
& <a(m+n-j-2, j) \tag{2.7}\\
& <a(m+n-j-2, j-1)<b .
\end{align*}
$$

Hence, $y^{(n-1)}$ will have at least $m-1$ zeros in (a, b). If $m \geq 3$ and if two of the zeros of $y^{(n-1)}$ lie in some interval $\left[a_{j}, a_{j+1}\right]$, then $y^{(n)}$ will have a zero at a point $\alpha_{j}, a_{j}<\alpha_{j}<$ a_{j+1} which contradicts (1.1).

Therefore, we must have

$$
\begin{equation*}
a=a_{1}<a(1, n-1)<a_{2}<\cdots<a_{m-1}<a(m-1, n-1)<b \tag{2.8}
\end{equation*}
$$

Moreover, by our observations (2.4), (2.6) and (2.7) we see that

$$
\begin{equation*}
a_{1}<a(1, \mu)<a(1, \mu+1)<\cdots<a(1, n-1)<a_{2} . \tag{2.9}
\end{equation*}
$$

Now let $\gamma \geq 1$ be such that $(-1)^{\gamma} y^{(\mu)}(a)>0$. It follows that there is an $\alpha_{1}, a<\alpha_{1}<$ $a(1, \mu)$ with

$$
(-1)^{y} y^{(\mu+1)}\left(\alpha_{1}\right)<0
$$

and hence, $(-1)^{\gamma+1} y^{(\mu+1)}\left(\alpha_{1}\right)>0$. Proceeding inductively, we conclude the existence of a point $\alpha_{k}, a<\alpha_{k}<a(1, \mu+k-1)$, with

$$
(-1)^{\gamma+k} y^{(\mu+k)}\left(\alpha_{k}\right)>0 .
$$

Hence, for $k=n-\mu=\nu,(-1)^{\gamma+v} y^{(n)}\left(\alpha_{\nu}\right)>0$. But since $(-1)^{\gamma} y^{(\mu)}(a)>0$, it follows that $(-1)^{\gamma} y(t)>0$ on $\left(a, a_{2}\right)$. Thus

$$
(-1)^{2 \gamma+v} y^{(n)}\left(\alpha_{v}\right) y\left(\alpha_{v}\right)>0
$$

a contradiction to (1.1).
For the case $\mu+\nu=n$ and $\mu>\nu$, a similar proof holds. One can show that $y^{(n-1)}$ has at least $m-1$ zeros in (a, b) and hence (2.8) will hold. In addition, (2.9) will hold and then the remainder of the proof is the same.

It is also clear that if $\mu+\nu>n$, then one can show that $y^{(n-1)}$ has at least m zeros in (a, b) and hence two of them must lie in some interval $\left[a_{j}, a_{j+1}\right]$. This implies that $y^{(n)}$ has a zero in (a_{j}, a_{j+1}), contradicting (1.1).

From the proof of Theorem 2.1 we have
Corollary 2.2. Let f satisfy (1.2) and assume that no non-trivial solution of D_{n} has more than a finite number of zeros on any interval $[a, b] \subseteq I$. Let the positive integers μ, ν satisfy $\mu+\nu \geq n$ with ν even in case equality holds. Then there are no (μ, ν) conjugate pairs in I.

Remark 2.3. Consider now a pair of integers $\mu, \nu \geq 1$ where $\mu+\nu=n$ and ν is even. Defining the function $f\left(t, u_{0}, u_{1}, \ldots, u_{n-1}\right)$ by

$$
f=\left\{\begin{array}{rr}
n!, & u_{0} \geq 0, \\
-n!, & \text { all } t, u_{1}, \ldots, u_{n-1} \\
-0, & \text { all } t, u_{1}, \ldots, u_{n-1}
\end{array}\right.
$$

we see that (1.1) holds. Moreover, on the interval $[0,1]$ the function

$$
y(t) \equiv t^{\mu}(t-1)^{\nu}
$$

is a solution of D_{n} which has a (μ, ν) conjugate pair.

If one requires that the function f be continuous, then examples can still be given to show that Theorem 2.1 cannot, in general, be extended to include additional conjugate pairs. To see this, consider the simple linear differential equation

$$
\begin{equation*}
y^{(n)}=y . \tag{2.10}
\end{equation*}
$$

For $n=3$ one can show that there is a non-trivial solution of (2.10) with a simple zero at $\tau,-\sqrt{3} \pi<\tau<0$, and a double zero at the origin. Also, for $n=4$, there is a non-trivial solution of (2.10) having a double zero at the origin and another double zero at τ, where $3 \pi / 2<\tau<2 \pi$.

In conjunction with this, it is interesting to compare our results with those obtained by Sherman ([4]) for the linear differential equation

$$
\begin{equation*}
y^{(n)}=p(t) y, \quad t \in I . \tag{2.11}
\end{equation*}
$$

where $p(t)$ is continuous and satisfies

$$
\begin{equation*}
|p(t)|>0 \text { on } I . \tag{2.12}
\end{equation*}
$$

For any $a \in I$ let $\eta_{1}(a)$, the first conjugate point of a, be the smallest $b>a$ such that there is a non-trivial solution of (2.11) with n zeros on [a, b] (counting multiplicities). Suppose now that $y(t)$ is a non-trivial solution of (2.11) with n simple zeros on $\left[a, \eta_{1}(a)\right] \subseteq I$. Then by Theorem 5 of [4], there exist solutions y_{1}, y_{2}, \ldots, y_{n-1} of (2.11), not necessarily distinct, such that y_{k} has a zero at a of order at least $n-k$ and a zero at $\eta_{1}(a)$ of order at least k. This contradicts Theorem 2.1 or Corollary 2.2. Thus, if $\eta_{1}(a)<+\infty$, any solution of (2.11) with n zeros on [$a, \eta_{1}(a)$] has at least one multiple zero. However, in [5] is it shown that for any $\epsilon>0$ there is a solution of (2.11) with n simple zeros on $\left[a, \eta_{1}(a)+\epsilon\right)$.

Remark 2.4. Results analogous to Theorem 2.1 and Corollary 2.2 can be obtained if one assumes instead of (1.1) that the following condition holds for some $j, 1 \leq j \leq n-1$:

$$
\begin{equation*}
u_{j} f\left(t, u_{0}, u_{1}, \ldots, u_{n-1}\right)>0 \quad \text { if } u_{j} \neq 0 . \tag{2.13}
\end{equation*}
$$

As an example of what is true here, we state
Theorem 2.5. Let fatisfy (2.13)j and also assume that no solution y of D_{n} is such that $y^{(j)}$ has an infinite number of zeros on some interval $[a, b] \subseteq I$ and $y^{(j)} \not \equiv 0$ on $[a, b]$. Let the positive integers μ, ν satisfy $\mu+\nu \geq n-j$ with ν odd in case equality holds. Then all solutions y of D_{n} which are such that $y^{(j)}$ has $a(\mu, \nu)$ conjugate pair belong to the class of polynomials in t of degree $\leq j-1$.

Remark 2.5. We note also that Theorem 1.1, Corollary 1.2, Theorem 1.3, Corollary 1.4 and Theorem 2.1 are true, as stated, for solutions of the differential inequality

$$
\begin{equation*}
y^{(n)} \geq f\left(t, y, y^{\prime}, \ldots, y^{(n-1)}\right) . \tag{2.13}
\end{equation*}
$$

Likewise, Theorems 1.5 and 1.6 and Corollary 2.2 are valid for solutions of the differential inequality

$$
\begin{equation*}
y^{(n)} \leq f\left(t, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{2.14}
\end{equation*}
$$

III. In this section we shall show that several results obtained in [3] for the case $n=3$ can be generalized to arbitrary $n \geq 2$. We assume f satisfies the following conditions:
(3.1) $\quad f$ is continuous on $I \times R^{n}$ where $n \geq 2$ with $f\left(t, 0, u_{1}, \ldots, u_{n-3}, 0,0\right) \equiv 0$;

$$
\begin{array}{ll}
f\left(t, u_{0}, u_{1}, \ldots, u_{n-1}\right) \geq f\left(t, 0, u_{1}, \ldots, u_{n-1}\right) & \text { if } u_{0}>0 \text { and } \\
f\left(t, u_{0}, u_{1}, \ldots, u_{n-1}\right) \leq f\left(t, 0, u_{1}, \ldots, u_{n-1}\right) & \text { if } u_{0}<0, \tag{3.2}
\end{array}
$$

the inequality holding for all $t \in I$ and all u_{1}, \ldots, u_{n-1}.
(3.3) $f\left(t, 0, u_{1}, \ldots, u_{n-1}\right)$ is non-decreasing in u_{n-2} for fixed $t, 0, u_{2}, \ldots, u_{n-1}$ and satisfies a Lipschitz condition with respect to u_{n-1} on compact subsets of $I \times R^{n}$.

Theorem 3.1. Assume conditions (3.1), (3.2) and (3.3) hold, let y be a non-trivial solution of D_{n} which has a zero of order $n-1$ at the point $a \in I$, and assume a is not an accumulation point of zeros of y. Then y has no zeros to the right of a in I.

Proof. We shall be quite brief in this proof since it is a straightforward generalization of the proof of Theorem 2 in [3]. In addition, we shall assume $n \geq 3$ since the proof for $n=2$ will be obvious. Let y satisfy

$$
y(a)=y^{\prime}(a)=\cdots=y^{(n-2)}(a)=y(b)=0 \quad \text { with } a<b .
$$

By repeated application of Rolle's theorem there is a point c in (a, b) with $y^{(n-2)}(c)=0$. Define

$$
G\left(t, u, u^{\prime}\right) \equiv f\left(t, 0, y^{\prime}(t), \ldots, y^{(n-3)}(t), u, u^{\prime}\right)
$$

Assume, to be specific, that $y>0$ on (a, c). Then by (3.2) we have

$$
\begin{aligned}
\left(y^{(n-2)}(t)\right)^{\prime \prime} & =f\left(t, y(t), y^{\prime}(t), \ldots, y^{(n-3)}(t), y^{(n-2)}(t), y^{(n-1)}(t)\right) \\
& \geq G\left(t, y^{(n-2)}(t),\left(y^{(n-2)}(t)\right)^{\prime}\right),
\end{aligned}
$$

so that $y^{(n-2)}(t)$ is a subfunction with respect to solutions of $u^{\prime \prime}=G\left(t, u, u^{\prime}\right)$ on (a, c) (see [1] p. 1056). Since $u \equiv 0$ is a solution of $u^{\prime \prime}=G\left(t, u, u^{\prime}\right), y^{(n-2)}(a)=y^{(n-2)}(c)=0$ implies $y^{(n-2)}(t) \leq 0$ on (a, c). Since a is a zero of order $n-1$ of y, it follows that $y(t) \leq 0$ on (a, c), contrary to our assumption. A similar proof works in case $y(t)<0$ on (a, b) by showing that $y^{(n-2)}(t)$ is a superfunction with respect to solutions of $u^{\prime \prime}=G\left(t, u, u^{\prime}\right)$.

We note that $y(b)=0$ was used only to get the point $c>a$ where $y^{(n-2)}$ vanished.

Therefore, as a corollary to the proof of Theorem 3.1 we have
Corollary 3.2. Under the assumptions in Theorem 3.1, $y^{(n-2)}(t)>0$ for $t>a$ if $y(t)>0$ for $t>a$ and $y^{(n-2)}(t)<0$ for $t>a$ if $y(t)<0$ for $t>a$.

For the case $n=4$ we have the following corollary of the proof of Theorem 3.1:
Corollary 3.3. Let a and b be successive zeros of a non-trivial solution y of D_{4} and assume f satisfies (3.1), (3.2) and (3.3) for $n=4$. Then y does not have two strict extrema in (a, b).

Proof. If the corollary is false, let $y(a)=y(b)=0$ and suppose $y>0$ on (a, b). If the extrema occur at $t=c$ and $t=d$ with $c<d$ then we have $y^{\prime \prime}(c) \leq 0$ and $y^{\prime \prime}(d) \leq 0$. Hence, by the proof of Theorem 3.1, $y^{\prime \prime}(t) \leq 0$ on (c, d) so that $y^{\prime}(t) \equiv 0$ on $[c, d]$, contrary to assumption. If $y<0$ on (a, b), a similar argument works.

References

1. J. W. Bebernes, A subfunction approach to a boundary value problem for ordinary differential equations, Pacific J. Math. 13, No. 4 (1963), 1053-1066.
2. S. B. Eliason, Nonperiodicity of solutions of an Nth-order equation, Amer. Math. Monthly (to appear).
3. R. M. Mathsen, A note on solutions of third-order ordinary differential equations, SIAM Rev. (to appear).
4. T. L. Sherman, On solutions of Nth-order linear differential equations with N zeros, Bull. Am. Math. Soc. 74, No. 5 (1968), 923-925.
5. -_, Conjugate points and simple zeros for ordinary linear differential equations (submitted for publication).

University of Alberta,
Edmonton, Alberta

[^0]: Received by the editors July 22, 1969.
 ${ }^{1}$) The work of the two first named authors was supported by University of Alberta Postdoctoral Fellowships.

