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Abstract

A semiring is a set S with two binary operations + and · such that both the additive reduct S + and the
multiplicative reduct S • are semigroups which satisfy the distributive laws. If R is a ring, then, following
Chaptal [‘Anneaux dont le demi-groupe multiplicatif est inverse’, C. R. Acad. Sci. Paris Ser. A–B 262
(1966), 274–277], R• is a union of groups if and only if R• is an inverse semigroup if and only if R• is a
Clifford semigroup. In Zeleznikow [‘Regular semirings’, Semigroup Forum 23 (1981), 119–136], it is
proved that if R is a regular ring then R• is orthodox if and only if R• is a union of groups if and only
if R• is an inverse semigroup if and only if R• is a Clifford semigroup. The latter result, also known as
Zeleznikow’s theorem, does not hold in general even for semirings S with S + a semilattice Zeleznikow
[‘Regular semirings’, Semigroup Forum 23 (1981), 119–136]. The Zeleznikow problem on a certain
class of semirings involves finding condition(s) such that Zeleznikow’s theorem holds on that class. The
main objective of this paper is to solve the Zeleznikow problem for those semirings S for which S + is a
semilattice.
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1. Introduction

The history of semirings dates back at least to Vandiver [21]. The intensive study
of semirings was initiated during the late 1960s when significant applications were
found for them. More on applications of semiring theory within analysis, fuzzy
set theory, the theory of discrete-event dynamical systems, automata and formal
language theory can be found in [8–10]. Thus, semirings now have both a developed
algebraic theory as well as important practical applications.
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A semiring (S , +, ·) is a set S equipped with two binary operations + and · such that
the following identities are satisfied:

(SR1) x + (y + z) ≈ (x + y) + z;
(SR2) x(yz) ≈ (xy)z;
(SR3) x(y + z) ≈ xy + xz, (x + y)z = xz + yz.

A semigroup S + = (S , +) is called the additive reduct, and a semigroup S • = (S , ·) is
called the multiplicative reduct of a semiring S . Let P be a class of semigroups. A
semiring S is an additively P semiring, or a-P semiring for short, if S + is a semigroup
from class P. In a similar manner we can define a multiplicative P semiring, or m-P
semiring for short. If both S + and S • are from class P, then S is a P semiring. For
example, a semiring S is m-regular if for any a ∈ S there exists x ∈ S such that a = axa.
For a ∈ S , V(a)• is the set of all multiplicative inverses of a, and V(a)+ is the set of all
additive inverses of a. If these sets are nonempty then we can distinguish the following
three subsets of a semiring S : the set E(S )• of all multiplicative idempotents of S •; the
set E(S )+ of all additive idempotents of S +; and E(S ) = E(S )• ∩ E(S )+. An orthodox
semiring is an m-regular semiring S with a subsemigroup E(S )• of S •. A semiring S
is additively idempotent if S = E(S )+, and S is idempotent if S = E(S ).

Let us briefly recall that if R is a ring, then, following [6], R• is a union of groups
if and only if R• is an inverse semigroup if and only if R• is a Clifford semigroup.
In [23], it is proved that if R is a regular ring then R• is orthodox if and only if R• is a
union of groups if and only if R• is an inverse semigroup if and only if R• is a Clifford
semigroup. The latter result, also known as Zeleznikow’s theorem, does not hold for
an arbitrary semiring [22, 23]. The Zeleznikow problem on a certain class of semirings
involves finding condition(s) such that Zeleznikow’s theorem holds on that class . In
the literature concerned with (a-, m-)inverse semirings, (with a-commutativity or not,
and/or with zero, and/or with the identity), the solution of the Zeleznikow problem is
mostly described in terms of its (special) elements [20]. The aim of this paper is to
make a little progress in that direction. The following example, taken from [23], shows
that Zeleznikow’s theorem does not hold even for semirings S with S + a semilattice.

E. Let (S , +) be a semilattice with |S | ≥ 2. Let us define x · y = x for all x, y ∈ S .
Then (S , +, ·) is a semiring with S • orthodox but not inverse.

This motivates us to try to solve the Zeleznikow problem for those semirings S for
which S + is a semilattice. In order to achieve this, a study of natural partial orders ≤+

and ≤• of such semirings will be very helpful. In what follows, (one- and two-sided)
amenability properties, taken from semigroup theory, and used here in semiring theory
for the first time, will be of help. Due to their natural and close connections, many
ideas, results and methods of semigroup theory find their place and become important
within the semiring theory, too.

The paper is organized in the following way. Section 2 gives a short history of
the Zeleznikow problem, as well as the semigroup theory background needed for our
main objective—proving Zeleznikow’s theorem for semirings S with S + a semilattice.
Inverse semirings S with the property that ≤+ extends ≤• on S and its influence to
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certain subsets of S are considered in Section 3. The main result of this section,
Proposition 3.2, gives conditions under which ≤+ extends ≤• on the semirings in
question. In Section 4 we move a little further with our constraints on natural partial
orders on S . Concepts of one- and two-sided amenability taken from semigroup theory
(and applied on ≤+) are defined and adopted for the semiring case. It is shown that ≤+

need not, in general, be amenable even when the semiring in question is a Clifford
semiring. The main result of this section, indeed of the entire paper, is Theorem 4.6,
in which Zeleznikow’s theorem for semirings S with S + a semilattice is proved. We
end this section (and the paper) with the criteria (Theorem 4.8) for a Clifford semiring
that guarantee amenability of ≤+.

We refer to [7] as a source of references on semirings. For notation and terminology
not given in this paper we refer to [11, 17, 18] as background on semigroup theory,
and [2] as background on ordered algebraic structure theory.

2. History and background

This section gives a short history of the Zeleznikow problem, as well as the
semigroup theory background needed for proving our main objective—Zeleznikow’s
theorem for semirings S with a semilattice S +.

2.1. History of the Zeleznikow problem. The story began with Chaptal who in
1966 proved the following result [6, Proposition 1].

P 2.1. For a ring (R, +, ·) the following conditions are equivalent:

(i) R• is a union of groups;
(ii) R• is an inverse semigroup;
(iii) R• is a Clifford semigroup.

In 1981, Zeleznikow [23] gave the next theorem, now known as Zeleznikow’s
theorem.

T 2.2. For a regular ring R the following conditions are equivalent:

(i) R• is an orthodox semigroup;
(ii) R• is a union of groups;
(iii) R• is an inverse semigroup;
(iv) R• is a Clifford semigroup.

In [22] the ring-semigroup, that is, the semigroup (S , ·) for which there exists a
binary operation + : S × S −→ S such that (S , +, ·) is a ring, is defined. Zeleznikow’s
theorem for a regular ring-semigroup [22, Theorem 13] is as follows.

T 2.3. For a regular ring-semigroup (S , ·) the following are equivalent:

(i) (S , ·) is orthodox;
(ii) (∀e, f ∈ E(S )) e f = 0 ⇒ f e = 0;
(iii) (S , ·) is inverse;
(iv) (S , ·) is Clifford.
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Zeleznikow has shown that for additively inverse semirings, even for a semilattice
S +, we do not have a solution of the Zeleznikow problem (see the example given
above). Sen and Maity in 2004 gave the following result [20, Theorem 2.8].

T 2.4. Let (S , +, ·) be an a-commutative and a-inverse semiring satisfying

(A) a(b + b′) = (b + b′)a,
(B) a + a(b + b′) = a,

for any a, b ∈ S , where a′ ∈ V(a)+, b′ ∈ V(b)+. If, in addition, S • is a regular
semigroup, then the following conditions are equivalent:

(i) S • is an orthodox semigroup;
(ii) S • is a union of groups;
(iii) S • is an inverse semigroup;
(iv) S • is a Clifford semigroup.

2.2. Main objective. Our main objective in this paper is to prove Zeleznikow’s
theorem for semirings S with a semilattice S +.

T 2.5. Let (S , +, ·) be a semiring with S + a semilattice and S • a regular
semigroup. If ≤+ is an amenable order on S then the following conditions are
equivalent:

(i) S • is an orthodox semigroup;
(ii) S • is a union of groups;
(iii) S • is an inverse semigroup;
(iv) S • is a Clifford semigroup.

2.3. Semigroup theory background. In order to achieve our main objective, a
study of the natural orders ≤+ and ≤• of semirings in question will be very helpful.
In what follows, (one- and two-sided) amenability properties, taken from semigroup
theory, and here used in semiring theory for the first time, will be of help. Due to their
natural and close connections, many ideas, results and methods of semigroup theory
find their place and become important within the semiring theory, too.

A partial order on a semigroup S is called natural if it is defined by means of the
multiplication on S . For our purpose here, we recall that the natural partial order ≤n

on a regular semigroup is given by

a ≤n b ⇔ (∃e, f ∈ E(S )) a = eb = b f .

A useful property of the natural partial order is compatibility with multiplication, that
is, a ≤n b and c ∈ S implies ac ≤n bc and ca ≤n cb. But, already for regular semigroups,
compatibility does not hold in general. It is also known that for a regular semigroup S ,
natural partial order is compatible with multiplication if and only if S is locally inverse.
Locally inverse or pseudo inverse semigroups include classes of generalized inverse or
orthodox locally inverse semigroups (that is, regular semigroups with E(S ) a normal
band) and inverse semigroups.
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An inverse semigroup is a semigroup S such that for any a ∈ S there is unique
element, denoted by a−1, such that a = aa−1a and a−1 = a−1aa−1. Natural partial order
for such semigroups, defined as

a ≤n b⇔ (∃e ∈ E(S )) a = be,

is an important ingredient in their structure. We refer the reader to [17] for a
background material on inverse semigroups and their natural partial orders. Besides
the fact that almost all the results concerning orderings on an inverse semigroup have
focused on the natural partial order, notable exceptions appear as well. For example,
the concept of one and two-sided amenability appears in the study of compatible orders
definable on an inverse semigroup. We recall from [12] that a partial order ≤ defined
on an inverse semigroup S is left amenable if it is compatible with multiplication on S ,
extends the natural partial order ≤n on idempotents and is such that

a ≤ b⇒ a−1a ≤ b−1b.

A right amenable order is defined dually, while an amenable order is one which is both
left and right amenable. Clearly, any inverse semigroup is amenably ordered under
≤n. Amenably ordered inverse semigroups have been considered within investigations
into Dubreil–Jacotin regular semigroups in [1, 13, 14]. Left amenable ordered inverse
senigroups are considered in detail in [12]. It is also shown in [12] that (two-sided)
amenability ‘imposes strong structural constraints on the structure of ordered inverse
semigroups’. That is why a study of the one-sided nature of these orders has been
initiated in a more general setting [3–5]. Here, in what follows, our objective is to
obtain a significant generalization of the case where S is a certain kind of semiring.

3. On inverse semirings with ≤•⊆≤+

Throughout this paper we will consider semirings with some additional properties.
Our starting point is a semiring (S , +, ·) with idempotent and commutative addition:

(SR4) x + x ≈ x;
(SR5) x + y ≈ y + x;

that is, a semiring S with a semilattice S +. For such a semiring S we have that
S = E(S )+, so E(S ) = E(S )+ ∩ E(S )• = E(S )•. Clearly, S is regular (completely
regular, inverse or Clifford) if S • is regular (completely regular, inverse or Clifford).
A semiring S is a bisemilattice if S • is also a semilattice. A distributive lattice
is a bisemilattice which satisfies the absorption law x + xy ≈ x and x(x + y) ≈ x. A
monobisemilattice is a bisemilattice which satisfies x + y ≈ xy.

In what follows, a useful tool will be natural partial orders ≤+ and ≤• defined on S +

and S • respectively by

a ≤+ b⇔ a + b = b + a = b,

a ≤• b⇔ (∃e, f ∈ E(S )•) a = be = f b,
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a, b ∈ S . If S is an inverse semiring then ≤+ is compatible with both operations
of S , and ≤• is compatible with multiplication. Some noticeable characterizations of
semirings (especially from a certain subclass of idempotent semirings) are given in
terms of natural partial orders and their relationships. For example, in [19], the
membership in certain subvarieties of the variety of idempotent semirings is given
using the relation ≤+⊆≤•. In [16], the variety of all idempotent semirings having
Green’s D relation as congruence is described using the connection ≤+ ⊆ ≥• and the
equality ≤+ = ≥•. In this section we consider an inverse semiring S with the property
that ≤+ extends ≤•, that is,

≤• ⊆ ≤+,

and its influence on certain subsets of S . The following result on inverse semirings
obtained in [12] will be useful.

T 3.1. If S is an inverse semiring then E(S ) is a bisemilattice.

The main result of this section needed to solve our main problem, which we set in
the previous section, gives conditions under which ≤+ extends ≤• on S .

P 3.2. Let S be an inverse semiring. Then, the following conditions are
equivalent:

(i) ≤+ is an extension of ≤• (that is, ≤• ⊆ ≤+);
(ii) (∀e, f ∈ E(S )) e ≤+ f ⇔ e ≤• f ;
(iii) (∀a, b ∈ S ) a + ab−1b = a;
(iv) E(S ) is a distributive lattice.

P. Let S be an inverse semiring.
(i)⇒ (ii). Let e, f ∈ E(S ). If e ≤• f , then, by (i), e ≤+ f follows immediately.

Conversely, if e ≤+ f , then e = e2 ≤+ e f . From e f ≤• e (e f = e · e f = e f · f ) and (i) we
have that e f ≤+ e. Thus e f = e holds, that is, e ≤• f , as required.

(ii)⇒ (i). Let a ≤• b, a, b ∈ S . Then, by [11, Proposition 5.2.1], we have that
b−1a = a−1a, aa−1 ≤• bb−1 and a−1a ≤• b−1b. Now, by (ii), we get a−1a ≤+ b−1b,
aa−1 ≤+ bb−1. So

a ≤+ bb−1a (post-multiplying aa−1 ≤+ bb−1 by a)

≤+ ba−1a (b−1a = a−1a)

≤+ bb−1b (a−1a ≤+ b−1b)

= b.

Thus ≤• ⊆ ≤+.
(ii)⇒ (iii). Let a, b ∈ S . Then a−1ab−1b ≤• a−1a, and, by (ii), it follows that

a−1ab−1b ≤+ a−1a, that is, a−1ab−1b + a−1a = a−1a. Multiplying this by a, that is, from
a(a−1ab−1b + a−1a) = aa−1a, we obtain ab−1b + a = a.

(iii)⇒ (iv). Follows immediately by Theorem 3.1 and (iii).
(iv)⇒ (ii). Let e, f ∈ E(S ) be such that e ≤+ f , that is, e + f = f . Then e + e f = e f

and, by the absorption law satisfied in E(S ), it follows that e = e + e f = e f , that
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is, e ≤• f . Conversely, if e ≤• f , that is, e f = e, then, by the absorption law again,
we have f = e f + f = e + f . Thus e ≤+ f . �

If B is a bisemilattice then, as is proved [15], B is a distributive lattice if and only if
≤•=≤+. Now we have the following result.

T 3.3. If S is an inverse semiring satisfying ≤•=≤+ then S is a distributive
lattice.

P. Let a, b ∈ S be such that aL•b, which, by [11, Theorem 5.1.2], means that
a−1a = b−1b. From a ≤+ a + b and the assumption we have a ≤• a + b. Now, by
[11, Proposition 5.2.1], we have that a−1 ≤• (a + b)−1, that is, a−1 = a−1a(a + b)−1. In
a similar manner, from b ≤• a + b we can obtain b−1 = b−1b(a + b)−1. So

a−1 = a−1a(a + b)−1 = b−1b(a + b)−1 = b−1.

Thus a = b and every L•-class of S • has only one element which, by [11, Theorem
5.1.2], means that E(S ) = S , and, by Proposition 3.2, S is a distributive lattice. �

P 3.4. Let S be an inverse semiring. Then, the following conditions are
equivalent:

(i) (∀e, f ∈ E(S )) e + f ≤• e;
(ii) (∀a, b ∈ S ) a + ab−1b = ab−1b;
(iii) E(S ) is a monobisemilattice.

P. Let S be an inverse semiring.
(i)⇒ (iii). Let e, f ∈ E(S ). Then, by (i), it follows that e + f ≤• e and e + f ≤• f ,

which further imply that (e + f )2 ≤• e f . By Theorem 3.1, it follows that (e + f ) ≤• e f ,
that is,

e + f = e f (e + f )
= e f e + e f
= e f + e f
= e f ,

so E(S ) is a monobisemilattice.
(iii)⇒ (ii). Let a, b ∈ S . By (iii) we have that a−1a + b−1b = a−1ab−1b. Then

a(a−1a + b−1b) = aa−1ab−1b implies that a + ab−1b = ab−1b, as required.
(ii)⇒ (i). Let e, f ∈ E(S ). Then, by (ii), e + e f = e f and f + f e = f e. Now, by

Theorem 3.1,

e + f = (e + f )2

= e + e f + f e + f
= (e + e f ) + ( f + f e)
= e f + f e
= e f
≤• e.

Thus e + f ≤• e. �
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4. On regular semirings with ≤+ left amenable

Let ≤ be a partial order defined on a regular semiring S . Following [3–5], for the
semigroup case, we can here extend it to the semiring case and give the following
definition.

A partial order ≤ defined on a regular semiring S is left amenable if it satisfies the
following conditions:

(i) ≤ is compatible with the operations of S ;
(ii) ≤ is an extension of the natural partial order ≤•;
(iii) a ≤ b implies that there exist an inverse a∗ ∈ V(a)• and an inverse b∗ ∈ V(b)• such

that a∗a ≤• b∗b.

A right amenable partial order is defined dually. A left and right amenable order ≤ is
called amenable.

Conditions (ii) and (iii) given above can be replaced by the following.

(la) ≤ is a left amenable order on S •.

The importance of condition (i) is illustrated in the next example.

E 4.1. Let S be a three-element bisemilattice with operation tables

+ a b c
a a b c
b b b b
c c b c

· a b c
a a a a
b a b b
c a b c

The natural partial order ≤• is left amenable on S •, but is not compatible with addition
in S . In fact, a ≤• b, a + c = c, b + c = b, but b ≤• c.

The next lemma will be useful later.

L 4.1. Let S be a regular semiring and let ≤ be an amenable partial order defined
on it. Then the following conditions are equivalent:

(i) ≤ extends the natural partial order ≤•;
(ii) ≤ extends ≤• on E(S );
(iii) ≤ coincides with ≤• on E(S ).

P. (i)⇒ (ii). Obvious.
(ii)⇒ (iii). Let e ≤ f , e, f ∈ E(S ). Then, by the assumption, we have that ee∗ ≤•

f f ∗ and e′e ≤• f ′ f for some e∗, e′ ∈ V(e)• and f ∗, f ′ ∈ V( f )•. Thus, ee∗ = f f ∗ee∗ and
e′e = e′e f ′ f . So, from e = f f ∗ee∗e = f f ∗e we get f e = f · f f ∗e = f f ∗e = e. Similarly,
from e′e = e′e f ′ f we have e = e f . Therefore e = e f = f e, that is, e ≤• f , as required.

(iii)⇒ (i). Let a ≤• b, a, b ∈ S . Then, by [2, Theorem 13.6] for any b∗ ∈ V(b)•
there exists a∗ ∈ V(a)• such that a = ba∗a and a∗a ≤• b∗b. Now, by (iii), a∗a ≤ b∗b,
which give a = ba∗a ≤• bb∗b = b and we have a ≤ b. �
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In the previous section we considered an inverse semiring S with property that ≤+

extends ≤•. Here we go a little further with our constraints—we assume that ≤+ is
one- or two-sided amenable. But let us first remark that ≤+ need not be amenable even
when the semiring in question is a Clifford semiring. In order to illustrate this we have
the following example.

E 4.2. Let G = 〈a〉 be a cyclic group with infinite order generated by a, that is,
G = {an | n ∈ Z}, where a0 = e is the identity of G. We can adjoin an extra element 1 to
G, and write G ∪ {1} as G1. If we define the multiplication on G1 by

(∀n ∈ Z) an · 1 = 1 · an = an and 1 · 1 = 1,

then G1 becomes a Clifford semigroup and E(G1) = {e, 1}. Define a total order ≤ on
G1 as follows:

· · · ≤ a−2 ≤ a−1 ≤ e ≤ 1 ≤ a ≤ a2 ≤ · · · .

It is easy to verify that ≤ is compatible with multiplication on G1. Also, we can
define the addition + on G1 by u + v = max{u, v} and so (G1, +, ·) becomes a Clifford
semiring. In fact, on the Clifford semiring (G1, +, ·), we have ≤=≤+. If we
assume that ≤+ is left amenable, then 1 ≤+ a implies 1 = 1 · 1 ≤• a−1a = e, which is
a contradiction.

In the rest of this paper we will consider semirings with ≤+ one- or two-sided
amenable. In what follows (within this section), we will prove that one- and two-
sided amenability coincide for inverse semirings. Using that result (and some others),
we will give a solution to the Zeleznikow problem for semirings S with a semilattice
S +.

Some equivalent conditions to the left amenability of ≤+ on an inverse semiring are
given in the following theorem.

T 4.2. Let S be an inverse semiring. Then, the following conditions are
equivalent:

(i) ≤+ is left amenable;
(ii) E(S ) is a distributive lattice and

(∀a, b ∈ S ) (a + b)−1(a + b) = a−1a + b−1b;

(iii) S satisfies
(∀a, b ∈ S ) a = a(a + b)−1(a + b);

(iv) (∀a, b ∈ S ) a ∈ S (a + b).

P. (i)⇒ (ii). By Proposition 3.2 we have that E(S ) is a distributive lattice. Let
a, b ∈ S . From a ≤+ a + b and b ≤+ a + b, by the assumption, we have that a−1a ≤•
(a + b)−1(a + b) and b−1b ≤• (a + b)−1(a + b), which implies, by the assumption
again, a−1a ≤+ (a + b)−1(a + b) and b−1b ≤+ (a + b)−1(a + b). So a−1a + b−1b ≤+

(a + b)−1(a + b). On the other hand, it is obvious that ab−1b ≤• a and ba−1a ≤• b,
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so we get ab−1b ≤+ a and ba−1a ≤+ b. Thus we have that (a + b)(a−1a + b−1b) =

a + ab−1b + ba−1a + b = a + b. Now from (a + b)−1(a + b)(a−1a + b−1b) = (a + b)−1

(a + b) it follows that (a + b)−1(a + b) ≤• a−1a + b−1b. By Proposition 3.2 we have
that (a + b)−1(a + b) ≤+ a−1a + b−1b. Hence (a + b)−1(a + b) = a−1a + b−1b.

(ii)⇒ (i). Let S be an inverse semiring and E(S ) a distributive lattice which satisfies
the given equality. By Proposition 3.2 we have that ≤• ⊆ ≤+. Let a ≤+ b, that is, a + b =

b and (a + b)−1 = b−1. So (a + b)−1(a + b) = b−1b. Now, by the assumption, it follows
that a−1a + b−1b = b−1b, which implies that a−1a ≤+ b−1b. By Proposition 3.2 again,
we have that a−1a ≤• b−1b. Thus, ≤+ is left amenable.

(i)⇒ (iii). From a ≤+ a + b, a, b ∈ S , by the assumption, we have that a−1a ≤•
(a + b)−1(a + b), that is, a−1a = a−1a(a + b)−1(a + b). So a = aa−1a = aa−1a(a + b)−1

(a + b) = a(a + b)−1(a + b), as required.
(iii)⇒ (iv). This is obvious.
(iv)⇒ (i). Let a ≤+ b, that is, a + b = b. Then, by (iv), there exists x ∈ S such

that a = x(a + b). Thus a−1 = (a + b)−1x−1, and we have a−1a = (a + b)−1x−1x(a + b).
It can easily be checked that (a + b)−1x−1x(a + b) ≤• (a + b)−1(a + b), and we have
a−1a ≤• (a + b)−1(a + b), that is, a−1a ≤• b−1b.

Let a ≤• b, a, b ∈ S . Then, by [11, Proposition 5.2.1], we have that a−1a ≤• b−1b,
that is, a−1a = b−1ba−1a, so

a−1a + b−1b = b−1ba−1a + b−1b = b−1b(a−1a + b−1b). (4.1)

There exists, by (iv), y ∈ S such that b−1b = y(a−1a + b−1b). So

b−1b(a−1a + b−1b) = y(a−1a + b−1b) = b−1b.

In a similar manner we can obtain b−1b = (a−1a + b−1b)b−1b. Now, by (4.1), we have
that a−1a + b−1b = b−1b, that is, a−1a ≤+ b−1b, which implies ba−1a ≤+ b. By [11,
Proposition 5.2.1] again, we have ba−1a = aa−1a = a ≤+ b. Thus a ≤+ b, and ≤+ is
an extension of ≤•. �

Some properties of an inverse semiring with ≤+ left amenable are given in the
following theorem.

T 4.3. Let S be an inverse semiring with ≤+ left amenable. Let a, b ∈ S and
e ∈ E(S ). Then the following conditions hold:

(i) a ≤+ b implies a = ab−1b and ab−1 ≤+ aa−1;
(ii) a ≤+ e implies a−1a ≤• aa−1 and a = a2a−1;
(iii) a ≤+ e implies a−1a = aa−1.

P. (i). Let a ≤+ b. Then we have aa−1ab−1 ≤+ aa−1bb−1, that is, ab−1 ≤+

aa−1bb−1. On the other hand, we have aa−1bb−1 ≤• aa−1, which, by the assumption,
implies aa−1bb−1 ≤+ aa−1, and we have ab−1 ≤+ aa−1. By Proposition 3.2, we have
a + ab−1b = a, that is, ab−1b ≤+ a. On the other hand, by [11, Proposition 5.2.1], we
have a−1a ≤+ b−1b, so a = aa−1a ≤+ ab−1b. Thus a = ab−1b.
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(ii). Let a ≤+ e. By (i), we have a = ae and ae ≤+ aa−1, which, further, by left
amenability gives a−1a ≤• (aa−1)−1aa−1 = aa−1, which implies a−1a = a−1a2a−1. So

a = aa−1a = aa−1a2a−1 = aa−1aaa−1 = a2a−1.

(iii). If a ≤+ e, then, by (ii), a−1a ≤• aa−1 follows. Thus, we have to prove that
aa−1 ≤• a−1a.

It is clear that aa−1 ≤+ aa−1 + a−2a. Since ≤+ is left amenable on the multiplicative
reduct of S , it follows that aa−1 ≤• (aa−1 + a−2a)−1(aa−1 + a−2a). Thus,

aa−1 = aa−1(aa−1 + a−2a)−1(aa−1 + a−2a)

= aa−1(aa−1 + a−2a)−1(aa−1 + a−2a)aa−1

= aa−1(aa−1 + a−2a)−1(aa−1a + a−2a2)a−1,

that is,

aa−1 = aa−1(aa−1 + a−2a)−1(a + a−2a2)a−1. (4.2)

On the other hand, from a ≤+ e, it follows that a + a−2a2 ≤+ e + a−2a2. Now, by
(ii), (a−2a2)2 = a−2a2a−1a−1a2 = a−2aa−1a2 = a−2a2, and e + a−2a2 ∈ E(S ), and, by (ii)
again, we have that

a + a−2a2 = (a + a−2a2)2(a + a−2a2)−1. (4.3)

Using (4.2) and (4.3)

aa−1 = aa−1(aa−1 + a−2a)−1(a + a−2a2)a−1

= aa−1(aa−1 + a−2a)−1(a + a−2a2)2(a + a−2a2)−1a−1

= aa−1(aa−1 + a−2a)−1(aa−1a + a−2a2)(a + a−2a2)(a + a−2a2)−1a−1

= aa−1(aa−1 + a−2a)−1(aa−1 + a−2a)a(a + a−2a2)(a + a−2a2)−1a−1,

that is,

aa−1 = aa−1(aa−1 + a−2a)−1(aa−1 + a−2a)(a2 + aa−2a2)(a + a−2a2)−1a−1. (4.4)

From a ≤+ e, it follows that a2 ≤+ ae ≤+ e. By this, (i) and (ii),

a2 = a2a−2a2 = aaa−2a2 ≤+ aea−2a2 = aa−1aea−2a2 = aa−2a2,

that is, we have a2 + aa−2a2 = aa−2a2, and if we put this in (4.4),

aa−1 = aa−1(aa−1 + a−2a)−1(aa−1 + a−2a)aa−2a2(a + a−2a2)−1a−1. (4.5)

It is easy to check that a−1(aa−1 + a−2a)−1(aa−1 + a−2a)a ≤• a−1a, which, further, by
left amenability of ≤+, implies

a−1(aa−1 + a−2a)−1(aa−1 + a−2a)a ≤+ a−1a.
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This and (4.5) give

aa−1 = a(a−1(aa−1 + a−2a)−1(aa−1 + a−2a)a)a−2a2(a + a−2a2)−1a−1

≤+ a(a−1a)a−2a2(a + a−2a2)−1a−1

= aa−2a2(a + a−2a2)−1a−1

and

aa−1 ≤+ aa−2a2(a + a−2a2)−1a−1. (4.6)

Now a−2a2 ≤+ a + a−2a2 and (i) imply a−2a2(a + a−2a2)−1 ≤+ a−2a2. If we put this in
(4.6) and use (ii), then

aa−1 ≤+ aa−2a2(a + a−2a2)−1a−1

≤+ aa−2a2a−1

= aa−1a−1aaa−1

= aa−1 · a−1a.

By Proposition 3.2 it follows that aa−1 ≤• aa−1 · a−1a, and, since aa−1 · a−1a ≤• aa−1

is evidently true, we have aa−1 = aa−1 · a−1a, that is, aa−1 ≤• a−1a. Therefore, aa−1 =

a−1a. �

The first main result of this section is the following theorem.

T 4.4. Let S be an inverse semiring. Then ≤+ is left amenable on S if and only
if it is right amenable.

P. Let ≤+ be left amenable on S . As a ≤+ a + b for any a, b ∈ S , then a(a +

b)−1 ≤+ (a + b)(a + b)−1. Let us denote (a + b)(a + b)−1 = e. Then

a(a + b)−1e = a(a + b)−1(a + b)(a + b)−1 = a(a + b)−1.

This implies that

(a(a + b)−1e)−1 = e(a(a + b)−1)−1 = (a(a + b)−1)−1. (4.7)

Now, from a(a + b)−1 ≤+ e, and by Theorem 4.3,

a(a + b)−1(a(a + b)−1)−1 = (a(a + b)−1)−1a(a + b)−1, (4.8)

which, by (4.7) and (4.8), gives that

ea(a + b)−1 = ea(a + b)−1(a(a + b)−1)−1a(a + b)−1

= e(a(a + b)−1)−1a(a + b)−1a(a + b)−1

= (a(a + b)−1)−1a(a + b)−1a(a + b)−1

= a(a + b)−1(a(a + b)−1)−1a(a + b)−1

= a(a + b)−1,
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that is, a(a + b)−1 = (a + b)(a + b)−1a(a + b)−1. So

a(a + b)−1(a + b) = (a + b)(a + b)−1a(a + b)−1(a + b). (4.9)

By left amenability of ≤+ and a ≤+ a + b, we have that a−1a ≤• (a + b)−1(a + b), which,
further, implies a−1a = a−1a(a + b)−1(a + b). Pre-multiplying this by a, we obtain
a = a(a + b)−1(a + b), which together with (4.9), gives a = (a + b)(a + b)−1a, that
is, a ∈ (a + b)S . Thus, by the dual of Theorem 4.2, ≤+ is right amenable.

In a similar manner we can prove the converse. �

Theorem 4.2, its dual and Theorem 4.4 give the following corollary.

C 4.5. Let S be an inverse semiring. Then, the following conditions are
equivalent:

(i) S satisfies
(∀a, b ∈ S ) a = a(a + b)−1(a + b);

(ii) S satisfies
(∀a, b ∈ S ) a ∈ (a + b)S ;

(iii) S satisfies
(∀a, b ∈ S ) a ∈ S (a + b);

(iv) E(S ) is a distributive lattice and

(∀a, b ∈ S ) (a + b)−1(a + b) = a−1a + b−1b;

(v) E(S ) is a distributive lattice and

(∀a, b ∈ S ) (a + b)(a + b)−1 = aa−1 + bb−1;

(vi) ≤+ is left amenable;
(vii) ≤+ is right amenable;
(viii) ≤+ is amenable.

One of the main results of this paper is the next theorem which gives a solution of
the Zeleznikow problem of regular semirings with ≤+ (left) amenable.

T 4.6. Let S be a regular semiring with ≤+ amenable. Then the following
conditions are equivalent:

(i) S • is an orthodox semigroup;
(ii) S • is a union of groups (that is, completely regular);
(iii) S • is an inverse semigroup;
(iv) S • is a Clifford semigroup.

P. (i)⇒ (iii). Let S be an orthodox semiring with ≤+ amenable. By [2, Theorem
13.10], S • is a generalized inverse semigroup. This implies that E(S ) is a normal band,
that is, E(S ) satisfies the additional identity xyzw ≈ xzyw.
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By the assumption and e ≤+ e + f , there are e∗ ∈ V(e)• and (e + f )∗ ∈ V(e + f )• such
that e∗e ≤• (e + f )∗(e + f ). So we get (e + f )e∗e ≤• (e + f )(e + f )∗(e + f ) = e + f . By
[11, Theorem 6.2.1(iii)] we have e∗ ∈ E(S ), which, further, implies

(e + f )e∗e = ee∗e + f e∗e

= e + f e∗ee

= e + f ee∗e (E(S ) is a normal band)

= e + f e.

We now have that e + f e ≤• e + f , and, by Lemma 4.1, e + f e ≤+ e + f . In a similar
manner, starting from f ≤+ e + f we can prove that f + e f ≤+ e + f . Thus

(e + f )2 = (e + f e) + ( f + e f )

≤+ (e + f ) + (e + f )

= e + f .

As e + f ≤+ (e + f )2 is obvious, we have just proved e + f = (e + f )2 ∈ E(S ). Once
again, from e ≤+ e + f and by Lemma 4.1, we have e ≤• e + f , that is, we have
e = e(e + f ) = e + e f and e = (e + f )e = e + f e. Hence e f ≤+ e and f e ≤+ e. By
Lemma 4.1 again, we have e f ≤• e and f e ≤• e. Thus, we have that e f = e f e and
f e = e f e which implies e f = f e. So, E(S ) is a semilattice. It follows from [17,
Theorem II.1.2] that S • is an inverse semigroup.

(ii)⇒ (iii). Let S • be a union of groups. Let L• (R•) be Green’s L (R) relation
on S •. Suppose that e, f , g ∈ E(S ) are such that e ≤• g, f ≤• g and eL• f . Then we
have that eg = ge = e, f g = g f = f , e f = e and f e = f . On the other hand, by the left
amenability of ≤+, it follows that e ≤+ g, f ≤+ g, that is, e + g = g and f + g = g. Then

f = g f = (e + g) f = e f + f g = e + f ,

e = ge = ( f + g)e = f e + ge = f + e.

Thus, e = f , and S • satisfies L•-majorization. Similarly, we can prove that S • satisfies
R•-majorization. Now, by [18, Corollary II.4.12], the natural partial order ≤• is
compatible with multiplication.

Let a ∈ S and a = axa = aya for some x, y ∈ S . Since ≤• is compatible with
multiplication, it means that, by [2, Exercise 13.4], E(S ) ∩ xaS ya is a semilattice.
On the other hand, as ax = xa and ay = ya,

xa = x · aya = xa · yaya ∈ E(S ) ∩ xaS ya

and, similarly,

ya = ay = axa · y = xa · ay = x · axa · ya ∈ E(S ) ∩ xaS ya.

Thus, xa · ya = ya · xa, that is, xa = ya and

xax = yax = yay,

and, by [17, Exercise II.1.13(iii)], S • is an inverse semigroup.
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(iii)⇒ (iv). By the assumption and Theorem 4.2, we have that (a + a−1a)−1(a +

a−1a) = a−1a, a ∈ S . This implies, by [17, Lemma II.1.7], that aL•a + a−1a which,
together with a ≤+ a + a−1a, by [12, Lemma 2.1], gives (a + a−1a)(a + a−1a)−1 ≤+

aa−1. Now, by Corollary 4.5, it follows that (a + a−1a)(a + a−1a)−1 = aa−1 + a−1a.
Therefore, we have that a−1a ≤+ aa−1 + a−1a ≤+ aa−1.

On the other hand, by the assumption and Corollary 4.5, we have that (a +

aa−1)(a + aa−1)−1 = aa−1, a ∈ S , which, further, by [17, Lemma II.1.7], implies that
aR•a + aa−1. This and a ≤+ a + aa−1, by the dual form of [12, Lemma 2.1], give
(a + aa−1)−1(a + aa−1) ≤+ a−1a. Once again, by Corollary 4.5, we have that (a +

aa−1)−1(a + aa−1) = a−1a + aa−1. Thus, we have that aa−1 ≤+ a−1a + aa−1 ≤+ a−1a.
Finally, we get aa−1 = a−1a, and, S • is Clifford.

(iv)⇒ (i), (iv)⇒ (ii). These are obvious. �

As a consequence of Theorems 4.6 and 3.3 we have the following corollary.

C 4.7. An idempotent semiring B is a distributive lattice if and only if ≤+=≤•
on B.

At the end of this paper we will consider Clifford semirings with ≤+ amenable.
Criteria for a Clifford semiring that guarantee amenability will be given.

T 4.8. Let S be a Clifford semiring satisfying ≤•⊆≤+. Then ≤+ is amenable if
and only if the Clifford semiring G1 cannot be embedded into S .

P. Assume that ≤+ is not amenable. Then there exist, at least, a, b ∈ S such that
a ≤+ b, but not a0 ≤• b0. From a ≤+ b it follows that a0 ≤+ ba−1. Let us assume
that ba−1 ∈ E(S ). Then, by [17, Theorem II.1.4], we have ba−1 = b0a0, so a0 ≤+ b0a0.
Now, by Proposition 3.2, a0 ≤• b0a0 follows, that is, a0 = b0a0. Since b0a0 ≤• a0 is
always true, we get a0 ≤• b0 which is a contradiction. Hence, ba−1 , b0a0.

Using Proposition 3.2 again, we have that

b0a0 ≤+ a0 ≤+ ba−1.

Pre-multiplying this by ba−1, we have a0 ≤+ ba−1 ≤+ (ba−1)2, which implies
(ba−1)m−1 ≤+ (ba−1)m for any m ∈ Z+. Let C = 〈ba−1〉 be a cyclic subgroup of H•

b0a0

generated by ba−1 with (ba−1)0 = b0a0 as the identity (of C). If C is of finite order,
then there exists n ∈ Z+ such that (ba−1)n = b0a0. Then,

b0a0 ≤+ ba−1 ≤+ (ba−1)2 ≤+ · · · ≤+ (ba−1)n−1 ≤+ (ba−1)n = b0a0,

that is, we have b0a0 = ba−1, which is a contradiction. So C = 〈ba−1〉 is of infinite
order.

Pre-multiplying b0a0 ≤+ ba−1 by (ba−1)−1, we have (ba−1)−1 ≤+ b0a0 ≤+ a0.
Moreover, we have ((ba−1)−1)−m ≤+ ((ba−1)−1)−(m−1) ≤+ b0a0 for any m ∈ Z+. Thus

· · · ≤+ (ba−1)−2 ≤+ (ba−1)−1 ≤+ b0a0 ≤+ a0 ≤+ ba−1 ≤+ (ba−1)2 ≤+ · · · .
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So C1 = 〈ba−1〉 ∪ {a0} is an infinite chain under ≤+. Hence C1
+ is a semilattice. As we

also have

(∀s, t ∈ Z)
{

(ba−1)s · (ba−1)t = (ba−1)s+t = (ba−1)t · (ba−1)s,
(ba−1)s · a0 = a0 · (ba−1)s = (ba−1)s,

then C1
• is a Clifford semigroup. Thus we have that (C1, +, ·) is a Clifford subsemiring

of S in which E(C1) = {a0, b0a0}.
We can define a mapping ϕ : C1 −→G1 by{

ϕ((ba−1)m) = am, (∀m ∈ Z),
ϕ(a0) = 1.

This is a routine way to verify that ϕ is an isomorphism from the semiring C1 onto the
Clifford semiring G1.

If the Clifford semiring G1 can be embedded into S , then it is obvious that ≤+ is not
amenable. �
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