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Mapping quantitative trait loci using four-way crosses
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Summary

In plant species, typical gene mapping strategies use populations initiated from crosses between
two inbred lines. However, schemes including more than two parents could be used. In this paper,
a new approach is introduced which uses a four-way cross population derived from four inbred
lines. The four-way cross design for mapping quantitative trait loci (QTLs) provides tests for QTL
segregation in four lines simultaneously in one experiment. Therefore, it is a more economical
strategy than one using line crosses between only two lines. The new strategy also increases the
probability of detecting QTLs if they segregate in one line cross but not in the other. A multiple
linear regression analysis is used for QTL detection. It is proven that the expected residual
variance from the regression analysis differs from the pure environmental variance. Correction for
the bias is proposed and verified by computer simulations.

1. Introduction

With the advent of new molecular technologies, a
large number of polymorphic DNA markers can be
generated with ease. Although most DNA markers
are neutral to traits of economic importance, some
markers may be tightly linked to loci that control the
traits of interest so that they can be used to trace and
locate the functional gene loci. This process is called
mapping quantitative trait loci (QTLs). Statistical
methods for QTL mapping are well developed in
populations derived from an initial cross between two
inbred lines. The typical schemes use a backcross, or
the F2 or more derived populations. Various statistical
methods, typically maximum likelihood (Lander &
Botstein, 1989; Jansen, 1993; Zeng, 1994) and least
squares (Haley & Knott, 1992; Martinez & Curnow,
1992), are used for such line cross data.

In crosses involving two inbred lines, there are at
most two alleles at any polymorphic locus. In most
cases, the linkage phases between markers are known
or can be easily inferred, and therefore the estimation
of effects and locations of QTLs can be easily
accomplished using a fixed linear model. Under such
a model, the inference space is the two inbred lines,
and therefore results from one line cross cannot be
generalized to other line crosses. Because of this, if a
position is tested and it turns out to be non-significant
for the presence of a QTL, it does not mean that the
genes at this locus have no function on the trait. The

locus may contain genes functionally related to the
trait but the gene effect cannot be detected because
there is no segregation in the initial line cross, i.e. the
two inbred lines are fixed for the same allele at that
locus. If a different cross involving other inbred lines
is chosen to initiate the mapping population, tests for
the presence of a QTL at the very same locus may be
significant. To expand the inference space and increase
the probability of detecting QTLs, we should increase
the number of inbred lines that are used to initiate the
hybrid population (Rebai & Goffinet, 1993).

In this study, I investigated the use of a four-way
cross population to detect QTLs. The four-way cross
involves four homozygous lines (L,, L2, L3 and L4)
and is analogous to an F2 population but generated
from hybridization between two different Fl parents.
The four-way cross, therefore, has a composition
expressed as (Lt x L2) x (L3 x L4). Using similar no-
tation, the composition of a conventional F2 popu-
lation (involving two inbred lines) can be expressed by
(Lj x L2) x (Lj x L2), and a conventional backcross
population by (Lj x L2) x L, or (Lj x L2) x L2.

The four-way cross (L, x L2) x (L3 x L4) is anal-
ogous to a two-way ANOVA experiment. It provides
three tests simultaneously: one for QTL segregation
between Lj and L2, one for segregation between L3

and L4, and one for the interaction (dominance)
effects. In contrast, a backcross population, say
(Lt x L2) xL,, is analogous to a one-way ANOVA
which can only test QTL segregation between L, and
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L2. To test segregation between L3 and L4, another
backcross, say (L3 x L4) x L3, is required. The back-
cross design (Ll x L2) x Lj is essentially a test for QTL
segregation of L, x L2 using h1 as a tester. The four-
way cross (Lt x L2) x (L3 x L4), however, is a design
that tests QTL segregation of Lj x L2 using L3 x L4 as
a tester and, at the same time, tests segregation of
L3 x L4 using Lj x L2 as a tester.

2. Methods

Let F™ denote the cross of L, x L2 and Fi the cross of
L3 x L4; the four-way cross offspring are derived from
Fj x F™, i.e. (L3 x L4) x (Lj x L2). The superscripts m
and f denote the male and female parental populations,
respectively. It is not necessarily true that all parents
from F™ population are males and all parents from Ff

x

are females; the superscripts are used solely for
distinguishing different populations and tracing the
allelic origins of a QTL (Q) through markers (A and
B).

Let (A?Q?B?)/(A?Q?B?) and (A[ Q[ B[)/(A<2 Q\
B\) be the genotypes of F™ and F[, respectively. In the
offspring pool, there will be 16 possible genotype

classes for the two flanking markers and four possible
genotypes for the QTL, assuming that a marker allele
in the male population is distinguishable from an
allele in the female population. Let p™ = Pr(Q™ \ M)
and p\k = Pr{Q] \ M), be the corresponding allelic
frequencies in the kth offspring conditional on flanking
marker genotype (denoted by M). These conditional
allelic frequencies (given in Table 1) are determined by
r (the recombination fraction between loci A and B)
and rA or rB (the recombination frequency of Q with
A or B).

Since the QTL genotype is uncertain, the phenotype
has a mixture of four distributions and must be
described by a mixed model as shown below:

yk=H + a™ + a] + 8i] + ek for i,j=\,2, (1)

with a probability of p™kp)k, where yk is the measure-
ment of trait value for the kth plant (k = 1 ,...,n),fi is
the overall mean, a™ and a] are the additive effects of
alleles Qf and Q\, respectively, 8tj is the dominance
effect and ek is the error term with 7V(0, of). A formal
treatment of such a mixed model is the maximum
likelihood analysis. However, simple linear regression
analysis can be used with virtually no loss in power

Table 1. Conditional probability of QTL allele given flanking marker genotype

Marker
genotype
[probability]

QTL allele

P?k = Pr(QT I M) P?t = Pr{Q?\M) p[k = Pr{Q\\M)

Am A\ B™ B\

A™ A[ 5 m B2

A\A\B™B\

AmA\BmB\
BO-')2]

Am A[ B™ B[

A™ A[ 5 m B'2

AmA2B™B\

[Mi-'')]
A™A[B<?B[

A\A\B™B\

Am At Dm Df
A2 A 2 D \ D\

0-O0-'

(l-OO-O/O-'O

V-rA)rB/r

Am A\ Dm of

AmA\B2
aB\

ur

Am
A2[?'
AmA2

K1

A\

A

B^ff,

B^Bl

r
A

rA

r
A

rj{\

'»/(!

-r)

-r)

-r)

rArB/{\-r)

rArB/{\-r)

(\-'A)rB/r

(1-0(1-0/(1-0

(I-O'-BA

i - 0

<\-rA)rB/r

rArB/(l-r)

1-0

rAQ-rB)/r

rArB/d-r)

i-0 (1-0(1-0/(1-'")

rArB/(l-r)

(1-OO-O/O-r)

rArB/{\-r)

O-OO-O/O-'-)

rArJ(\-r)

O-rA)rB/r

(l-O(l-rB)/(l-0

d-oo-o/o-o

Note that /»|t = 1 —^s
lt for s = m, f.
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and efficiency (Haley & Knott, 1992). The simple
regression method is accomplished by regressing yk on
the expected allelic and genotypic frequencies. Note
that the expectation of yk conditional on flanking
marker genotype is

E{yk | M) = fl + £ pZ af + £ p)k oj + £ £ P*P'lk *«•
( -1 i-\ i-ii-\

(2)

There are nine unknown parameters in the model, but
some of the coefficients of these parameters are
linearly dependent. In fact, there are only four linearly
independent coefficients to choose. Because S,2.!^ =

1 and T.).xp\k = 1, we have

/>£ = !- />» and p\k = \-p\k. (3)

Substituting eqn (3) into (2) and doing some algebraic
manipulations, we get

E{yk | M) = y +p™ am +p[k a
! +pfkp[k 8, (4)

where

y =

ar = a[ 82l — d22,

= 8n-812~821

Therefore, the model can be represented by

yk = y+p?k
a-m+p[k*

t+p?kp (5)

where ek is a mixture of four normal distributions with
a heterogeneous variance, but can be approximated

These newly defined parameters, {yamaf8}, are
composite terms, y is a rescaled mean, 8 is the overall
dominance effect, and am and a' are the conditional
average effects of an allelic substitution. The definition
of the average effect of an allelic substitution is given
by Falconer & Mackay (1995, pp. 112-114). The con-
ditional average effect of an allelic substitution, say am,
may be interpreted as follows: it is the difference
between the average effect of individuals who received
allele Q™ from their male parents and the average effect
of individuals who received allele g™ from their male
parents, conditional on the gene received from the
female parents having come from Q2. This is because
a2 has been included in y. In other words,

<xm = G12 - G22 = « + ct!
2 + 812) - (a» + a'2 + S22).

Similarly,

a' = G21- G22 = « + ai + 821) - (ct? + a'2 + 822),

where G(] is the value of genotype Qf Q'.
Given the QTL position, the simple regression

method generates unbiased estimates of {ya.ma'8}. The
estimated residual variance, &\, is not an estimate of
a\ but of the environmental variance plus unexplained
segregation at the QTL. Let us look first at Var(eJ,
the variance of ek. This variance is the conditional

variance of yk given the marker genotype, and it has
the following form:

Var (ek) = Var (yk | M) = Ak{amf + Bk(a
lf + CJ*

+ 2Dk(ccm8) + 2Gk(ct!8) + a\,

where Ak= p?kO-p?k), Bk = p[k(l-p[k), Ck=p™
P[kV-P?M, Dk=pTkp[k(\-pTk) and Gk=p™k

p\k{\ —p[k). Therefore, the expected residual variance
under model (5) is

cr\ = A{ocmf + B(a!f + C82 + 2D(am8) + 2G(oc!8) + a2
c,

(6)

where A = 1/nSJLj^, etc. Given the fact that a\ 4=
<T\ in general, one can adjust the regression estimate of
<T\ to obtain an estimate of the error variance a2.

The standard F-test can be used for various
hypothesis tests. The null hypothesis, H0(m): a

m = 0, is
testing the QTL segregation in the FJ1 population (the
test is denoted by 7^), while Hom: af = 0 is testing the
QTL segregation in F[ population (the test is denoted
by 7^. The null hypothesis H0(m!):8 = 0 tests the
dominance effect (this test can be expressed by Tmx!).
If the QTL location is treated as fixed (constant),
under these hypotheses, the test statistic follows an
F-distribution with degrees of freedom of 1 and n—4.
An overall null hypothesis test for the segregation of
a QTL in both FJ1 and Fi is Ho: a

m = af = 8 = 0 (this
test is denoted by T). Under Ho, the test statistic for
the overall test has an F-distribution with degrees of
freedom of 3 and n—4.

To estimate the location of a QTL in a tested
interval or chromosomal segment, one can examine
the value of the test statistic for every position (with
an increment of 1 or 2 cM). The estimated QTL
location is the position showing the highest test
statistic. With a variable QTL location, these test
statistics may not follow /^-distributions under the
null hypotheses. Therefore, the critical values for the
tests may not be found from the standard F-table. In
practice, the permutation experiments of Churchill &
Doerge (1994) may be used to find the correct critical
values.

If there are multiple QTLs segregating within one
chromosomal segment, interval mapping tends to be
biased in terms of estimation of effects and locations
of the QTLs. Composite interval mapping, however,
can circumvent this problem by using other non-
flanking markers simultaneously (Zeng, 1994). The
composite interval mapping treats all markers outside
the tested interval as QTLs and includes the indicator
variables for other 'QTL' alleles in the model as
covariates. The linear model is

yk =

ek> (7)

where q is the number of marker loci used as
covariates, a™, a[ and 8t are corresponding effects for
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1
1
0
0

1
0
1
0

Table 2. Indicator variables for marker alleles given
marker genotype

Marker genotype JC™ x\k

L l L2

I pi
*-2

the rth marker, and x™ and x\k are indicator variables
taking values of 1 or 0, depending on the tth marker
genotype. Let C denote the tth marker locus; the
values of x™k and x\k are given in Table 2.

3. Simulation studies

The purposes of the simulations are to: (1) dem-
onstrate the behaviour of the test statistic of an
estimated genetic parameter; (2) investigate the
estimation errors of the effect and location of a QTL
using replicated experiments; (3) examine the stat-
istical power of the QTL mapping procedure; and (4)
verify the analytical relationship between the residual
variance (cr2) in the regression model and the
environmental variance (cr2). The behaviour of com-
posite interval mapping (using multiple markers) will
not be investigated because it has previously been
demonstrated and compared with simple interval
mapping in the literature (e.g. Zeng, 1994; Jansen,
1994).

In the first experiment, one chromosomal segment
was simulated with a length of 100 cM. The chromo-
some was covered by six markers separated by 20 cM
intervals. One QTL located in the middle of the
chromosome was simulated for a four-way cross
population. It has been assumed that loci in each of
the four inbred lines involved in the four-way cross
had been alternatively fixed (i.e. four distinguishable
alleles). Therefore, each allele has an equal rep-
resentation in the four-way cross population. The
parametric values were set at a™ = 10, a[ =10, £n =
5 and all other effects being equal to zero. Under such
a model, the genetic values of the four genotypes are
Gn = 25, G12 = 10, G21 = 10 and G22 = 0. Because
the four genotypes have an equal frequency of 1/4,
the mean is (25 + 10 + 10 + 0)/4 = 11-25 and the
genetic variance is (252 + 102 + 102 + 02)/4-ll-252

= 7969 « 80. I set two values for the pure environ-
mental variance to calibrate the broad-sense herit-
ability, h2. In one situation, <r2 was set at 80, which led
to h2 of approximately 50%. In another situation a2

was set at 240 so that h2 was about 25%. No
polygenic effect was simulated.

To evaluate the statistical power, one must first
determine the critical values for the test statistics
under the null hypothesis. Although the permutation

20 40 60
Testing position (cM)

80 100

Fig. 1. A simulation example of QTL mapping from a
four-way population. The test statistics are calculated and
plotted every 1 cM. Tm is the test for QTL segregation in
the male population (F™ = L: x L2) and Ts is the test in
the female population (Fj = L3 x L4). Tmxt is the test for
dominance effect and T is the overall test for the presence
of a QTL. The arrow points to the true location of the
QTL.

tests of Churchill & Doerge (1994) are recommended,
they are not feasible for simulation experiments. The
critical values, however, can be approximated by
repeated simulation experiments (Haley & Knott,
1992). To do this, I generated and mapped 1000
independent samples of the four-way cross population
of size n (100, 250 and 500) under H0:a

m = a! = S =
0. The 95th percentile for the simulated test statistics
over the 1000 samples was chosen as the critical value
for the tests. The critical values seem to decrease a
little as n increases; for example, when n = 100, 250
and 500, the critical values for 7 were 4-21, 4-02 and
3-99. Similar trends were also observed for the critical
values of Tm, Ts and Tmx!. However, the observed
increase was very small and may be due to chance
because only 1000 samples were simulated. Never-
theless, the critical values of Tm, Tt and Tmx! were about
7-3 in the three population sizes (100, 250 and 500).
For simplicity, the empirical critical value for T was
chosen to be 40. All other test statistics (Tm, Tt and
7^xf) took a common critical value of 7-3. Note that
these critical values can only be used for the simulation
experiment described above (six evenly distributed
markers covering a chromosomal segment of 100 cM)
and may not be used in general.

Fig. 1 shows the test statistic for each estimated
genetic parameter plotted against the chromosomal
position from a single simulated four-way cross
population of size 500 with a broad-sense heritability
of 0-50. It shows evidence of a QTL in the middle of
the chromosome. The test statistic profiles (the curves)
behave exactly as expected. In the middle of the
chromosome, curves Tm and Tt have similar peaks
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Table 3. Average estimates of QTL parameters and standard deviations over 100 replicated simulations
(standard deviations are in parentheses)

179

Heritability

0-25

0-50

Parameter

QTL location
am

a'
S

QTL location
am

a!

S

Pn rump trie*
L d l u l l l v LI 1L<

value

50
10
10
5

256
50
10
10
5

97

Estimate

« = 100

49-29 (11 -01)
10-46 (5-47)
10-24(5-64)
3-27(8-61)

249-66(32-47)
49-35(4-57)

9-68(3-27)
9-66(319)
5-18(4-87)

96-80(14-20)

« = 250

49-55 (4-49)
10-21 (3-39)
10-29(3-64)
4-63 (4-99)

255-33(22-31)
49-98(2-34)

9-99(1-86)
1007(1-76)
4-96(2-94)

95-76(8-30)

« = 500

50-02(2-47)
9-89(2-36)
9-83(2-27)
4-88 (3-56)

253-77(16-15)
49-94(1-34)
10-02(1-29)
10-06(1-46)
4-92(1-94)

97-48(5-86)

Table 4. Average values of test statistics and empirical statistical powers obtained from 100 replicated
simulation experiments

If

0-25

0-50

Test

T
T
T,

nixf
T
Tm

Tt

Tmy,

n= 100

Test statistic*

9-31 (3-88)
5-21(4-17)
5-29(4-75)
1-47(1-91)

23-12(7-65)
9-94(6-20)
9-90(6-50)
2-34(3-49)

Power (%)

95
25
27

2
100
57
60

7

« = 250

Test statistic

22-66(6-63)
10-58(6-58)
10-94(719)

1-88(2-31)
56-99(10-73)
24-62(9-16)
25-05(8-88)

3-54(3-67)

Power (%)

100
63
62

6
100
99
99
14

« = 500

Test statistic

42-28(7-79)
18-55(8-46)
18-32(8-83)
2-93 (2-96)

11017(1508)
47-04(12-28)
4716(1306)
5-83 (4-65)

Power (%)

100
95
92

7
100
100
100
30

h2 is the broad sense heritability.
* The standard deviations over 100 replicates are given in parentheses.

(because am = af = 10) and the curve Tmx! has a lower
peak (because S = 5). The overall test statistic profile
T has been meaningfully partitioned into three
components. Replicated simulations with the same
population size and heritability show similar patterns
(data not shown).

In the following replicated simulation experiment,
the population size was set at n = 100, 250 and 500
under each of the two heritability levels. Simulations
were replicated 100 times in each parameter com-
bination. The average estimates of am, a' and d, the
location of the QTL and the residual variance (al) are
given in Table 3. According to eqn (6), the expected
residual variances are 256 and 97, respectively, for h2

= 0-25 and 0-50. The statistical powers under various
situations are given in Table 4, with general trends
behaving as anticipated.

It is interesting to see the results of simulations for
a special case where there are two QTLs in the same
chromosomal segment, one of which is segregating in
F™ but not in F[ and the other segregating in F^ but
not in F™. In this simulation, I assumed that the first
QTL is located at the 10 cM position and segregating
in F™ but not in Fr

t, with parametric values of a™ =

10, oc[ = 0 and # n = 0. The second QTL was assumed
to be located in the 70 cM position and segregating in
F[ but not in F™, with a™ = 0, oc[ = 10 and Su = 0.
The environmental variance was set at al = 80. One
hundred independent samples, each with 500 indi-
viduals, were simulated and mapped. The test statistic
profiles of the 100 samples were averaged and then
plotted in Fig. 2. The average curve for T shows two
major peaks, indicating two QTLs, but each one of Tm

and Tt shows one peak in the correct location. Since
no dominance effect was simulated, the Tmxl curve is
very low and flat.

4. Discussion

The proposed four-way cross QTL mapping strategy
has a wider statistical inference space than the
conventional single line cross methods. The latter are
strictly appropriate for line crosses that are initiated
from only two inbred lines. Invariably the two inbred
lines are not a random sample from a larger
population. Even if the lines are randomly sampled,
given the limited number of lines involved, the
statistical inference space cannot be extended to the
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20 40 60
Testing position (cM)

80 100

Fig. 2. Simulation of two QTLs in a four-way cross
population. The QTL at the 10 cM position is present in
the male parent (F™ = Lt x L2) and the QTL at the 70 cM
position is present in the female parent (F' = L3 x L4).
Dominance effects are absent. The test statistic curves are
calculated as the average of 100 replicated simulations.
See legend to Fig. 1 for explanations of the test statistic
curves.

larger population but is limited to the two lines
selected. The four-way cross approach, however, can
handle four lines at once, and thus the statistical
inference space is the four lines instead of two. An
experiment with a wider statistical inference space is
preferable.

The four-way cross method can reduce or po-
tentially eliminate the type II error caused by genetic
drift. Type II error is defined as the probability that a
QTL is not detected when in actuality it exists. There
are two sampling steps in obtaining data for QTL
analysis. The first step is to sample line crosses, and
the second step is to sample individuals within a line
cross. Accordingly, there are two kinds of type II
errors associated with the two sampling processes.
The first kind is caused by sampling lines and may be
referred to as genetic 'drift error'. This kind of type II
error can be interpreted as follows: if a particular
locus contains a QTL that is segregating in the whole
population, but, by chance, is not segregating in the
sampled line crosses, then the QTL effect cannot be
detected, no matter how good the statistical method is
and how many individuals are sampled within the
cross. The second kind of type II error is caused by a
limited number of individuals being sampled within a
cross. This second kind is what is normally called
statistical 'sampling error'. Type II error of this kind
can be diminished by using a more powerful statistical
method and increasing the sample size of the mapped
population. Simply by sampling one line cross, the
single cross method has a maximum drift error, and
this drift error has not been well documented in the
literature.

180

The drift error can be shown in the following
example. Suppose there are s alleles with equal
frequency in a large population from which four
inbred lines (representing four alleles) are randomly
sampled. The probability that L! x L2 cross shows no
segregation is \/s = s{\/s)2, which is also the prob-
ability that L3 x L4 shows no segregation. The prob-
ability that both crosses show no segregation is \/s2.
With a four-way cross experiment, if either L1 x L2 or
L3 x L4 shows segregation at the locus of interest, the
drift error is prevented. If the statistical sampling
error is small, we may be able to detect the locus.
Therefore, under the four-way cross design, the
probability that the drift error is prevented is 1 — 1 /s2.
Under a backcross design, e.g. (LjL2) x L15 if the allele
sampled in Lj is different from L2, the drift error is
prevented and this has a probability of 1 — 1/J.
Therefore, the probability that drift error is prevented
in the four-way cross design is (1 — l/^2)/(l — 1/J) =
(s + \)/s times as great as that in a backcross design.
This ratio will be higher if the J alleles have different
frequencies. Of course, the ratio tends to be unity as

Assuming that the drift error has been prevented,
the sampling error of the four-way cross design might
be a little higher than that of the backcross design, but
the difference is anticipated to be small. The reason is
that in a backcross design Lt is a tester for segregation
of L, x L2 but Ll is uniform, while in the four-way
cross design L3 x L4 serves as a tester for Lr x L2 but
L3 x L4 is heterogeneous. As a result, one degree of
freedom is lost when h1 x L2 is tested. A smaller
degree of freedom will cause a higher critical value for
the test statistic and thus increase the type II error of
the second kind. However, if the sample size is not too
small, loss of one degree of freedom will have a
negligible effect on the critical value. Therefore, in
most situations, sampling errors of the two designs
will be comparable. Let the sampling error be /? for
both designs, then the total type II error will be
/?(1 — \/s2) in a four-way cross and /?(1 — \/s) in a
backcross. Therefore, by using a four-way cross
design, the power increase relative to a backcross
design will be [1 -/?(1 -1A2)]/[1 -/?(1 -l/s)]. The
above argument is based on the assumption that the
lines are randomly selected. In most line cross
experiments lines are not randomly chosen; rather,
only phenotypically very diverged lines are chosen.
This will reduce the drift error in QTL analyses for the
traits that served as the target of selection but may not
affect other uncorrelated traits.

The interval mapping procedure in a four-way cross
design described in this paper assumes that both
parents (F™ and Fr,) are heterozygotes and the status
of an allele at any locus in F™ is different from that in
F'. In other words, for any interval bracketed by two
markers, the flanking marker genotypes are (A™
B™)/(A?B™) for F™ and {A[B\)/{A[B^ for Ff

r In
practice, this is rarely true. Sometimes it may be
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possible to infer the origins of flanking markers from
the genotype at more distal markers that have the
desired configuration. This implies that maps based
on highly polymorphic markers such as microsatellites
would be most useful with this design. A general
solution for handling uninformative, partially in-
formative and missing markers is to use several
makers (multiple points) in the neighbourhood of the
tested QTL to infer the origins of QTL alleles
(Martinez & Curnow, 1994). Theoretically, this is not
hard to do, but in practice it requires comprehensive
computer programming. The multiple point approach
to QTL mapping is very important in the four-way
cross design and deserves further investigation.
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