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Abstract A classical theorem due to Young states that the cosine polynomial

Cn(x) = 1 +
n∑

k=1

cos(kx)
k

is positive for all n � 1 and x ∈ (0, π). We prove the following refinement. For all n � 2 and x ∈ [0, π]
we have

1
6 + c(π − x)2 � Cn(x),

with the best possible constant factor

c = min
0�t<π

5 + 6 cos(t) + 3 cos(2t)
6(π − t)2

= 0.069 . . . .
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1. Introduction

The function

Cn(x) = 1 +
n∑

k=1

cos(kx)
k

(n ∈ N; x ∈ R)

is known as Young’s cosine polynomial. In 1913, Young [15] proved that

0 < Cn(x) (n ∈ N; 0 < x < π). (1.1)

Since C1(π) = 0, we conclude that the lower bound in (1.1) is sharp. However, if
we assume that n > 1, then inequality (1.1) can be improved. In 1997, Brown and
Koumandos [8] showed that

1
6 � Cn(x) (2 � n ∈ N; 0 < x < π), (1.2)
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where the constant 1
6 is the best possible. An application of the Rogosinski–Szegö inequal-

ity,

0 < 1
2 +

n∑
k=1

cos(kx)
k + 1

(n ∈ N; 0 < x < π) (1.3)

(see [7,14]), easily yields a positive lower bound for Cn(x), which depends on x. We have

1
2 (cos(x/2))2 < Cn(x) (n ∈ N; 0 < x < π). (1.4)

Indeed, if we denote the expression on the right-hand side of (1.3) by Rn(x), then sum-
mation by parts and (1.3) lead to

Cn(x) − 1
2 (cos(x/2))2 = 3

4 (1 + cos(x)) +
n∑

k=2

cos(kx)
k

=
n∑

k=2

Rk(x)
k(k + 1)

+
n + 2
n + 1

Rn(x) > 0.

Young’s inequality and inequalities for other trigonometric polynomials have received
enormous attention: numerous papers providing new proofs, various extensions, improve-
ments, and counterparts, as well as interesting applications of (1.1) and related results,
have been published. We refer to [1–11] and [12, Chapter 4], where historical remarks
and many references on this subject can be found.

It is our aim to present a refinement of (1.1), (1.2) and (1.4). More precisely, we provide
the largest (positive) real number c such that

1
6 + c(π − x)2 � Cn(x) (2 � n ∈ N; 0 � x � π).

We have used the computer program Maple V (Releases 5.1, 6.01 and 9) to find the
numerical values given in this paper.

2. Lemmas

In order to prove our main result we need several technical lemmas, which we collect in
this section. In what follows, let δ = δn = 2π/(2n + 1) (n ∈ N).

Lemma 2.1. Let

φ(t) =
5 + 6 cos(t) + 3 cos(2t)

6(π − t)2
.

Then we have
min

0�t<π
φ(t) = 0.069 . . . .

Proof. Let c0 = 0.069 and

f(t) = 5
6 + cos(t) + 1

2 cos(2t) − c0(π − t)2.

Differentiation gives

f ′(t) = − sin(t) − sin(2t) + 2c0(π − t), f ′′(t) = − cos(t) − 2 cos(2t) − 2c0
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and
f ′′′(t) = sin(t)[1 + 8 cos(t)].

We set t0 = arccos(− 1
8 ) = 1.69 . . . . Then

f ′′′(t)

{
> 0 for 0 < t < t0,

< 0 for t0 < t < π.

This implies that f ′′ is strictly increasing on [0, t0] and strictly decreasing on [t0, π]. Since
f ′′(0) = −3.13 . . . , f ′′(t0) = 1.92 . . . and f ′′(π) = −1.13 . . . , we conclude that there are
real numbers r, s ∈ (0, π) such that f ′′ is negative on [0, r) ∪ (s, π] and positive on (r, s).
We have

f ′′(0.9659) < 0 < f ′′(0.9660) and f ′′(2.5298) > 0 > f ′′(2.5299).

Thus,
r = 0.9659 . . . and s = 2.5298 . . . .

Let t ∈ [r, s] and let t̃ = 1.997. Since f is strictly convex on [r, s] and f ′(t̃) > 0, we get

f(t) � f(t̃) + (t − t̃)f ′(t̃) � f(t̃) + (0.9659 − t̃)f ′(t̃) = 0.000 14 . . . .

We have f(0) = 1.65 . . . and f(π) = 1
3 . Since f is strictly concave on [0, r] and on [s, π],

we conclude from f(r) > 0 and f(s) > 0 that f(t) > 0 for t ∈ [0, r) ∪ (s, π], too.
Thus, we obtain

0.069 < min
0�t<π

φ(t).

And, since φ(1.967) = 0.0698 . . . , we get

min
0�t<π

φ(t) � 0.0698 . . . .

Hence, min0�t<π φ(t) = 0.069 . . . . �

Lemma 2.2. For n = 3, 4 and x ∈ (0, π) we have

1
6 + 7

100 (π − x)2 < Cn(x). (2.1)

Proof. First, we assume that n = 3. Let

u(x) = C3(x) − 1 and v(x) = 5
6 − 7

100 (π − x)2.

If 0 < x � π/3, then u(x) + v(x) � u(π/3) + v(0) = 0.059 . . . . If π/3 � x � π/2, then
u(x)+v(x) � u(π/2)+v(π/3) = 0.026 . . . . Next, let w(x) = u(x)+v(x) and π/2 � x < π.
Differentiation gives

w′′′(x) = 4 sin(x)(9(cos(x))2 + 2 cos(x) − 2).

This implies that w′′ is strictly decreasing on [π/2, x̃] and strictly increasing on [x̃, π],
where x̃ = arccos(−(1 +

√
19)/9) = 2.20 . . . . Since w′′(π/2) > 0, w′′(x̃) < 0 and
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w′′(π) > 0, we conclude that there exist numbers x̃1 and x̃2 such that w′ is strictly
increasing on [π/2, x̃1] and on [x̃2, π], and w′ is strictly decreasing on [x̃1, x̃2]. We have
w′(π/2) > 0 and w′(π) = 0. This implies that there is a number x̃3 ∈ (x̃1, x̃2) such that
w′ is positive on [π/2, x̃3) and negative on (x̃3, π). Since w(π/2) > 0 and w(π) = 0, we
obtain that w is positive on [π/2, π).

Next, let n = 4. If x ∈ [0, π/8] ∪ [3π/8, 5π/8] ∪ [7π/8, π), then we have C4(x) � C3(x).
Let

z(x) = C4(x) − 1.

If π/8 � x � 3π/8, then

z(x) + v(x) � z(3π/8) + v(π/8) = 0.025 . . . .

If 5π/8 � x � 3π/4, then

z(x) + v(x) � z(3π/4) + v(5π/8) = 0.014 . . . .

And if 3π/4 � x � 7π/8, then

z(x) + v(x) � z(arccos(−(1 +
√

5)/4)) + v(3π/4) = 0.036 . . . .

The proof of Lemma 2.2 is complete. �

Lemma 2.3. Let

ak(x) = 2
∫ 1/2

0
cos((k − t)x)

∫ t

0

∫ t

0

1
(k − t + s + v)3

dv ds dt (2.2)

and

bk(x) = 2
∫ 1/2

0
sin(kx) sin(tx)

∫ t

0

1
(k + s)2

ds dt. (2.3)

Then we have, for all integers n � 1 and real numbers x ∈ (0, π),∣∣∣∣
∞∑

k=n+1

ak(x)
∣∣∣∣ <

1
8n2 and

∣∣∣∣
∞∑

k=n+1

bk(x)
∣∣∣∣ <

π

12n2 . (2.4)

Proof. Since t �→ log((2t + 1)/(2t − 1)) − 1/t is positive and strictly decreasing on
( 1
2 ,∞), we obtain∣∣∣∣

∞∑
k=n+1

ak(x)
∣∣∣∣ �

∞∑
k=n+1

∫ 1/2

0

∫ t

0

∫ t

0

2
(k − t + s + v)3

dv ds dt

=
∞∑

k=n+1

(
log

2k + 1
2k − 1

− 1
k

)

�
∫ ∞

n

(
log

2t + 1
2t − 1

− 1
t

)
dt

= 1 + log(2n) − (n + 1
2 ) log(2n + 1) + (n − 1

2 ) log(2n − 1).
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Let t � 1 and let

j(t) =
1

8t2
− 1 − log(2t) + (t + 1

2 ) log(2t + 1) − (t − 1
2 ) log(2t − 1).

Then we get

j′(t) = log
2t + 1
2t − 1

− 1
t

− 1
4t3

and j′′(t) =
8t2 − 3

4t4(4t2 − 1)
.

We have j′′(t) > 0 and limt→∞ j(t) = limt→∞ j′(t) = 0. Hence, j is positive on [1,∞).
This proves the first inequality of (2.4).

Summation by parts and the inequality
∣∣∣∣

n+m∑
k=n+1

sin(kx)
∣∣∣∣ � 1

sin(x/2)

(see [13, p. 250]) yield∣∣∣∣
∞∑

k=n+1

sin(kx)
(

1
k

− 1
k + t

)∣∣∣∣ � 1
sin(x/2)

(
1

n + 1
− 1

n + 1 + t

)
(t > 0).

Thus, we get∣∣∣∣
∞∑

k=n+1

bk(x)
∣∣∣∣ =

∣∣∣∣2
∫ 1/2

0
sin(tx)

∞∑
k=n+1

sin(kx)
(

1
k

− 1
k + t

)
dt

∣∣∣∣
� 2

sin(x/2)

∫ 1/2

0
sin(tx)

(
1

n + 1
− 1

n + 1 + t

)
dt

� 2x

sin(x/2)

∫ 1/2

0
t

(
1

n + 1
− 1

n + 1 + t

)
dt

<
x

12 sin(x/2)
1
n2

� π

12n2 .

�

Lemma 2.4. Let

Ci(x) = −
∫ ∞

x

cos(t)
t

dt and W (x) = Ci((n + 1
2 )x) (n ∈ N; x > 0). (2.5)

The function W is strictly increasing on (0, δ/2] and [(4k − 1)δ/2, (4k + 1)δ/2], and W

is strictly decreasing on [(4k − 3)δ/2, (4k − 1)δ/2], where k � 1 is an integer. Moreover,
the sequence

k �→ W ((4k − 1)δ/2) (k = 1, 2, . . . )

is strictly increasing.
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Proof. Let k � 1 be an integer and let x > 0. Differentiation gives

W ′(x) =
cos(πx/δ)

x
.

Hence, if x ∈ (0, δ/2) ∪ ((4k − 1)δ/2, (4k + 1)δ/2), then W ′(x) > 0. And, if x ∈ ((4k −
3)δ/2, (4k − 1)δ/2), then W ′(x) < 0. Further, we have

W ((4k + 3)δ/2) − W ((4k − 1)δ/2) = π

∫ (2k+1/2)π

(2k−1/2)π

cos(t)
t(t + π)

dt > 0.

�

Lemma 2.5. For all integers n � 1 and x ∈ (0, π) we have

− 2
x

sin(x/2)
∞∑

k=n+1

cos(kx)
k

= Ci((n + 1
2 )x) +

∞∑
k=n+1

ak(x) +
∞∑

k=n+1

bk(x), (2.6)

where ak(x), bk(x) and Ci(x) are defined in (2.2), (2.3) and (2.5), respectively.

Proof. The idea comes from [16, Chapter V, p. 192]. Let k � 1 be an integer and let
x ∈ (0, π). Then we have

2
x

sin(x/2)
cos(kx)

k
=

∫ k+1/2

k−1/2

cos(xt)
t

dt −
∫ k+1/2

k−1/2

(
1
t

− 1
k

)
cos(xt) dt.

This leads to

2
x

sin(x/2)
∞∑

k=n+1

cos(kx)
k

=
∫ ∞

n+1/2

cos(xt)
t

dt −
∞∑

k=n+1

∫ k+1/2

k−1/2

(
1
t

− 1
k

)
cos(xt) dt.

Since ∫ ∞

n+1/2

cos(xt)
t

dt = − Ci((n + 1
2 )x)

and ∫ k+1/2

k−1/2

(
1
t

− 1
k

)
cos(xt) dt = ak(x) + bk(x)

(see also [10]), we conclude that (2.6) is valid. �

Lemma 2.6. The function

∆(x) =
2
x

sin(x/2)( 5
6 − 7

100 (π − x)2 − log (2 sin(x/2))) (2.7)

is strictly decreasing on (0, π].

Proof. Let

∆1(x) =
2
x

sin(x/2) and ∆2(x) = 5
6 − 7

100 (π − x)2 − log(2 sin(x/2)).

A short calculation reveals that ∆1 and ∆2 are positive and strictly decreasing on (0, π].
This implies that ∆ = ∆1∆2 is also strictly decreasing on (0, π]. �
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3. Main result

We are now in a position to present a new lower bound for Cn(x). In particular, we
sharpen the inequalities (1.2) and (1.4), and we obtain an improvement of Young’s
inequality (1.1).

Theorem. For all integers n � 2 and real numbers x ∈ [0, π] we have

1
6 + c(π − x)2 � Cn(x), (3.1)

with the best possible constant factor

c = min
0�t<π

5 + 6 cos(t) + 3 cos(2t)
6(π − t)2

= 0.069 . . . . (3.2)

Proof. Let c be the real number given in (3.2). From Lemmas 2.1 and 2.2 we conclude
that (3.1) holds for n = 2, 3, 4. Moreover, the case n = 2 yields that in (3.1) the constant
factor c cannot be replaced by a larger number. We suppose that n � 5. First, let
0 � x � δ/2. Since cos(kx) > 0 for k = 1, . . . , n and 5

6 − 7
100 (π − x)2 > 0, it follows that

(3.1) is valid. Next, let δ/2 � x � π. Further, let ak(x), bk(x) and ∆(x) be defined in
(2.2), (2.3) and (2.7), respectively. The identities

∞∑
k=1

cos(kx)
k

= − log(2 sin(x/2)) (0 < x < π)

and (2.6) imply that it suffices to prove that

0 � Ci((n + 1
2 )x) +

∞∑
k=n+1

ak(x) +
∞∑

k=n+1

bk(x) + ∆(x) = Θn(x), say.

Using Lemmas 2.3, 2.4 and 2.6 we obtain the following:

(i) if δ/2 � x � 5δ/2, then

Θn(x) � Ci(3π/2) − ( 1
8 + π/12) 1

25 + ∆(5π/11) = 0.114 . . . ;

(ii) if 5δ/2 � x � 9δ/2, then

Θn(x) � Ci(7π/2) − ( 1
8 + π/12) 1

25 + ∆(9π/11) = 0.013 . . . ;

and

(iii) if 9δ/2 � x � π, then

Θn(x) � Ci(11π/2) − ( 1
8 + π/12) 1

25 + ∆(π) = 0.016 . . . .

This completes the proof of the theorem. �
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