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In his classical work on inbreeding, Wright (1921) has discussed the effect of a restriction
in population size on the rate of approach to homozygosis. In his ideal population, he
assumes that individuals mate at random within populations and that they all have the
same probability of contributing genes to the next generation. In a bisexual outbreeding
population of constant size, the mean number of progeny per parent (counted at the
same stage of the generation cycle as were their parents) will be two and the distribution
of progeny number will be Poisson. The mean heterozygosity then decreases by a fraction
1/2N each generation, being given by the expression 2q(l — q) e~tl2N (where q is the mean
gene frequency in the population from which the lines were derived and N the population
size) and the variance in the gene frequency between lines (the genetic drift) is given

</2*
The consequences of the removal of the condition of a Poisson distribution of family

size have been dealt with by Wright and also in greater detail by Crow and Morton.
The most important conclusion of relevance here is that if the variance of family size is
zero and all individuals have two offspring, the effective population size (as measured by
the effect on heterozygosity and genetic drift) is doubled. This has been of some practical
value in the design of control populations of domestic animals.

In a recent paper on circular mating systems, Kimura & Crow (1963) show that here
the heterozygosity declines in the limit by a factor proportional to 1/iV2, a very surprising
conclusion. They discuss this result in terms of mating systems for the minimization of the
two separate effects of inbreeding. I shall show in this note that this result is a consequence
of non-random mating within inbred lines and that a comparison of the effect of the
mating system within lines on heterozygosity and genetic drift, considered separately,
can greatly illuminate Kimura and Crow's results. Following them, I shall assume zero
variance of family size.

We must first define some quantities. I assume a large series of lines, derived from the
same base population using a mating plan identical in all generations. Falconer (1960)
used the symbol C, the coefficient of co-ancestry, to denote the probability that gametes
taken at random from two individuals contain genes identical by descent. This is, of
course, also the coefficient of inbreeding of the progeny of these two, when mated together.
I shall use it with the subscript t to denote the mean co-ancestry of pairs of individuals
chosen at random within lines at generation t. I shall use the symbol Cf for the mean
co-ancestry of individuals actually mated together, and this will of course be equal to
Ft+1. In the classical case, both C and C*, defined in relation to the base population, will
equal 1 — e'4/2^ but in the cases discussed here they will not necessarily be equal.

It can be shown as follows that Ct is a measure of the drift; in fact that the variance in
gene frequency between lines is Ctq( 1 — q). After one generation of random mating, the
proportion of a given homozygote in a line is the square of the gene frequency in that
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line so that the average proportion over all lines will be q2 or q2 + a\. But, from the defini-
tion of Ct as the chance that two genes drawn at random from two individuals themselves
drawn at random are identical by descent, we have for the proportion of homozygotes

Ctq+(l-Ct)q* = q* + Ctq(l-q)

We must further define the terms 'permanent' and 'partial' separation of a line into
sublines. By 'permanent', we mean the division into separate groups with completely
distinct pedigrees. In such lines, F and C* tend to unity but C will tend to some value
less than unity. Minimization of drift is thus achieved by such permanent sublining.
By ' partial' sublining is meant the division into groups whose immediate ancestors may
be different but in which all sublines become identical by descent at some distance back
in the pedigree. With this type of sublining, C, C* and-P tend to unity at the same relative
rate at the limit so that 1 — C, 1 — C*, and 1 — F remain in the same relative proportion to
one another.

We can now discuss various different mating systems when this limiting state has been
reached. Kimura and Crow show that the increase in the drift, V, from any generation to
the next is proportional to the heterozygosity, H, in the earlier generation, in fact

But Ht is equal to 2q(\ — q) (1 — Cf_t) and Vt is equal to Ctq(l — q), so that

Vx-Vt = (l-Ct)q(l-q)

Then Vt+1 - Vt _ J_ l -C ( - i

= 1-A (1)

where A is the factor by which 1 — C, 1 — C* and l—F are reduced each generation.
Thus, because the increase in drift is proportional to the heterozygosity (1—C*),

whereas the distance the system still has to go is dependent on 1—C, any mating plan
which will make C* greater than C, i.e. in which the mates are more closely related than
the average of the line, will reduce the final rate of approach to homozygosity.

Two special cases

Let us now examine the two extreme cases of circular mating on the one hand and a
maximum avoidance system on the other. Kimura and Crow show that with circular
mating between N individuals, the final rate of approach to homozygosity is given by

_ 2

A = 1 -

To derive this, they make use of the symbol Kt(n), which is equivalent to our 1 — C(n), the
integer inside the bracket referring to the distance apart of the individuals in the circle.
Matings are then made between individuals with n = 1. They then develop a matrix
of equations expressing the K values for one generation in terms of those in the previous
generation and derive the characteristic roots of the matrix, the largest of which tends to
1 — 7r2/4(N+2)2 when N is large. Unfortunately, they did not derive the general expression
for K(w) which is crucial to this argument. This proves to be
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where A; is a constant, decaying by a proportion A each generation. C(n), equai to 1 — K(n)
is then an inverted sine curve, with a value of l — (2nk)IN + 2) between the individuals
adjacent to each other in the circle, which are mated together, and a value of 1 — k between
the individuals diametrically opposite to each other in the circle. As the average value of
a sine curve between 0 and rr is 2/TT, the value of 1 — Ct is (2&)/(T7) and that of 1 — C* is
(2nk)l(N + 2). We have then from (1)

1 - 2

1-A = 4 T
4N(iV + 2)

in good agreement with Kimura and Crow's result. We see then that a circular mating
system is a special case of sublining in which the relationship between individuals falls off
the further apart they are in the circle.

Let us turn now to the maximum avoidance system, most simply considered for a
population size which is an integral power of 2. By adequate control of the mating system
in a population of size 2m it is possible to avoid mating together individuals which have a
common ancestor in the last m generations. C* thus lags m generations behind C so that
we may write

l-C*_x _ A-(w+i)

which then gives from (1)

1-A= A-<m+1)/2m+2 (2)

as an equation for A which has an approximate solution

1/(1-A) = 2m+2-(ra + l)
Examination of the mating system using classical methods shows that the characteristic
equation is

l+2A+. . . + 2mAm-2m+1Am+1 = 0
which simplifies to

2m+2Am+1(l-A) = 1

which is identical to equation (2). The effective population size is thus not 2m+1 but
2m+1 — (m +1)/2. The ' maximum avoidance' system thus avoids inbreeding in the initial
generations at the expense of slightly greater rate of loss of heterozygosity at the limit.

We may therefore summarize our conclusions as follows:
1. Reduction of genetic drift to a minimum requires the formation of permanent sublines.
2. If sublining is only partial, then the proportional rate of decline in heterozygosity is

equal to the rate of approach of genetic variance between lines to its final value.
3. If mating is at random, the decline in heterozygosity lags one generation behind the

genetic drift.
4. If mating is not at random within a line, then the decline in heterozygosity may be

ahead of the drift (implying the mating together of close relatives and the formation of
partially separate sublines) or it may be behind it if matings between relatives are avoided
as much as possible.

5. The mating together of close relatives within the line leads to greater initial in-
breeding but a lower final rate of approach to the limit. The converse will be true for
maximum avoidance systems.

6. Any degree of sublining will reduce the final rate of decline in heterozygosity and the
more the sublining the lower the rate of decline. The extreme case of this is a set of selfed
lines which are intermated every thousand or so generations. As a corollary to this, we
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have the paradox that the occasional insertion of a generation of selfing in an otherwise
random breeding population actually reduces the rate of inbreeding. Circular mating
systems are thus a special type of sublining in which the mating system follows the same
plan in each generation.
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