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On the restriction of representations of GLy(F)
to a Borel subgroup

Vytautas Paskunas

ABSTRACT

Let F' be a non-Archimedean local field and let p be the residual characteristic of F. Let
G = GLo(F) and let P be a Borel subgroup of G. In this paper we study the restriction
of irreducible smooth representations of GG on Fp—vector spaces to P. We show that in a
certain sense P controls the representation theory of G. We then extend our results to
smooth O[G]-modules of finite length and unitary K-Banach space representations of G,
where O is the ring of integers of a complete discretely valued field K with residue field Fp.

1. Introduction

Let F' be a non-Archimedean local field and let p be the residual characteristic of F'. Let G = GLy(F)
and let P be a Borel subgroup of G. In this paper we study the restriction of smooth irreducible
Fp—representations of GG to P. We show that in a certain sense P controls the representation theory
of G. We then extend our results to smooth O[G]-modules of finite length and unitary K-Banach
space representations of G, where O is the ring of integers of a complete discretely valued field K,
with residue field Fp and uniformizer wg.

The study of smooth irreducible Fp—representations of G have been initiated by Barthel and
Livne in [BL94]. They have shown that smooth irreducible F,-representations of G with central
character fall into four classes:

(1) one-dimensional representations x o det;
(2) (irreducible) principal series Ind% (x1 ® x2), with x1 # x2;
(3) special series Sp ®y o det;
(4) supersingular.
Here, Sp is defined by an exact sequence

0—1—Ind%$1— Sp—0,

and the supersingular representations can be characterised by the fact that they are not subquotients
of Indg x for any smooth character x : P — F; . Such representations have only been classified in the
case when F' = Q,, by Breuil [Bre03]. If F' # Q,, no such classification is known so far, although in a
joint work with Breuil [BP07] we can show that there are ‘a lot more’ supersingular representations
than in the case F' = Q,.

The main result of this paper can be summed as follows.

THEOREM 1.1. Let w and 7’ be smooth Fp—representations of GG, such that m is irreducible with a
central character, then the following hold:
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(i) if 7 is in the principal series, then m|p is of length 2; otherwise w|p is an irreducible represen-
tation of P;

(ii) we have
Homp(Sp, 7') 2 Homg (Ind$ 1, 7'),
and if 7 is not in the special series, then

Homp (7w, 7") = Homg(m, 7).

The first part of this theorem and the second part with 7’ irreducible are due to Berger [Ber05]
in the case F' = Q,,. Berger uses the theory of (¢,I")-modules and the classification of supersingular
representations. Our proof is completely different and purely representation theoretic. In fact, this
paper grew out of trying to find a simple representation theoretic reason to explain Berger’s results.
Vigneras [Vig06] has studied the restriction of principal series representation of split reductive p-
adic groups to a Borel subgroup. Her results contain the first part of the theorem in the case where
7 is not supersingular and F' arbitrary.

Using the theorem, we extend the result to smooth O[G] modules of finite length.

THEOREM 1.2. Let 7 and 7’ be smooth O[G] modules, and suppose that 7 is of finite length and that
the irreducible subquotients of m admit a central character. Let ¢ € Homppy (m,7’") and suppose
that ¢ is not G-equivariant. Let 7 be the maximal submodule of 7, such that ¢|, is G-equivariant,
and let o be an irreducible G-submodule of 7/, then

0 = Sp®J o det,

for some smooth character § : F* — F; . Moreover, choose v € w such that the image U in o spans
o1, then Tlp(v) — 6(TTv) £ 0, @i (MH(v) — G(TTw)) = 0, and

g(Mo(v) — ¢(Ilv)) = 6(det g)(Ip(v) — ¢(Ilv)), Vg € G,
where Il and I, are defined in § 2.

This criterion implies the following.

COROLLARY 1.3. Let II; and Ily be unitary K-Banach space representations of G. Let ||-||; and
I-ll2 be G-invariant norms defining the topology on II; and Ily. Set

Li={vell;:||v]1< 1}, Ly={velly:|v]< 1}

Suppose that L1 Qo Fp is of finite length as an O|G] module and that the irreducible subquotients
admit a central character. Moreover, suppose that if Sp ®d o det is a subquotient of L1 ®o F,,, then
0 odet is not a subobject of Ly ®o F),, then

LIy, II) = Lp(I1;,I1y),

where L(II1,115) denotes continuous K-linear maps.

Moreover, Theorem 1.1 implies the following.

COROLLARY 1.4. Let II be a unitary K-Banach space representation of G, let ||-|| be a G-invariant
norm defining the topology on II. Set

L={vell:|v|< 1}

Suppose that L ®¢@ Fp is a finite length O[G] module and that the irreducible subquotients are
either supersingular or characters, then every closed P-invariant subspace of 11 is also G-invariant.
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According to Breuil’s p-adic Langlands philosophy a two-dimensional p-adic representation of the
absolute Galois group of F' should be related to a unitary K-Banach space representation of GG; see a
forthcoming work of Colmez [Col07] for the case F' = Q,, where the restriction to a Borel subgroup
plays a prominent role. However, if F' # Q, it is an open problem to construct such unitary K-
Banach space representations of G. We hope that our results will help to understand this.

2. Notation

Let 0 be the ring of integers of F', let p be the maximal ideal of 0 and let ¢ be the number of elements
in the residue field o/p. We fix a uniformiser @ and an embedding o/p — F,,. For A € F, we denote
the Teichmiiller lift of A to o by [A]. Set

=2 0) =0 =5 )

Let P be subgroup of upper-triangular matrices in GG, T' the subgroup of diagonal matrices, K =

GLy(0) and
_[0o* o _(1+4p 0 _(1+p p
I‘<p o*)’ Il_( p 1+p>’ Kl_( p 1+p>’

All of the representations in this paper are on Fp—vector spaces, except for §6.

3. Key

In this section we show how to control the action of s on a supersingular representation 7 in terms
of the action of P. All of the hard work here is done by Barthel and Livne in [BL94], we just record
a consequence of their proof of [BL94, Theorem 33].

Let o be an irreducible representation of K. Let & be a representation of F* K such that w
acts trivially on ¢ and 6| = 0. Set F, = c—InngK o and H, = Endg(Fy). It is shown in [BL94,
Proposition 8] that as an algebra H, = F,[T], for a certain T' € H,, defined in [BL94, §3]. Fix
¢ € Fy such that Suppp = F*K and ¢(1) spans o', Since ¢ generates F, as a G-representation,
T is determined by T'p.

LEMMA 3.1. We have the following.
(i) If o = 1) o det, for some character ¢ : 0* — F;, then
_ LA
Ty =1lp + Z <0 1>tg0.
AEF,
(ii) Otherwise,
_ LA
Ty = Z <0 1 > tp.
AeF,
Proof. In the notation of [BL94]| this is a calculation of T'([1,¢eg]). The claim follows from [BL94,
(19)]. O

Let 7 be a supersingular representation of G, such that w acts trivially. Let v € 7/t and suppose
that (K - v) 2 0. The Frobenius reciprocity gives a € Homg (F,, ), such that a(y) = v.

LEMMA 3.2. There exists an n > 1 such that o T™ = 0.
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Proof. Now Homg (Fy,7) is naturally a right H,-module; let M = («-H,) be an H,-submodule of
Homg(Fy, ) generated by a. The proof of [BL94, Proposition 32] implies that dimfp M is finite.

Let T be the image of T in Endfp(M ) and let m(X) be the minimal polynomial of 7. Let A € F,
be such that m(\) = 0, then we may write m(X) = (X — A\)h(X). Since m(X) is minimal the
composition

MT)(Fo) = Fo —m
is non-zero. According to [BL94, Theorem 19], F, is a free H, module, hence h(T') is an injection

and so h(T')(Fy) is isomorphic to F,. This implies that 7 is a quotient of F, /(T — A). Since 7 is
supersingular [BL94, Corollary 36] implies that A = 0, and hence m(X) = X", for some n > 1. O

COROLLARY 3.3. Let 7 be a supersingular representation, such that w acts trivially. Let v € w!1
be such that (K - v) is an irreducible representation of K. Set vg = v and for i > 0 set

1 [A
Vigl = Z (0 [1]> tv;.
AEF,
Then v; € !t for all i > 1 and there exists an n > 1, such that v, = 0.

Proof. Set o = (K -v). If o is not a character then Lemma 3.1(ii) implies that v; = (a0 T%)(¢),
for all 7 > 0 in particular I; acts trivially on v; and the statement follows from Lemma 3.2. If o is
a character, then after twisting we may assume that ¢ = 1. Since I acts trivially on Ilvg the space
(K - (TTvp)) is a quotient of IndX 1. Now

n=Y (é [i]> s(TTw).

AEF,

If v1 = 0, then we are done. If v; # 0, then [Pas04, (3.1.7) and (3.1.8)] imply that (K - v;) = St,
where St is the inflation of the Steinberg representation of GL2(F,). We may apply the previous
part to vy. O

LEMMA 3.4. Let m be a smooth representation of G and let v € w!*. Suppose that

Z <(1) [i‘]> tv=0.

Then
Proof. Since

we obtain

If g € F*, then
0 1\ /1 B\ [(-p1'1 1 0 )
G D=0 3)6h 1) 8

1 0 y
<w[)\] 1>€Il V)\EFq
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we obtain

w2 (0 ) oy ) (0 ) O

PYS) 3 AeF
Since G = PI; U Psly, we use Lemma 3.4 to show that the action of P on 7 already ‘contains

all the information’ about the action of G on 7.

4. Supersingular representations

In this section we study the restriction of supersingular representations of G to a Borel subgroup.

LEMMA 4.1. Let m be a smooth representation of G and let v € 7! be non-zero and such that I

acts on v via a character y, then there exists j € {0,...,q — 1} (usually non-unique) such that
(1A
— J
w = Z A <0 1 ) tv
AEF,

is in 7' and (K - w) is an irreducible representation of K.

Proof. Set 7 = (K - (Ilv)). For 0 < j < ¢ —1 set

(1A (1A
o J — J
w]—Z)\<O 1>8(HU)—Z)\<0 1 tv.
AeFy AeFy
The set {ITv,w; : 0 < j < g — 1} spans 7.
If wyp = 0 then Lemma 3.4 implies that

v Dz (2 )

AEF

=2 () ) 2 ) 6B

AeFy AEF

(B 0) = e

for some 0 < r < ¢ — 1, we obtain that 7 is spanned by the set {w; : 1 < j < ¢ — 1}. Let o be
a K-irreducible subrepresentation of 7. The space ¢/t is one dimensional, so I acts on o!* by a
character. However, one may verify that the group

(9 2em)

acts on the set w; for 1 < j < ¢ — 1 by distinct characters, hence o't is spanned by w; for some
I<j<qg-1

Suppose that wg # 0. If wy and IIv are linearly independent, then the natural map Indf x*—7
is an injection, because it induces an injection on (Ind¥ x*)1. It follows from [Pas04, (3.1.5)] that
(K - wp) is an irreducible representation of K. If wy and ITv are not linearly independent, then
x = x°. It follows from [Pas04, (3.1.8)] that (K - wp) is isomorphic to a twist of the Steinberg
representation by a character. ]

Since

PROPOSITION 4.2. Let m be a smooth representation of G and let w be a non-zero vector in w. Then
there exists a non-zero v € (P - w) N 7!t such that (K -v) is an irreducible representation of K.
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Proof. Since 7 is smooth there exists k£ > 0 such that w is fixed by (pk];-I (1)) Then wy := thw is

fixed by (; (1)) Iwahori decomposition gives us

| I+p o 10
Lo 1+4p)\p 1)

Hence, 7 := (I1 - w1) = {(I1 N P) - wy) C (P - w). Since I is a pro-p group, we have 771 # 0, and
hence (P - w) Nt # 0. Let wy € (P -w) Nw!t # 0 be non-zero. Since |I/1;] is prime to p, there
exists a smooth character y : I — F; such that

w3 (%7 0) (6 )

PWIS e
is non-zero. As I acts now on ws by a character y we may apply Lemma 4.1 to ws to obtain the
required vector. O

THEOREM 4.3. Let 7 be supersingular, then 7|p is an irreducible representation of P.

Proof. Let w € 7 be non-zero. According to Proposition 4.2 there exists a non-zero v € (P-w)N7!t,
such that o := (K - v) is an irreducible representation of K. Corollary 3.3 implies that there exists
a non-zero v’ € w1 N (P - v) such that

gF:q <(1) [i‘]> t' = 0.

According to Lemma 3.4 sv” € (P-v'). Since G = PI;UPsI; and 7 is an irreducible G-representation
we have

7= {(G-V)=(P-v) C(P w).
Hence, m = (P - w) for all w € 7 and so 7|p is irreducible. O
THEOREM 4.4. Let m and 7’ be smooth representations of G, such that m is supersingular, then

Homp (7, 7") = Homg(m, ).

Proof. As Homg(m, ") < Homp(m,7") we only have to prove surjectivity. Let ¢ € Homp(7,7’) be
non-zero. We are going to find v/ € 7t such that ¢(v') € (7/)"* and

gF:q <(1) [i\]> t' =0, A;q <(1) [i\]) 16(0') = 0.

Choose v € 7!t such that (K - v) is an irreducible representation of K. Since r|p is irreducible by
Theorem 4.3, ¢ is an injection and hence ¢(v) # 0. Since v is fixed by I; and ¢ is P-equivariant, we
have that ¢(v) is fixed by I; N P. Since 7’ is smooth there exists an integer k£ > 1 such that ¢(v) is
fixed by (plk (1)) Suppose that £ > 1. Lemma 4.1 implies that there exists j, such that 0 < j <¢q¢—1

and if we set
(1A
01:ZA]<0 1>t1),
A€F,

then v; € 7/t and (K - v;) is an irreducible representation of K. Since ¢ is P-equivariant, ¢(v;) is

fixed by Iy N P and
s =% (1) o)

A€F,
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If « € 0 and 3 € p, then

696960 )

This matrix identity coupled with

1 0 1 0
<p’“‘1 1>t_t<p’“ 1)’

implies that ¢(v1) is fixed by (pkl—l ?) By repeating the argument we obtain w € 't such that

(K -w) is an irreducible representation of K and ¢(w) is fixed by (% ?) Iwahori decomposition
implies that ¢(w) is fixed by I;. Set vg = w and for i > 0,

1 [A
Vig1 = Z (0 [1]> tv;.
A€F,
Since v; are fixed by I, ¢(v;) are fixed by I; N P. Moreover,
1 [A
s =3 (5 ) rotwn
A€F,

Since ¢(vg) is fixed by I, the argument used above implies that ¢(v;11) are fixed by (é (1)) and
hence fixed by I;. Corollary 3.3 implies that v,, = 0 for some n > 1. Let m be the smallest integer
such that v,, = 0 and set v/ = v,,_1. Then v/ € 7', ¢(v') € (') and

> (é [i‘]> =0, > <(1) [i\]>t¢(v’) = 0.

AeF, AeF,

Lemma 3.4 applied to v" and ¢(v’) implies that

AEF
—w[A! 1
—- 2 (T ) e = se)
NEF
Since G = PI; U PsI; this implies that ¢(m(g)v') = 7n’(g)¢(v'), for all g € G. Since 7 is irreducible
m = (G -v') and this implies that ¢ is G-equivariant. O

5. Non-supersingular representations

Let x: T'— F; be a smooth character. We consider it as a character of P, via P — P/U = T. We
define a smooth representation x, of P by the short exact sequence

0— ky — dEx — x =0 (2)

where the map on the right is given by the evaluation at the identity. The representation s, is
absolutely irreducible by [Vig06, Théoréme 5]. If x = v o det for some smooth character 1) : F'* —
F; , then the sequence splits as a P-representation and we obtain

Sp ®v o det|p = k.

LEMMA 5.1. Let m be a smooth representation of G. Suppose that Homp(x,7) # 0, then x extends
uniquely to a character of G, and

Homp(x, ) = Homeg(x, 7).
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Proof. Let ¢ € Homp(y, ) be non-zero and let v be a basis vector of the underlying vector space
of x. Since 7 is a smooth representation of G, there exists k > 1 such that ¢(v) is fixed by (plk (1))
Since to(v) = ¢(tv) = x(t)d(v), we obtain that ¢(v) is fixed by (pkl—l (1)), and by repeating this we
obtain that ¢(v) is fixed by sUs. Now sUs and P generate G. This implies the claim. O

COROLLARY 5.2. Let «’ be a smooth representation of G. Suppose that x # x° and let ¢ €
Homp(Indg X, 7') be non-zero, then ¢ is an injection.

Proof. Lemma 5.1 implies that Homp(y, Ind% x) = 0. Hence, the sequence (2) cannot split. So if
Ker ¢ # 0, then Ker ¢ contains . Hence, ¢ induces a homomorphism ¢ € Homp(x, 7). Lemma 5.1
implies that ¢ = 0 and hence ¢ = 0. U

COROLLARY 5.3. Suppose that x # x°, then

Homp(Ind$ x, Ind$ x) = Homg(Ind$ x, Ind% x).
Proof. Suppose that ¢1, $2 € Hom p(Indg X, Indg X) are non-zero, then by Corollary 5.2 the restric-
tion of ¢1 and ¢ to ky induces non-zero homomorphisms in Homp(ky, £y ). Since ky, is absolutely

irreducible this implies that there exists a scalar A € F; such that the restriction of ¢1 — Ag2 to

Ky is zero. Now ¢ — Apa € Homp(Indg X,Indg Xx) and is not an injection, hence by Corollary 5.2
it must be equal to zero. O

THEOREM 5.4. Let m be a smooth representation of G, then the restriction to k, induces an
isomorphism
v : Homg(Ind$ x, 7) = Homp (ky, 7).

Proof. If x # x*, then the injectivity of ¢ is given by Corollary 5.2. If x = x*, then the injectivity
follows from Lemma 5.1 and [BL94, Theorem 30(1)(b)]. We are going to show that ¢ is surjective.

Let ¢ € IndIGD X be an I invariant function such that Suppp; = PI; and ¢1(1) = 1. Set
1 [
=3 (O [1]) se1.
AeF,

Then {1, @2} is a basis of (Ind% x)* and I acts on ¢; by a character x and on gy by a character
x®. Since G = PK we have

(Ind% x)" = Indf* x,
as a representation of K, and hence o = (K - p9) is an irreducible representation of K, which is not
a character. We let F'* act on o via x. Frobenius reciprocity gives us a map

o C-Indng o — Ind$ .

It follow from [BL94, Theorem 30(3)] that there exists A € F; , determined by x, such that «
induces an isomorphism

c-Ind%y o 0/(T — X\) = Ind§ y,
where T € Endg(c—Inng 5 0) is as in §3. Lemma 3.1 implies that
- 1 [y
-1
=2 (X (5 W),
KeFy

Let ¢ € Homp(k,, ™) be non-zero. Since Supp p2 = Psl; we have (1) = 0 and hence 3 € k.
Since ky, is irreducible ¢(¢2) # 0 and the P-equivariance of 1 gives:

wen =3 (X (5 W), Q

neFq
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This equality coupled with the argument used in the proof of Theorem 4.4 implies that ¢(ps) is
fixed by (; (1)) Since v is P-equivariant, 1(¢2) is fixed by I; N P. The Iwahori decomposition implies
that 1(p2) is fixed by I;.

So I; fixes ITtp(p2) and I acts on ITip(p2) via the character x. Hence, (K -IItp(p2)) is a quotient
of Ind¥ y. Now

M;q (é [‘1‘]> s(Iy(p2)) = ¢<2F:q <(1) Uﬂ) w2> — M(ip2) # 0. (4)

If X|7ni # X°|TnK, then this implies that (K - (pg)) = IndX x. Equation (4) and [Pas04, (3.1.5)]

~

imply that (K - ¢¥(p2)) = 0. If x|rnx = % o det for some ¢ : 0* — F;, then the above equality
implies that if IIy)(y2) and ¥ (¢p2) are linearly independent, then

(K T (p2)) = Indf x,
otherwise
(K -I(p2)) = St @ o det,
where St is the lift to K of Steinberg representation of GLy(F;). In both cases we obtain that

(K - (p2)) = St @ o det = ¢. Hence, (G - ¥)(ip2)) is a quotient of c-Ind% ;- 0. Equation (3) and
Lemma 3.1 imply that (G - ¢(¢2)) is a quotient of

c-Ind%y o 0/(T — A) = Ind§ x.
Hence, ¢ is also surjective. ]
COROLLARY 5.5. Suppose that x # x° and let m be a smooth representation of GG, then
Homg(Ind% x, 7) = Homp(Ind$ y, 7).
Proof. Let ¢ € Homp(Indg X, ) be non-zero. It follows from Corollary 5.2 that the composition
mdG y — 7 — 7/(G - (k)

is zero. Hence, the image of 1 is contained in (G - ¢(ky)). It follows from Theorem 5.4 applied
to ™ = (G - 9(ky)) and the irreducibility of Ind% x that Ind% x is isomorphic to (G - 1(ky)) as a
G-representation. The G-equivariance of 1 follows from Corollary 5.3. O

COROLLARY 5.6. Let m be a smooth representation of G, then
Homp(Sp, 7) = Homg(Ind% 1, 7).

Note that Homg(Sp,Ind% 1) = 0, but Homg (Ind% 1,Ind% 1) # 0, so the above result cannot be
improved.

6. Applications

Let K be a complete discrete valuation field, O the ring of integers and wg a uniformizer, and we
assume that O/wrO = F,. We extend the results of previous sections to smooth O[G] modules of
finite length and, after passing to the limit, to unitary K-Banach space representations of G.

THEOREM 6.1. Let m and 7" be smooth O[G] modules and suppose that 7 is of finite length and
let the irreducible subquotients of m admit a central character. Let ¢ € Homp(pj (m,7") and suppose
that ¢ is not G-equivariant. Let 7 be the maximal submodule of 7, such that ¢|, is G-equivariant,
and let o be an irreducible G-submodule of 7/, then

0 = Sp®0 o det,
1541
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for some smooth character ¢ : F* — F; . Moreover, choose v € m such that the image ¥ in o spans
olt; then Tlg(v) — ¢(Ilv) # 0, wr (Mp(v) — ¢(Ilv)) = 0, and
9(Mg(v) — ¢(Iv)) = d(det g)(Ilp(v) — ¢(Ilv)), Vg€ G.

Proof. We denote by Ind? 7' the space of smooth functions from G to the underlying @ module of
7', equipped with the G action via right translations. Let o : 7 — Ind? 7’ be a P-equivariant map,
given by

[a(w)](g) = gp(w) — d(gw), Vw e, Vg€ G.
Then 7 = Ker a. Hence, a induces a P-equivariant map

a:o — Indf 7.
Suppose that @ is G-equivariant, then
g a(gu))(1) = [g™ ' a(g))(1) = [@@)](1) = [a(v)](1) = 0.

Hence, gp(v) = ¢(gv), for all g € G. So the maximality of 7 implies that @ is not G-equivariant.
Hence, Theorem 4.4, Lemma 5.1, Corollaries 5.5 and 5.6 imply that

0 = Sp®J o det
for some smooth character ¢ : I — F; , and
(G- a()) =Ind1® 6o det.

After twisting we may assume that ¢ is the trivial character. It follows from [BL94, Theorem
30(1)(b)] that

Homg(Ind% 1,1nd$ 1) = F,,.
Corollary 5.6 applied to 7 = Indg 1 implies that @(7) is a scalar multiple of the function denoted

by 2 in the proof of Theorem 5.4. By construction «(v) = @(v). Hence, a(v) is fixed by I; and
ITa(v) + a(v) spans the trivial subrepresentation of G. In particular,

Ma(](1) + [a(@)(1) = (FTa(@)](1) + ha@](1), Vhe P
Since ¢ is P-equivariant, we obtain
lp(v) — ¢(Ilv) = h(Ilp(v) — ¢(Ilv)), Vh € P.
Suppose that IIp(v) = ¢(IIv). Since a(v) is [-invariant we obtain
hllug(v) — ¢(hlluv) = [uca(v)](RID) = [a(v)](hIT) = h(Il$(v) — ¢(Ilv)) = 0,
for all h € P and u € I;. Also
hugp(v) — ¢p(huv) = [ua(v)](h) = [a(v)](h) =0, Yue I, Vh e P.

Since G = PI; U PIlI;, we obtain that g¢(v) = ¢(gv), for all g € G, but this contradicts the
maximality of 7. So II¢p(v) — ¢(ITv) # 0. Since o is irreducible wx@ = 0, and hence

[wra()]() = @k (Tg(v) — ¢(Ilv)) =0,

so O(Ilgp(v) — ¢(Ilv)) = Fp(llp(v) — ¢(Ilv)). Lemma 5.1 implies that G acts trivially on IIg(v) —
o(Iv). O

COROLLARY 6.2. Let m and 7’ be as above and suppose that if Sp®4§ o det is a subquotient of T,
then ¢ o det is not a subobject of «’. Then

Homg (7, 7') = Homp(m, ).
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DEFINITION 6.3. A unitary K-Banach space representation II of GG is a K-Banach space II equipped
with a K-linear action of G, such that the map G x II — II, (g,v) — gv is continuous and such
that the topology on II is given by a G-invariant norm.

COROLLARY 6.4. Let II; and Ily be unitary K-Banach space representations of G. Let ||-||; and
Il be G-invariant norms defining the topology on I1; and Il,. Set
L= {’U ell : ||’U||1< 1}, Lo = {’U elly: ||U||2< 1}

Suppose that L1 ®p Fp is of finite length as an O[G] module and the irreducible subquotients admit
a central character. Moreover, suppose that if Sp @ o det is a subquotient of L1 ®o Fy,, then § o det
is not a subobject of Ly ®o F),, then

LI, 1y) = Lp(T1,15),
where L(II1,II3) denotes continuous K-linear maps.
Proof. Corollary 6.2 implies that for all £ > 1 we have
Homg (L1 /@ Ly, La /@ Lg) = Homp(Ly /@ L1, Lo /@i Ly).
Since Homo(Ll/w]};Ll, LQ/WI;{LQ) >~ Homp (L4, LQ/w];{LQ) by passing to the limit we obtain
Homg(Lq, Ly) = Homp(L1, Lo).
It follows from [SchO01, Proposition 3.1] that
L(I1;,115) 2 Homp(Lq, Lo) ®p K.
Hence,
LI, 1,) & Homg(L1, Le) ®0 K =2 Homp(Ly, L) @0 K = Lp(I1,11). U

PROPOSITION 6.5. Let m be a smooth O[G]| module of finite length and suppose that the irreducible
subquotients of m are either supersingular or characters, then every P-invariant O-submodule of 7
is also G-invariant.

Proof. Let 7’ be O[P] submodule of 7. If ¢ is an irreducible subquotient of 7, then by Theorem 4.3
o|p is also irreducible, hence 7 and 7" are O[P] submodules of finite length.

Let 7 be an irreducible O[P]-submodule of #’. Since 7 is a finite length O[G] module, the
submodule (G - 7) is of finite length. Let o be a G-irreducible quotient of (G - 7). Since 7 generates
(G - T) as a G-representation, the P-equivariant composition

T—= (G- 1) =0

is non-zero, and since 7 is irreducible, it is an injection. Now o|p is irreducible, so the above compo-
sition is an isomorphism. Theorem 4.4 and Lemma 5.1 imply that 7 is G-invariant and isomorphic
to 0. By induction on the length of 7’ as an O[P]-module, 7’/7 is a G-invariant O-submodule of
7/7. Since 7' is the set of elements of m whose image in 7/7 lies in 7’/7, 7’ is G-invariant. O

COROLLARY 6.6. Let II be a unitary K-Banach space representation of G, let ||| be a G-invariant
norm defining the topology on II. Set

L={vell:|v|<1}.

Suppose that L ®¢ Fp is a finite length O[G]| module and the irreducible subquotients are either
supersingular or characters, then every closed P-invariant subspace of 11 is also G-invariant.

Proof. Let I be a closed P-invariant subspace of II. Set M = IIyNL, then M is an open P-invariant
lattice in II;. Proposition 6.5 implies that for all £k > 1, M /wlf{M is a G-invariant O-submodule
of L/w’%L. By passing to the limit we obtain that M is a G-invariant O-submodule of L. Since
II; = M ®» K we obtain the claim. O
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