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ON HOLOMORPHIC MAPS INTO A REAL LIE GROUP
OF HOLOMORPHIC TRANSFORMATIONS

HIROTAKA FUJIMOTO

1. Introduction. Let M, N be complex manifolds and G be a group
of holomorphic automorphisms of N. In [3] (c.f. p. 74) W. Kaup introduced
the notion of holomorphic maps into a family of holomorphic maps between
complex spaces. By definition, a map ¢ : M— G is holomorphic if and only
if the induced map §(x,y):=9(x)(y) (xeM, yeN) of MxXN into N is
holomorphic in the usual sense. The purpose of this note is to give a
description of a holomorphic map of a connected complex manifold M into
G. We show first the existence of the maximum connected Lie subgroup
G, of G which is a complex Lie transformation group of N.

We prove the following:

In the above situation, any holomorphic map g : M— G can be written g = gy-h
and g=h'-g} with suitable h, =G and holomorphic maps g, g4 : M— G,
(Theorem 4.3).

A holomorphic map g of M into the holomorphic automorphism group
of N corresponds to each holomorphic automorphism ¢* of M x N with
my9* = my, wWhere my : MXN—M is the natural projection. As an applica-
tion of the above result, we see

If M s connected and N is a bounded domain in C*, any holomorphic auto-
morphism h of MXN with zyh = ny can be written h(x,y)=(x,9(y)) (x€M, yN)
with a suitable holomorphic automorphism g of N (Corollary 4.6).

This result is a generalization of one side of H. Cartan’s theorem in
[1] which asserts that any holomorphic automorphism of MxN sufficiently
near to the identity can be written as the product of the holomorphic
automorphisms of M and N if M and N are both bounded domains.
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2. The maximum complex Lie subgroup of a real Lie trans-
formation group. Let N be a complex manifold and (G,¢) an effective
Lie transformation group of N, that is, G be a real Lie group, ¢ a real
analytic map of GXN into N which defines an injective group homomor-
phism ¢* of G into the holomorphic automorphism group Aut(N) of N,
where ¢*(g) (y) = ¢(g,y) (9€G, y=N). We say a vector field X on N to be
conformal if [X, JY] = J[X,Y] for any vector field Y on N, where J denotes
the almost complex structure of N. The set %(N) of all conformal vector
fields on N is a (not necessarily finite-dimensional) complex Lie algebra
with the complex structure /. We know that each left invariant vector
field on G corresponds to a one-parameter subgroup of G and defines
canonically a vector field on N, which is conformal because ¢*(g)eAut (N)
(9€G). Thus we have a Lie algebra isomorphism ¢ of the Lie algebra g
of G onto a real Lie subalgebra g* of A(N).

Now, we consider the Lie subalgebra g} : =g*n Jg* of g*. Obviously,
Jatcg¥ and so g¥ is considered as a complex Lie subalgebra of %(N). Put
g, = @~Y(g¥). As is well-known, G has a uniquely determined connected Lie
subgroup G, with the Lie algebra g,. Since g, is a complex Lie algebra
with the complex sturcture induced from g} by @, G, has a structure of a
complex Lie group and, furthermore, is considered as a complex Lie trans-
formation group of N. On the other hand, g} is the maximum complex
Lie subalgebra of A(N) which is included in g*. If a connected Lie sub-
group G’ of G has a complex structrue with which (G,¢|G'XN) is a
complex Lie transformation group of N, the Lie algebra of G’ is necessarily
included in g, and so G’ is a Lie subgroup of G,. This shows that G, is
the maximum connected Lie subgroup of G which is a complex Lie trans-
formation group of N.

DerNiTION 2.1.  We shall call the connected complex Lie group G,
constructed as the above the maximum complex Lie subgroup of (G, o).

ExaMpLE 2.2, (i) A complex Lie group G is canonically considered
as a complex Lie transformation group of G itself with left translations.
For a real Lie subgroup H of G the maximum complex Lie subgroup H,
of H is nothing but the maximum connected complex Lie subgroup of G
which is included in H. In particular, for a maximal compact subgruop
K of a connected complex Lie group G, K, = {e} if and only if G is a
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Stein group, i.e. the variety of G is Stein (c.f. Matsushima-Morimoto [4],
p. 139).

(ii) Let N be a bounded domain in €”. We know that the holo-
morphic automorphism group Aut (N) of N with the compact-open topology
is a real Lie group. In this case, the maximum complex Lie subgroup
Aut (N), of Aut(N) consists of the identity only. In fact, for any complex
one-parameter subgroup {g:} of G, and any y & N, the map ¢(t) = g,(y)
(teC) of € into N is constantly equal to ¢(0) = g,(y) =y as is easily seen
by the Liouville’s theorem. This shows that Aut(N), = {e}.

3. A charactrization of holomorphic maps into a real Lie
transformation group. Let (G,¢) be an effective Lie transformation

group of a complex manifold N.

DEeFiNITION 3.1. A map g of a complex manifold M into G is called
to be holomorphic if the map §: MXN— N defined as §(=z,y) = ¢(g(x), y)
(xeM, y<N) is holomorphic in the usual sense.

As is stated in the previous section, there is the canonically defined
Lie algebra isomorphism @ : g — g* where g is the Lie algebra of G and
g* is a Lie subalgebra of %(N). On the other hand, the exponential map
exp : g > G maps diffeomorphically a neighborhood of 0 in g onto a neigh-
borhood of the identity ¢ in G. Take a continuous map g of a connected
complex manifold M into G and assume that g(z,) =e for some x,eM.
We can define the map g = @exp-'.g of a neighborhood V of x, into A(N)
with the image in g*. Put g§ =g*+ Jg*. It is a complex Lie subalgebra
of A(N) and dimegi < + . We consider the above g as a map of V into

gc.
Tueorem 3.2. For a continuous map g: M—~ G with g(x,) =e, g is holo-
morphic in a neighborhood of x, in the sense of Definition 3.1 if and only if

g=0-expteg is holomorphic at x, as a map with the values in the finite-

dimensional complex vector space g§.

For the proof of Theorem 3.2, we use the following Lemma which
was shown in the previous paper [2], Lemma 2.6.

Lemma 3.3. Let M, N, N' and H be complex manifolds and ¢ : HXN— N’
a holomorphic map. Assume that N' is holomorphically separable and ¢(t', y)=¢(t,y)
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Jor any yeN implies t =t' (t,t'cH). Then a map g: M— H is holomorphic if
dlg(x),y) (xeM, y=N) is a holomorphic map of MXN into N'.

Proof of Theorem 3.2. As is well-known, there is a simply connected
complex Lie group G with the Lie algebra g% = g* + Jg*. The exponential
map expc: 8= G gives a biholomorphic map of a neighborhood U* of 0
in g% onto a neighborhood U of ¢ in G. On the other hand, since g*=9(g)
is a Lie subalgebra of g§, we can take a symmetric neighborhood U of e
in G such that there is a local isomorphism ¢ of U onto a local Lie sub-
group of U, where we may assume that exp : g— G maps diffeomorphically
a neighborhood U1 of 0 in g onto U. Then we have i-exp = exp 9.

Now, take a continuous map g: M—G with g(x,) =e. For our pur-
pose, it may be assumed that g(M)cU. Suppose that §=0-expteg: Mg
is holomorphic. Then, i.g=expc-g: M—U is also holomorphic with res-
pect to the complex structure of U in the usual sense. We shall show first
that the map §: MXN— N defined as §(z,y) = ¢g(x),y) (x€M, y=N) is
holomorphic at (w,,y,) for an arbitrarily given y,&N. To this end, we
recall the Lie’s fundamental theorem on local Lie groups of local transfor-
mations. For each y,&N, we can find neighborhoods U’ (cU) of e in G
and W, W’ of y, in N (WcW’) such that 1) there is a holomorphic map
o i UXW W', 2) ¢(t,y)=y for any yeW if and only if t=e¢, 3)
o' (tet',y) = @' (t,0'(t',y)) if ¢t,t'el’, yeW, t-t'elU’ and ¢'(t',y)=W, where
we may assume that ¢’(i(¢),y) = ¢(¢,y) for any t=i (') and yW because
of the uniqueness of local transformations. Taking a sufficiently small
neighborhood V of z, in M, we see §(z,y) = ¢'((i-9) (x),y) on VXW. Since
isg:V—U" and ¢ : U'XW —>W' are both holomorphic, § is holomorphic
on VXW. To show the holomorphy of §: MxN— N, take an arbitrary
2,€M and consider the map % = g(z,)"'-g. For a sufficiently small neigh-
borhood V' of =,, the map i-h:V'—U is well-defined and holomorphic,
because i+k is obtained by the holomorphic left translation of the holo-
morphic map i.g by i(g(z,))"'. Since h(x;) =e, we can apply the same
argument as the above to the map k. So, i(z,y) = ¢(k(z),y) (€M, yEN)
is holomorphic in a neighborhood of (z,,y) for any yeN. It then follows
that g(x,y) = 9(9(x), ¥) = (g(x)h(x), y) = elg(x,), ¢(h(x),y) (x€M, yEN) is
also holomorphic in a neighborhood of (x,;, y). This shows that §: MXN—>N
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is holomorphic, namely, g : M— G is holomorphic in the sense of Definition
3.1.

Conversely, suppose that a map ¢g: M— G is holomorphic in the sense
of Definition 3.1 and g(x,) =e. Take an arbitrary y,=N, neighborhoods
U of ein G and W, W’ of y, in N having the properties stated in the
above argument, where we choose W’ so small as to be holomorphically
separable. Without loss of generality, it may be assumed that (i.g)(M)cU".
Then §(z,y) = ¢(g(x),y) = ¢'((i+g) (x),y) is a holomorphic map of MxW into
W', Putting M:=M, N:=W, N :=W', H:=U' and ¢:= ¢/, we can
apply Lemma 3.3. The map i-¢g: M— U’ is holomorphic in the usual
sense. Therefore, g = @-exp~t+g = expg'(i-g) : M—g¥ is also holomorphic.

REMARK. As is easily seen, if a map g:M— G is holomorphic, g-k
and %.g are both holomorphic for any zeG. In particular, g: M—G is
holomorphic in a neighborhood of z,eM if the map i(x) = g(x)g(x,)™! or
R (x) = g(xg)'g(x) (h(x,) = h'(x,) =€) is holomorphic in a neighborhood of z,.

4. The main theorems and their applications. Now, we give
the following main theorems.

TueoreEM 4.1. Let (G,¢) be an effective Lie transformation group of N and
G, be the maximum complex Lie subgroup of (G,¢). Take a holomorphic map g
of a connected complex manifold M into G. If g(z)=G, for some x,=M, then
g9(x)eG, for any z<M.

For the proof, we give

LEmMmA 4.2, Let E be a finite-dimensional complex vector space with the
complex structure J and F be a real vector subspace of E with the property that
FNJF = (0). If a holomorphic map g of a connected complex manifold M into E
has the image in F, then g is necessarily a constant function on M.

Proof of Lemma 4.2. By the assumption we can take a base {e;«+-,¢,
Crrty* * *s€my J€i,t+ e, Jen} m=dimgE) of E over R such that {ej« « e}
generates the real vector subspace F. Then {e,,+ «-,e,} may be considered
as a base of E over €. Writing g(x) = ¢g;(®)e; + * * » + gu(®)en(xeM), we
have holomorphic functions g¢;,*++,¢,» on M which satisfy the conditions
that for any zeM Im(g;(x)) =0 if 1<i<Fk and g;(z) =0 if k+1=7=m.
We know that any real-valued holomorphic function is necessarily a con-
stant. This concludes Lemma 4.2,
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Proof of Theorem 4.1. Firstly, we shall show that there is a neighbor-
hood U of x, with the property ¢g(U)cG, under the restricted assumption
g(x,) = e. Using the same notations as in the previous sections, we know
that the map §= ®-exp~l-g of a sufficiently small neighborhood U of =z,
into g§ is holomorphic in virtue of Theorem 3.2. Consider the complex
Lie subalgebra g} =g*n Ja* of g& and the quotient complex vector space
E:=g§/gs. The vector subspace F:=g*g} of E have the property
FnJF=(0), where J:E—E is the complex structure of E induced from
J. For the projection p : gé— E, the map p.g: U — E satisfies the conditions
in Lemma 4.2. Since g(z,)'=0 in g§, »-g is constantly equal to zero and
so g(z)eg} for any 2€U. Then g=exp:@~'.g:U—G has the image in
exp (07'(g%)) CG,.

Now, we consider the set M* = {zeM; g(x)=G,}, which is not empty
by the assumption. For any z,€M, h = g(x,)"'-g is also a holomorphic
map of M into G and satisfies the condition h(z;) =e. By the above
argument, %2 maps a neighborhood U of #,; into G,. Therefore, if g(x,)=G,,
g(x) = g(x)h(x)€G, and, if not, g(x)&G, for any x=U. This shows that
M* is open and closed in M. We conclude M* = M because of the con-
nectivity of M.

TrEOREM 4.3. Let (G,9) be an effective Lie transformation group of N and
G, the maximum complex Lie subgroup of (G,¢). Then any holomorphic map of a
connected complex manifold M into G can be written g = gyeh and g = h'-g; with
suitable h, W' €G and maps gy, 9§ : M— G, which are holomorphic with respect to
the complex structrue of G, in the usual sense.

Progf. For an arbitrarily fixed z,&M, we write g(x)=(g(x)g(x,))g(x)=
g(z,) (9(xy)"'g(x)). For our purpose, it suffices to take k =k’ = g(x)eG and
%(x) = g(@)g(xy)™", gi(x) = glwy)'g(x). In fact, since go(xo) = gi(w,) = e€G,,
go(M) and g{(M) are both included in G, by Theorem 4.1. On the other
hand, we know that any holomorphic map of M into a complex Lie trans-
formation group G, of N in the sense of Definition 3.1 is holomorphic in

the usual sense (2], (2.4)). So, g, and g : M— G, are both holomorphic.

In particular, if G,={e}, then g, x)=g{(x)=e in the above. We
have
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COROLLARY 4.4. Let G be a Stein group. If a holomorphic map g of a
connected complex manifold M into G has the image in a compact subgroup K of G,
then g is necessarily a constant.

Proof. We can regard g as a map of M into K which is holomorphic
in the sense of Definition 3.1. Corollary 4.4 is a direcr result of Theorem
4.3 and Example 2.2, (i).

Assume that the holomorphic automorphism group Aut(N) of N has a
structure of a Lie transformation group of N.  Any map g: M— Aut(N)
defines a bijective map g*(z,y) = (z,9(2) () (@M, yeN) of MXN into
itself with the property z,9* = ny, where 7y : MX N— M denotes the natural
projection. By definition, ¢ is holomorphic if and only if g* is holomorphic.
As is well-known, the inverse map of a bijective holomorphic map is also
holomorphic. So, g* is a holomorphic automorphism of MxN. Conversely,
each holomorphic automorphism g* of MXN with zyg* =z, defines a holo-
morphic map g: M— Aut(N) with the property g¢*(z,y) = (z,9(z)(y)). As
an application of Theorem 4.1, we see

THEOREM 4.5. In the above situation, let Aut (N), be the maximum complex
Lie subgroup of Aut(N). For a connected complex manifold M any holomorphic
automorphism h of MXN with the property zuyh = my can be written hix,y) =
(2, 9)(x)g(y)) and hiz,y) = (x,9'(9}(x)y)) (xeM, y=N) with suitable g,9’ = Aut(N)
and holomorphic maps 9o, 94 : M— Aut (N),.

COROLLARY 4.6. Let M be an arbitrary connected complex manifold and N
a bounded domain in C*. Then any holomorphic automorphism h of M X N with
the property myh = my can be written h = 1yxg with some g<Aut(N), where
1y : M— M s the identity map.

This is an immediate consequence of Theorem 4.5 and Example 2.2,

(it).
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