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ON HOLOMORPHIC MAPS INTO A REAL LIE GROUP

OF HOLOMORPHIC TRANSFORMATIONS

HIROTAKA FUJIMOTO

1. Introduction. Let M, N be complex manifolds and G be a group

of holomorphic automorphisms of N. In [3] (c.f. p. 74) W. Kaup introduced

the notion of holomorphic maps into a family of holomorphic maps between

complex spaces. By definition, a map g : M-+G is holomorphic if and only

if the induced map g{x,y) : = g{x) (y) (xeM, y^N) of MxN into N is

holomorphic in the usual sense. The purpose of this note is to give a

description of a holomorphic map of a connected complex manifold M into

G. We show first the existence of the maximum connected Lie subgroup

Go of G which is a complex Lie transformation group of N.

We prove the following:

In the above situation, any holomorphic map g : M-+G can be written g = go h

and g=h' g'Q with suitable h,hr^G and holomorphic maps gQ, g* m. M-+GQ

(Theorem 4.3).

A holomorphic map g of M into the holomorphic automorphism group

of N corresponds to each holomorphic automorphism g* of M X N with

XM9* = KM, where πM : MxN-±M is the natural projection. As an applica-

tion of the above result, we see

If M is connected and N is a bounded domain in Cn, any holomorphic auto-

morphism h of MxN with πMh = πM can be written h{x,y) = (x9g(y)) {x^M, y^N)

with a suitable holomorphic automorphism g of N (Corollary 4.6).

This result is a generalization of one side of H. Cartan's theorem in

[1] which asserts that any holomorphic automorphism of MxN sufficiently

near to the identity can be written as the product of the holomorphic

automorphisms of M and N if M and N are both bounded domains.
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2. The maximum complex Lie subgroup of a real Lie trans-

formation group. Let N be a complex manifold and {G,φ) an effective

Lie transformation group of N, that is, G be a real Lie group, ψ a real

analytic map of GxN into N which defines an injective group homomor-

phism φ* of G into the holomorphic automorphism group Aut (N) of N,

where φ*(g) (y) = φ(g,y) (g^G, y&N). We say a vector field X on N to be

conformal if [X, JY] = J[X9 Y] for any vector field Y on N, where / denotes

the almost complex structure of N. The set ^L(N) of all conformal vector

fields on N is a (not necessarily finite-dimensional) complex Lie algebra

with the complex structure /. We know that each left invariant vector

field on G corresponds to a one-parameter subgroup of G and defines

canonically a vector field on N, which is conformal because φ*(g)eAut(N)

(g&G). Thus we have a Lie algebra isomorphism Φ of the Lie algebra g

of G onto a real Lie subalgebra g* of $Ϊ(7V).

Now, we consider the Lie subalgebra (^ : = g*Π/g* of g*. Obviously,

/£oc8o a n d so g? is considered as a complex Lie subalgebra of $t(JV). Put

g0 = Φ'Kδo)- As is well-known, G has a uniquely determined connected Lie

subgroup Go with the Lie algebra g0. Since g0 is a complex Lie algebra

with the complex sturcture induced from g$ by Φ, GQ has a structure of a

complex Lie group and, furthermore, is considered as a complex Lie trans-

formation group of N. On the other hand, g* is the maximum complex

Lie subalgebra of $L(N) which is included in g*. If a connected Lie sub-

group Gr of G has a complex structrue with which (Gr,<p\G'xN) is a

complex Lie transformation group of N9 the Lie algebra of G' is necessarily

included in g0 and so G' is a Lie subgroup of GQ. This shows that GQ is

the maximum connected Lie subgroup of G which is a complex Lie trans-

formation group of N.

DEFINITION 2.1. We shall call the connected complex Lie group Go

constructed as the above the maximum complex Lie subgroup of (G9φ).

EXAMPLE 2.2. (i) A complex Lie group G is canonically considered

as a complex Lie transformation group of G itself with left translations.

For a real Lie subgroup H of G the maximum complex Lie subgroup Ho

of H is nothing but the maximum connected complex Lie subgroup of G

which is included in H. In particular, for a maximal compact subgruop

K of a connected complex Lie group G, K0 = {e} if and only if G is a
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Stein group, i.e. the variety of G is Stein (c.f. Matsushima-Morimoto [4],

p. 139).

(ii) Let N be a bounded domain in Cn. We know that the holo-

morphic automorphism group Aut (N) of N with the compact-open topology

is a real Lie group. In this case, the maximum complex Lie subgroup

Aut (iV)o of Aut (TV) consists of the identity only. In fact, for any complex

one-parameter subgroup {gt} of Go and any y e N, the map ψ{t) = gt(y)

{teC) of C into TV is constantly equal to (̂0) = gQ(y) - y as is easily seen

by the Liouville's theorem. This shows that Aut (N)o = {e}.

3. A charactrization of holomorphic maps into a real Lie

transformation group. Let (G,φ) be an effective Lie transformation

group of a complex manifold N.

DEFINITION 3.1. A map g of a complex manifold M into G is called

to be holomorphic if the map g : MxN-± N defined as g(x,y) = φ(g(x),y)

(#eM, y^N) is holomorphic in the usual sense.

As is stated in the previous section, there is the canonically defined

Lie algebra isomorphism Φ : g -> g*, where g is the Lie algebra of G and

g* is a Lie subalgebra of W(N). On the other hand, the exponential map

exp : g -y G maps diffeomorphically a neighborhood of 0 in g onto a neigh-

borhood of the identity e in G. Take a continuous map g of a connected

complex manifold M into G and assume that g(x0) = e for some #

We can define the map g = Φexp^ g of a neighborhood V of #0 into

with the image in g*. Put g£ = g* + /g*. It is a complex Lie subalgebra

of ^L(N) and dimcg£ < + oo. We consider the above g as a map of V into

THEOREM 3.2. For a continuous map g : M-¥G with g{xQ) = e, g is holo-

morphic in a neighborhood of xQ in the sense of Definition 3.1 if and only if

g = Φ exp^ g is holomorphic at x0 as a map with the values in the finite-

dimensional complex vector space g£.

For the proof of Theorem 3.2, we use the following Lemma which

was shown in the previous paper [2], Lemma 2.6.

LEMMA 3.3. Let M, N, Nf and H be complex manifolds and ψ : HxN-+Nr

a holomorphic map. Assume that N' is holomorphically separable and ψ{tf,y) = ψ{t,y)
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for any y^N implies t = V (t,t'^H). Then a map g : M-*H is holomorphic if

, y^N) is a holomorphic map of MxN into N'.

Proof of Theorem 3.2. As is well-known, there is a simply connected

complex Lie group G with the Lie algebra a>% — g* + /g*. The exponential

map exp c : %%-+& gives a biholomorphic map of a neighborhood XI* of 0

in g£ onto a neighborhood ϋ of e in G. On the other hand, since £*=Φ(8)

is a Lie subalgebra of &%, we can take a symmetric neighborhood U of e

in G such that there is a local isomorphism i of U onto a local Lie sub-

group of ϋ, where we may assume that exp : c$ -> G maps diffeomorphically

a neighborhood U of 0 in g onto U. Then we have i exp = expcΦ.

Now, take a continuous map g : M-> G with #(#0) = 0. For our pur-

pose, it may be assumed that g{M)aU. Suppose that g = Φ exp~1 g : M-^q%

is holomorphic. Then, i g = expc g : M->U is also holomorphic with res-

pect to the complex structure of ϋ in the usual sense. We shall show first

that the map g : MxN-^N defined as g(x,y) = φ(g{x),y) (aeJIί, y&N) is

holomorphic at {x09y0) for an arbitrarily given yQ^N. To this end, we

recall the Lie's fundamental theorem on local Lie groups of local transfor-

mations. For each yo&N, we can find neighborhoods Uf (c£7) of e in G

and W, W of y0 in N (WcW) such that 1) there is a holomorphic map

<Pf : U'xW-+W'9 2) φf{t,y)-y for any y&W if and only if t = e9 3)

<p'{t tf,y) = φr{t,φf(t',y)) if t,t'(=ϋf

9 y(=ΞW, t t'ε-ϋ' and ?>'(*',2/)eW, where

we may assume that φ'{i{t),y) - φ{t9y) for any t^i~ι{Ur) and 2/eΐ^ because

of the uniqueness of local transformations. Taking a sufficiently small

neighborhood V of xQ in M, we see g{x9y) = φ'(.(i g) {x)9y) on FxΐF. Since

i g\V-±Ur and φ' :U'xW-*W' are both holomorphic, pf is holomorphic

on FxT7. To show the holomorphy of g : MxN-ϊ N9 take an arbitrary

Λ J G M and consider the map h — g(Xχ)~ι g. For a sufficiently small neigh-

borhood V of xl9 the map i*h:V'-*U is well-defined and holomorphic,

because i h is obtained by the holomorphic left translation of the holo-

morphic map i g by iigixi))'1. Since h{xγ) — e9 we can apply the same

argument as the above to the map h. So, h(x9y) = φ(h(x)9y) (χ(=M, y&N)

is holomorphic in a neighborhood of (x19y) for any y&N. It then follows

that g{x9 y) = φ(g(x), y) = φ(g{xx)h{x)9 y) = <p{g{x1)9 φ{h{x)9y)) {x<=M9 yt=N) is

also holomorphic in a neighborhood of (xl9 y). This shows that g : MxN-*N
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is holomorphic, namely, g:M-*G is holomorphic in the sense of Definition

3.1.

Conversely, suppose that a map g : M-+G is holomorphic in the sense

of Definition 3.1 and g(x0) = e. Take an arbitrary yo^N, neighborhoods

Ur of e in G and W, W of y0 in N having the properties stated in the

above argument, where we choose W so small as to be holomorphically

separable. Without loss of generality, it may be assumed that (i g){M)aUf.

Then g(x9y) — φ(g{x)9y) = φ'([i g) (x),y) is a holomorphic map of MxW into

W. Putting M:= M, N: = W, Nf : = W, H : = Uf and φ : = <p', we can

apply Lemma 3.3. The map i g : M-+Uf is holomorphic in the usual

sense. Therefore, g — Φ exp^ g = exp^U sO : M-¥§% is also holomorphic.

REMARK. AS is easily seen, if a map g:M-*G is holomorphic, g h

and h g are both holomorphic for any /ιεG. In particular, g M ^-G is

holomorphic in a neighborhood of # 0<ΞM if the map h(x) = ίKαOί/W"1 or

/&'(#) = flf(^o)~15r(ίC) W#o) - ^r(^o) = )̂ is holomorphic in a neighborhood of x0.

4. The main theorems and their applications. Now, we give

the following main theorems.

THEOREM 4.1. Let (G,<p) be an effective Lie transformation group of N and

Go be the maximum complex Lie subgroup of (G,φ). Take a holomorphic map g

of a connected complex manifold M into G. If g{xo)^Go for some # o e M , then

g(x)(=G0 for any a ε M ,

For the proof, we give

LEMMA 4.2. Let E be a finite-dimensional complex vector space with the

complex structure J and F be a real vector subspace of E with the property that

FnjF= (o). If a holomorphic map g of a connected complex manifold M into E

has the image in F, then g is necessarily a constant function on M.

Proof of Lemma 4.2. By t h e as sumpt ion we c a n take a base {e19 9ek9

ek+ί, ' % e m , J e l 9 - , J e m } {m = d i m c E ) o f E o v e r R s u c h t h a t {eί9 ,ek}

generates the real vector subspace F. Then {el9 9em] may be considered

as a base of E over C. Writing g(x) = gί{x)e1 + + gm{x)em{x^M), we

have holomorphic functions g19 •••,&» on M which satisfy the conditions

that for any x<=M Imig^x)) = 0 if 1 ̂  i <k and gj(x) = 0 if k + l^j^m.

We know that any real-valued holomorphic function is necessarily a con-

stant. This concludes Lemma 4.2.

https://doi.org/10.1017/S002776300001391X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001391X


144 HIROTAKA FUJIMOTO

Proof of Theorem 4.1. Firstly, we shall show that there is a neighbor-

hood U of x0 with the property g{U)c:G0 under the restricted assumption

g(x0) = e. Using the same notations as in the previous sections, we know

that the map g = Φ exp^ g of a sufficiently small neighborhood U of x0

into &c is holomorphic in virtue of Theorem 3.2. Consider the complex

Lie subalgebra g* = 8* Π /g* of g& and the quotient complex vector space

E - — Gc/ίίo The vector subspace F : = G*/g* of E have the property

FΓ\jF= (0), where J :E~±E is the complex structure of £ induced from

/. For the projection p : $c-±E, the map p g : U-+ E satisfies the conditions

in Lemma 4.2. Since g{xo)'=O in &%, φ g is constantly equal to zero and

so g{x)<=g$ for any sceϊ/. Then g = exp Φ^ g : U-+G has the image in

Now, we consider the set M* = {Λ G M ; ^(ίc)eGol, which is not empty

by the assumption. For any a^eM, A = gixj^ g is also a holomorphic

map of M into G and satisfies the condition h{xx) = e. By the above

argument, h maps a neighborhood U of α̂  into Go. Therefore, if flf^OeGo,

flf(α ) = g(x1)h(x)^G0 and, if not, g{x)^G0 for any #e£7. This shows that

M* is open and closed in M. We conclude M* = M because of the con-

nectivity of M.

THEOREM 4.3. Let (G,φ) be an effective Lie transformation group of N and

Go the maximum complex Lie subgroup of (G,φ). Then any holomorphic map of a

connected complex manifold M into G can be written g= go h and g= hr g$ with

suitable h, hf^G and maps g0, g'o :M-^G0 which are holomorphic with respect to

the complex s true true of Go in the usual sense.

Proof For an arbitrarily fixed # o e M , we write g{x) = {g{x)g{xo)~ί)g(xo) =

g{x0) (flf(α;0)"
1flf(α;)). For our purpose, it suffices to take h = h' = g{xo)^G and

go{x) = g{x)g(xo)"L, g'Q(x) = g(xo)~ιg(%). In fact, since go{xo) = g'0{x0) = e^G0,

go(M) and g'0{M) are both included in Go by Theorem 4.1. On the other

hand, we know that any holomorphic map of M into a complex Lie trans-

formation group Go of N in the sense of Definition 3.1 is holomorphic in

the usual sense ([2], (2.4)). So, g0 and g'Q :M-+G0 are both holomorphic.

In particular, if Go = {e}, then gQ(x) === g'Q{x) == e in the above. We

have
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COROLLARY 4.4. Let G be a Stein group. If a holomorphic map g of a

connected complex manifold M into G has the image in a compact subgroup K of G9

then g is necessarily a constant.

Proof We can regard g as a map of M into K which is holomorphic

in the sense of Definition 3.1. Corollary 4.4 is a direcr result of Theorem

4.3 and Example 2.2, (i).

Assume that the holomorphic automorphism group Aut (N) of N has a

structure of a Lie transformation group of AT". Any map g:M-*Aut(N)

defines a bijective map g*{x, y) = {x,g{x) {y)) {x^M, y^N) of MxN into

itself with the property πMg* = πM, where πM : Mx iV-> M denotes the natural

projection. By definition, g is holomorphic if and only if #* is holomorphic.

As is well-known, the inverse map of a bijective holomorphic map is also

holomorphic. So, g* is a holomorphic automorphism of Mx N. Conversely,

each holomorphic automorphism g* of Mx N with πMg* = πM defines a holo-

morphic map g:M-+Aut(N) with the property g*[x, y) = (x,g{x) (y)). As

an application of Theorem 4.1, we see

THEOREM 4.5. In the above situation, let Aut(iV)0 be the maximum complex

Lie subgroup of Aut(iV). For a connected complex manifold M any holomorphic

automorphism h of MxN with the property πMh = πM can be written h{x,y) =

{%,go{%)g{y)) and h(x,y) = (x9g'(g'Q(x)y)) ( a e M , y^N) with suitable g,g'<=Aut(N)

and holomorphic maps go,g'o : M-> Aut (N)o.

COROLLARY 4.6. Let M be an arbitrary connected complex manifold and N

a bounded domain in Cn. Then any holomorphic automorphism h of M x N with

the property πMh = πM can be written h = lMxg with some g^Aut(N), where

\M\M-+M is the identity map.

This is an immediate consequence of Theorem 4.5 and Example 2.2,
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