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Abstract

Let k be a field of characteristic p > 0, G a finite p-solvable group and pm the highest power of p
dividing the order of G. We denote by t (G) the nilpotency index of the (Jacobson) radical of the group
algebra k[G]. The groups G with i(G) > pm~x are already classified. The aim of this paper is to classify
the p-solvable groups G with pm~2 < t(G) < pm~l for p odd.

2000 Mathematics subject classification: primary 20C05, 16S34.

1. Introduction

Let k be a field of characteristic p > 0, and G a finite group whose order is divisible
by p. The (Jacobson) radical of the group algebra k[G] will be denoted by J(k[G]).
As it is well known, J(k[G]) is a nilpotent ideal. We denote by t(G) its nilpotency
index, that is, t(G) is the least positive integer t such that J(k[G])' = 0. Suppose that
G is p-solvable and let p"' be the highest power of p dividing the order of G. Then it is
known that t(G) < pm (Passman, Tsushima, see [3, page 418]). We describe here the
known results on the relation between the value of / (G) and the structure of G. We first
describe the known main results for the case of p -groups. In Theorem 1-Theorem 5
below, we assume that G is a p-group of order pm.

THEOREM 1 (Motose, Ninomiya [3, page 323]). t(G) = pm if and only if G is
cyclic.
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118 Yasushi Ninomiya [2]

THEOREM 2 (Koshitani, Motose [3, page 325]). Letm>2. Then pm~[< t{G)<pm

if and only if exp G = pm~{.

THEOREM 3 (Motose [3, page 326]). Let m > 2. Then t(G) = pm~{ if and only if
G = M(3) orG = C2x C2 x C2.

THEOREM 4 (Ninomiya [6], Shalev [10]). Let m > 3. Then pm~2 < t(G) < p"1'1

if and only if one of the following holds:

(1) p / 2, exp G = p"1"2, G £ M(3).
(2) p = 5, m = 4, G = (a,b,c,d) : a5 = ft5 = c5 = ds = 1, [c, rf] = ft,

[6, rf] = a.
(3) p = 3, m = 4, G = M(3) x C3.
(4) p = 2, m > 4, exp G = 2m"2.
(5) p = 2, m = 4, G = C2 x C2 x C2 x C2.
(6) p = 2, m = 5, G = (a, b, c) : a2 = b* = d* = 1, [ft, c] = a.
(7) p = 2, m = 5, G = (a, b, c, d, e) : a2 = b2 = c2 = J2 = 1, e2 = c,

[ft, e] = [c, d] = a, [d, e] = ft.

In the presentation of the groups given in (2), (6) and (7), all relations of the form
[x, y] = 1 (with x, y generators) are omitted.

THEOREM 5 (Ninomiya [6, 7]). Let in > 3. Then t{G) = pm~2 if and only if one of
the following holds:

(1) p = 3, m = 4, G = C3 x C3 x C3 x C3.
(2) p = 3, m = 5, G is nonabelian and exp G = 32.
(3) p = 2, m = 5, exp G = 22, | G / * ( G ) | = 23.

We next describe the known main results for the case of p -solvable groups. In the
rest of this section, G will be assumed to be p-solvable, and P a Sylow p-subgroup
of G.

THEOREM 6 (Koshitani, Tsushima [3, page 419]). t(G) = pm if and only if P is
cyclic.

It is known that the groups G of p -length 1 satisfy the equality t(G) = / (P)(see[3,
page 418]), and hence if G has p-length 1 and its Sylow p-subgroups are of exponent
p1""1, then p m ~ ' < t(G) < pm by Theorem 2. On the other hand, for p-solvable
groups of p-length greater than 1, the following holds:

THEOREM 7 (Koshitani, Motose [3, page 440]). Let <i>/Op(G) be the Frattini sub-
group of Oplp{G)/Op{G). Assume that G is not of p-length 1 and t(G) > p"'~'.
Then p = 2, G/4> = S4 and <t>/Op(G) is cyclic.
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Let p =2. Motose showed that among the groups with the property G/<S> = S4 and
<t>/02(G) = C2 there exist two types of groups: one of them satisfies t(G) = 9 > 8,
and the other satisfies t{G) — 7 < 8 (see [3, page 445]). This shows that it is difficult
to classify the groups with 2"'~' < t{G) < 2"' and Theorem 2 cannot be extended to
arbitrary p -solvable groups. But, for the case p odd, Theorem 2 can be extended to
p-solvable groups.

THEOREM 8 (Koshitani [3, page 442]). Let p ^ 2. Then the following are equiva-
lent:

(1) />"'-' <t(G) <pm.
(2) t(G) = /?"-' + p - 1.
(3) expP =pm-1.

Further, in this case, G has p -length 1.

We now suppose t(G) = pm~\ If G has p-length 1 then, because t(G) = t(P), it
holds by Theorem 3 that P = M(3) or P = C2 x C2 x C2. The following shows that
the converse holds when p ^ 2:

THEOREM 9 (Motose [3, page 449]). Let p ^ 2 . Then t(G) = p"'~i if and only if
p =3 and P = M(3).

The aim of this paper is to classify the p-solvable groups G with pm~2 < t(G) <
pm~x for p odd. Suppose p"'~2 < t(G) < pm~i. If G has p-length 1, then P is one
of the groups described in Theorem 4. One of our results given below shows that the
converse holds when p > 5.

THEOREM 10. Let p > 5. Then p"-2 < t(G) < /?'"-' if and only //exp P = p'"-2

or P is isomorphic to the group given in Theorem 4 (2). Further, in this case, G has
p-length 1.

Our result for the case p = 3 is as follows:

THEOREM 11. Letp = 3andm > 3. Suppose 3m"2 < t(G) < 3"'- ' . Ijthe 3-length
of G is greater than 1, then G has 3-length 2. Suppose further that Oy(G) = 1. Then
H = 03 y T,{G) is one of the groups from the following list:

(1) a nonsplit extension of

[a, b, c | ar"' = fr» = c3 = 1, [a, b] = 1, [a, c]=l, [b, c] = ay'~4)

bySL(2, 3) (m > 5);
(2) a split extension ofd> x C9 by SL(2, 3);
(3) an extension of MO) by SL(2, 3);
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(4) an extension ofQ x C3 x d by SL(2, 3);
(5) a split extension of d x C3 x C3 by AA', and
(6) a nonsplit extension o/C3™-3 x d x Ci by SL(2, 3) (w > 5).

As it is well known, the principal block (ideal) Bo of k[G] is isomorphic to
k[G/O'p(G)] (see [3, page 115]), and so Theorem 10 and Theorem 11 give a classifi-
cation of p-solvable groups G, p odd, with pm~2 < t(B0) < p m ~ \ where t(B0) is the
nilpotency index of the radical of Bo. Further, we see that if pm~2 < t(B0) < p m ~ \
then it holds that pm~2 < t{G) < pm~K

In Section 2, we shall give the proof of Theorem 10 and the structure of
03,3(G)/ Oy(G) for 3-solvable groups G satisfying the inequality 3m~2 < t(G) < 3 " - 1 .
In Section 3, we shall give an outline of the proof of Theorem 11.

Notation is as follows:

Cn the cyclic group of order n
Q8 the quaternion group of order 8
M(3) the exstra-special 3-group of order 33 and exponent 3
A4 the alternating group on four letters
SL(n, p) the special linear group of degree n over the field of p elements
GL(n, p) the general linear group of degree n over the field of p elements
<t>(G) the Frattini subgroup of G
exp G the exponent of G
K:H the semidirect product of K by H

2. Preliminaries

Let G be a p -solvable group satisfy ing pm~2 < t(G) < p m ~ l . Assume now that the
p -length of G is greater than 1 and set M = OP(G),N = OP,P(G) and p r = \N/M\.
Then, because J(k[G]y"" C J(k[N])k[G] (Passman [3, page 110]), we have

0 ^ J(k[G]y"~2 = (J(k[G])pmy'' c J(k[N]Y"2k[G].

Thus we have J(k[N]y'~2 £ 0, that is, t(N) > p r ~ 2 . Hence

t{N/M) = t(N) > pr~2.

Let <t>/M be the Frattini subgroup of N/M. Since G/N is contained isomorphically
in AutN/<b (Hall and Higman [3, page 415]), N/<t> is not cyclic. Hence N/M is not
cyclic, and so by Theorem 1, t(N/M) < p r . We therefore have

pr~2 < t(N/M) <pr.

Hence, Theorem 2, Theorem 3 and Theorem 4 apply to the group N/M. Thus we
have the following:
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LEMMA 1. We have the following possibilities:

(1) Ifpr~l < t(N/M) < pr then exp N/M = pr~K
(2) Ift(N/M) = pr~x then, N/M = A/(3) or C2 x C2 x C2.
(3) lfpr~2 < t(N/M) < pr~', then N/M is one of the groups given in Theorem 4.

We first consider the case when p > 5 and prove Theorem 10.

PROOF OF THEOREM 10. Assume that p"'~2 < t(G) < p"'~x and the /^-length of
G is greater than 1. Because p > 5, Lemma 1 implies that N/<$> = Cp x Cp or
Cp x Cp x Cp. Hence we may regard the group G/N as a subgroup of GL(2, p) or
GL(3, p). Then we see that every p-element of G/N is of order p, and conjugate to
an element given as follows:

\ or \X 1 0 J a , / i , v e GF(p)).

Because the minimal polynomials of these matrices are (X — I)2 and (X — I)3

respectively, by Hall-Higman's Theorem B [2], we have /? = 2 or 3. This contradicts
our choice of p. Thus G has /^-length 1 and hence t(G) = / (P ) . Therefore, by
Theorem 4, P is of exponent p"'~2 or isomorphic to the 5-group given in Theorem 4 (2).

To complete the proof of the theorem, it suffices to prove that if p > 5 and P
is of exponent p"'~2 or isomorphic to the 5-group given in Theorem 4 (2), then G
has p-length 1. It is well known that G has p-length 1 provided that P is abelian.
Suppose now that P is nonabelian. If exp P = p"'~2, then P is one of the groups G,
(i — 1, . . . ,10) given in [5, Theorem 1]. Each of these groups is of class at most 3,
and the 5-group given in Theorem 4 (2) is of class 3. Hence P is of class at most
3 in either case. Then by [2, Theorem 3.4.1], G has ^-length 1. Thus the result
follows. •

In the case when p = 2, as it is stated in Section 1, even the classification of the
groups satisfying 2"'~' < (G) < 2'" cannot be accomplished yet. So it is hard to
classify the groups satisfying 2"'~2 < t(G) < 2"'~]. Hence we restrict our attension
to the case of p odd. By Theorem 10, we are done when p > 5. Hence, in what
follows, we consider the case p = 3 only. We already know that if G has 3-length 1,
then 3"1"2 < t(G) < 3"'"1 if and only if exp P = 3'""2 with the exception of Af (3)
or P = M(3) x Cy. Suppose now that the 3-length of G is greater than 1. Because
the 3-group N/M saisfies the inequality 3r~2 < t(N/M) < 3r , N/M is one of the
following groups:

Cy-. x C,, A/r(3), exp N/M = 3 r"2 , M(3) x C,,
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where Mr(3) is a nonabelian 3-group of order 3 r and exponent 3 r~ ' . This implies that
N/M is generated by two or three elements, and so G/N is contained isomorphically
in GL(2, 3) or GL(3, 3). Hence noting that GL(2, 3) = (<28:C3):C2 and the maximal
subgroups of SL(3, 3) are 54, C^C} and (C3 x C3):// with H/C2 = S4 (see [1]), we
have the following:

LEMMA 2. The 3-part of\G/N\ is 3, and if G/N is of even order and N/M is
generated by exactly two elements, then | G/N \ is divisible by 8.

Since CC(N/M) c N (Hall and Higman [3, page 415]), we see that G/N is
isomorphic to a quotient group of some subgroup of Aut N/M. We give here the
order of the automorphism groups of 3-groups given above:

24-3 i f r = 2;
|AutCy-i x C , | =

22-3r i f r > 2 ,

|AutMr(3)| = 2-3r, |AutM(3) x Q\ = 25-36.

Assume next that the 3-group is of exponent 3r~2. If it is abelian, then it is either
Cy-2 x Cy (r > 4) or Cy : x C3 x C3 (r > 3), and we have

I 24-35 ifr = 4;

22-3r+2 i f r > 4 ,

f 25 33-13 if r = 3;
|AutCv-= x C, x C3| = { ,

" [25-3r + 2 i f r > 3 .

If the 3-group is nonabelian, it is one of the groups G\, ... , Gn given in [5, Theo-
rem 1], and we have

f 24 33 if r = 3; f 2 35 ifr = 4;
|AutG, | = | |AutG2| = |

[22-3r + 1 i f r > 3 , (2-3r + 2 i f r > 4 ,

|AutG3| = 22-3r+2, |AutG4| = 24-3r, |AutG5| = 22-3r, |AutG6| = 22-3r

I 2-34 ifr = 4; f 2 35 if r = 5;

| A u t G 8 | = {
2-3r+1 i f r > 4 , (2-3r + 1 i f r > 5 ,

|AutG9| = 2 - 3 r + 1 , | A u t G , n | = 3 r + l , |Aut G,,| = 2-35.
Because G\ = Af(3), if r = 3 and Aut G3 is 3-closed, the above together with
Lemma 2 implies that the possibility for N/M is as follows:

C3 x C3, C3»-3 x C3 x C3, G4, C9 x G,, M(3) x C3, M(3).
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To prove Theorem 11, we need to calculate the value of t(G) for 3-solvable groups
G of 3-length greater than 1. But, in general, it is difficult to determine J(k[G])
explicitly for/?-solvable groups G of p-length greater than 1. In this context, Motose
has described J(k[ Qd(3)]) concretely and found its nilpotency index, where Qd(3) is
a semidirect product (C3 x C3):SL (2, 3) with respect to the natural action of SL (2, 3)
on C3 x C3. This plays an important role in our proof. We here describe his result. In
what follows, we use the following notation:

X+ — y~]x, where X is a finite subset of k[G],
xeX

g+ =

Assume p = 3. Let Q = (x, y) (= Q%) be a Sylow 2-subgroup of Qd{3) and a an
element of Qd(3) - Oi{Qd{3)) of order 3. Moreover, we set T = {/, r, r2}, where
/ = x2 — 1 and r = CT(1 + x + y — xy)f. Then T is a 3-group with identity / of
order 3. We now choose three nilpotent right ideals of k[Qd(3)]:

A - J(k[(a)])Q+k[Qd(3)], B = J(k[T])k[Qd(3)],

C = J(k[O3(Qd(3))])k[Qd(3)].

Motose's result is as follows:

L E M M A 3 (Motose [3, Chapter 7, Section 4]). Let p = 3 . Then the following

holds:

(1) J(k[Qd(3)]) = A + B + C.
(2) (A + B)5 = 0.
(3) t{Qd(3)) = 9.

This also implies that if 3"'~2 < t(G) < 3m'\ then N/M is not isomorphic to
C3 x Cj,. Thus we have the following:

LEMMA 4. Let m > 3. Assume that the 3-length of G is greater than 1. If
3"'-2 < t(G) < 3m- ' , then the possibilities for N / M are as follows:

Cv-.' x C3 x C3, G4, C<) x Q), M{3) x C3, M(3).

3. Outline of the proof of Theorem 11

In this section, we shall give an outline of the proof of Theorem 11. In what follows,
we assume that p = 3 and G is a 3-solvable group of 3-length greater than 1 which
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satisfies the inequality 3 m " 2 < t(G) < 3 m " ' . Then by Lemma 2, G has 3-length 2.
We now suppose that M = Oy(G) = 1 and set N = 03(G). Because J(k[G]) =
J(k[O3S,3(G)])k[G] (Villamayor [3, page 108]), we have t(G) = f(03.y,3(G)). We
may therefore assume that G — 0 3 3 ' 3 (G) . Then by Lemma 4, it suffices to prove
that

(i) if W = G4 then (1) holds;
(ii) if N = C9 x C9 then (2) holds;

(iii) if N = M(3) then (3) holds;
(iv) if N = C3 x C3 x C3 then (4) or (5) holds;
(v) if N = C3».-3 x Q x Q with m > 5 then (6) holds, and

(vi) the case "N = M(3) x C3" does not occur.

We begin with a proof of (i):

LEMMA 5.IfN = G4, then (1) holds.

PROOF. Suppose that N is a group of order pr isomorphic to G4, where p is any
odd prime. Then N has a presentation:

N = (a,b,c\ a""2 = If = <? = 1, [a, b] = 1, [a, c] = 1, [b, c] = a""').

We see that any automorphism <p of N is given by

<p(c) = a?m~'

where ( j ,p) = 1, i = fiz-yy (mod p) . Thus we have | Aut N\ = p r (p + l)(p - I)2.
Evidently, any automorphism <f> of N induces an automorphism of N/<t>(N). We
denote this by 4>. Since <$>(N) = (ap), <p = 1 if and only if i = 1 (mod p) and
f) = z = l, y=y = 0. This shows that K = {<j> e AutJV | 4> — 1} is a normal
subgroup of Aut N of order pr~l.

Suppose now p = 3. Then |Aut;V| = 24-3r and |AutN: K\ = 24-3. We now
choose three elements <p, \j/, r) of Aut V̂ given by

<p: a —> a, b —> b2, c -> b,

ir:a-+a, b -> a2'3' be2, c —*• ay b2c2,

j)\ a —*• a, b -+ b, c —>• a3 be.

Then (<p, ir) = Qs, r;3 = 1, and rj acts on (cp, if) as follows:

We therefore see that K:(<p, if, r]) is a (normal) subgroup of Aut /V of index 2. Because
03,3',3(G) = G, this shows that G/N = SL(2, 3). We now let x,y,a be the

https://doi.org/10.1017/S1446788700002755 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002755


[9] Nilpotency indices 125

elements of G corresponding to <p, \js, TJ respectively. Then (x, y) = Q%, a 3 € N
and a~lxa = x3y, o~xyo = x. Since <r3 € Z(N) = {a) and [a, a] = 1, (a, a) is
either cyclic or isomorphic to Cy-i x C3. To prove the lemma, it suffices to show that
if the former case holds then 3m~2 < t(G) < 3m~l and if the latter case holds then
t(G) < 3 m - 2 .

Suppose first (a, a) is cyclic. Then we have

G/(a) = Qd(3) and k[G]/J(k[(a)])k[G] = k[G/{a)].

Hence, by Lemma 3,

Q+J{k[{o)]) C 7(Jfc[G])f

where Q = (x, y). Since

noting that b - \ e J(k[N]) c J(k[G]), we have

J(k[G])3m2 = J(k[G])y" D (Q+J(k[(a)]))y"-l(b - 1) = kQ+o+{b - 1 ) ^ 0 .

Thus we have t(G) > 3m~2, and so 3m"2 < t(G) < 3"1"1 by Theorem 6, Theorem 8
and Theorem 9.

We assume next that {a, a) = Cy-2 x C3. Then we may assume that CT3 = 1. This
implies that Af has a complement, which is isomorphic to SL(2, 3). Thus it holds
that G/(ay~3) = Cy-i x Qd(3) and so by a result of Loncour and Motose (see [3,
page 119]), we have

t(G/{ay~3)) = t(Cy-y) + t(Qd(3)) - 1 = 3r~3 + 8 (Lemma 3).

Hence, for r > 4, we have

t(G) < t{{ay~l))t{G/{ay~')) (Wallace [3, page 313])

= 3(3'"3 + 8) = 3 r " 2 + 24 < 3 r - ' = 3m~2.

We have to show that t{G) < 3m~2 for all r > 4. To this end, we need a little more
calculation, and we shall give the details in [8]. •

LEMMA 6.IfN = Cgx C9, then (2) holds.

PROOF. Suppose N = C9 x C9 and set N = (a, b), where a9 = b9 = 1. We have

|Aut tf| = (34 - 32)(34 - 33) = 24-35.

Now let 4> e AutN. Then (j> = 1 on N/<t>(N) if and only if

<(>(a) = a'ti, where i = \,j = 0 (mod 3), and

4>(b) = akb', where k = 0, / = 1 (mod 3).
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This shows that K = {cf> e AutN | <j> = 1 on N/<&(N)} is a normal subgroup of
Aut N of order 34. We now choose three elements cp, \fr, t] of Aut N given by

<p(a) = b2, <p(b) = a4; rjr(a) = ab\ f{b) = a2b%\ r)(a) = a4b6, r)(b) = a'b1.

Then we have (<p, rfr) = Q%, r)3 = 1; and r] acts on ((p, iff) as follows:

We therefore see that K:{<p, \fr, t)) is a (normal) subgroup of Aut N of index 2. Because
O3,3,3(G) = G, this shows that G/N = SL(2, 3). Let x, y, a be the elements of G
corresponding to <p, ty, rj respectively. Then (x, y) = Qs, a

2 e N and o~lxo = x3y,
o~lyo = x. Because cr3 € CN((x, y)), we have CT3 = 1, and so N has a complement.
Thus we have G = W:SL(2, 3).

By using these facts, we can prove that

a> = T+a2T+p2(f - r)apT+a2(f - x)p2T+aP(f - x)a4

is a nonzero element of J(k[G])21, where

r = {/,T,r2}, f=x2-\, T=(j(\+x+y-xy)f, a=a-l, p = b-l.

This implies /(G) > 33, and we have 33 < t(G) < 34 by Theorem 6, Theorem 8 and
Theorem 9. To prove a> ^ 0, we need a little more calculation, and we shall give the
details in [7]. •

We remark that the group G discussed above satisfies the inequality t{G) > t(P).
This is of interest because the group is probably the first example of a p -solvable
group satisfying this inequality. The details will be also given in [7],

LEMMA 7. IfN = M(3), then (3) holds.

PROOF. Assume N = M(3). Then 32 = t(N) < t(G), and so 32 < t(G) < 33

by Theorem 6, Theorem 8 and Theorem 9. Hence it suffices to prove that G/N =
SL (2,3). N has a presentation:

N = {a, b, c | a 3 = b3 = c 3 = 1, [a, b] = c, [a, c] = 1, [b, c] = 1>,

and Aut N consists of the mappings:

<j)(a) = a'b'c1', <p(b) = albmc\ <p(c) = c \

where, 1 < i,j, k, I, m, n < 3, 1 < s < 2 and im —jl = s (mod 3). This shows that

|AutM(3)| = 2 4 - 3 3 .
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Further, K — {</> e AutN \ <p = 1 on N/<$>(N)} is a normal subgroup of Aut A' of
order 32. Now choose three elements <p, \j/, r\ of Aut A7 given by

<p: a —*• b2, b —> ac, c —>• c ,

ijr : a —• a o 2 c , 6 —>• a 2 & 2 , <:—>•<:,

rj: a -*• a, b —> ab, c —>• c.

Then we have (<p, i/r) = Qs, »j3 = 1; and r) acts on (^, yjr) as follows:

Thus we see that K:{<p, \fr, r)) is a (normal) subgroup of Aut N of index 2. This implies
that G/N S S L (2, 3). •

REMARK 1. We note that if N = M(3), then r(G) does not exceed 23. This fact
will be used in the proof of the next lemma. We already know that G/N = SL (2, 3),
and hence we have G/{c) = Qd(3). Therefore setting

A = J(k[(o)]) Q+k[G], B = J(k[T])k[G], C = J(k[N])k[G],

where Q is a Sylow 2-subgroup of G and

T=[f, r, T 2 } , f = x 2 - l , x =a(\ +x+y-xy)f,

we have

J(k[G]) = A + B + C and (A + fl)5 C 7(*[(c)])/t[G] (Lemma 3).

By the above inclusion, we have (A + Z?)15 = 0. Therefore, because C9 = 0, we
obtain 7(/t[G])23 = 0 as desired.

LEMMA 8. The case 'N = Af (3) x C3' cfoes nor OCCMA:

Before proving the lemma, we give the automorphism group of M (p) x Cr, p odd.
We now set

M(p) = (a, b, c | ap = f = cp = 1, [a, c] = [b, c] = 1, [a, b] = c), Cp = (d).

Then AutM(/?) x Cp consists of the mappings:

4>(a) = a'b>ckd\ <j>(b) = albmc"d\ <p(c) = c\ <p(d) = c'd\

where, 1 < i,j,k,l,m,n,t,a,fi < p, 1 < s, y < p — 1 and im — j I = s (mod p).
This shows that

|AutM(/7) x Cp\ =pHp + l)(p - I)3-

Further, a subgroup K of Aut M(p) x Cp consisting of the mappings <p with i = 1,
y = p,l = p, m = 1 ,5= 1, y = 1 is a normal subgroup of order/?5.
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PROOF OF LEMMA 8. Assume N = M(3) x C3. Let cp, ty, r\ be automorphisms of
M (3) x C3 given by

<p:

if.

V-

P-

a -
a •

a -

a -

I3 =

-> b ,

^ab2c

->• a,

-> a,

• 1, and

b-

, b-

b-

b-

x] acts

ir) = w

•*• ac.

•> Q b ,

on {cp, f)

c —»• c , <i —>

c -

c -

c -

i as

-» c, J —*•

->• c , of - » •

follows:

1 =a>.

d,

d,

d,

d2.

Then

Hence {<p, \js, r), p) = SL(2, 3) x C2 and K:{cp, \/r, r)) is a normal subgroup of Aut
M(3) x C3 of index 4. This shows that G/N = SL(2, 3).

Let CT be an element of G corresponding to r\ and set N = N\ x 7V2, where
Â ! = M(3), Â 2 = C3. Then a3 e Z(A') = Z(W,) x Â 2. Assume first a3 e Z(A?|),
then G = H x C3, where H/O2{H) = SL(2, 3), and so

f (G) = f (//) + f (C3) - 1 (Loncour, Motose [3, page 119]).

This together with Remark 1 implies that t(G) < 25 < 33. This contradicts our
assumption.

Assume next that CT3 £ Z{N\). Then to prove t(G) < 33, we need somewhat
complicated calculation, and we shall give the details in [9]. •

LEMMA 9. IfN = C3 x C3 x C3> then (4) or (5) holds.

PROOF. Since Aut C3XC3XC3 = GL(3, 3) and the maximal subgroups of SL(3, 3)
are S4, CU:C3, and (C3 x C3):// with H/C2 = S4, we see that G/N = A4, Cn:C3 or
SL(2,3).

If G/N = Ci3:C3, then G is a group given in [4] and t(G) = 9, which contradicts
our assumption. Assume now G/N = SL(2, 3). We first remark that the group
generated by the following three matrices is a Sylow 2-subgroup, say 5, of SL(3, 3):

and Q = (A, B) is a unique subgroup of 5 isomorphic to Qs. Further,

/ . 0 0\
C = 0 1 0 eSL(3,3)

\0 1 1/
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is of order 3 and normalizes Q. Hence G is generated by N, x, y and a, where x, y
and a are elements of G corresponding to A, B and C respectively. Clearly, we have
(x,y) = Q% and a 3 6 N. Now set N = {a, b, c). Then

This shows that G/(a)

a — a,
bx =c2

c* = b,

= QdO),

a- —
, by =

cy =

and so

: a,
••be2,

a
b"

c°

= a,
= b,

= bc.

t{G) > t{Qd(3)) + t((a)) - 1 (Wallace [3, page 313])

= 11 > 32. (Lemma 3).

Thus we have 32 < t(G) < 33 by Theorem 6, Theorem 8 and Theorem 9.
We next consider the case where G/N = A4. S possesses two subgroups isomor-

phic to C2 x C2, which are given below:

h = {A2,X), T2 = (A2,AX).

We can choose matrices

C, = 1 1 2 , G =

of order 3 acting on 7i and T2 respectively. Now suppose G/N = (7i, C,) and let
x, y and a be elements of G corresponding to A2, X and Cx respectively. Then
(x,y) = C2 x C2 and <r3 6 Z(G) = 1. This shows that N has a complement and so
we have G = N:((x, y):(o)). To complete the proof of the lemma, it suffices to prove
the inequality 32 < t(G) < 33. Set U = (x, y). Then, because (U, a) (= A4) is a
Frobenius group, we have

J(k[(U, a)}) = U+J(k[{a)]) (Wallace [3, page 189]).

Hence

J(k[G]) = J(k[N])k[G]+U+J(k[(a)]).

We now set N = (a, b, c). Then

Z = (U+(a - \))2(a - l)2U+(a - 1)

is an element of J(k[G])5. Since

ax=a, ay=a2, a" = be, bx = b2, by = c, ba = abe2,

cx = e2, cv =b, c° = a2bc2, x" =y, y" = xy,
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we have

Z = U+a+(a2 + a + l)U+(a - 1) = o+U+(a2 + a + \){o - 1)

= a+U+((a2)a +a" + 1) - a+U+(a2 + a + 1)

= a+U+((bc- I)2-(a- I)2).

Thus we have

Z(a- \)2(b- I)2 =a+U+(a, b, c)+ = G+.

This shows that t(G) > 32, and hence we get the inequality 32 < t(G) < 33 by
Theorem 6, Theorem 8 and Theorem 9 as desired. If G/N = (T2, C2) then we can
prove that G = (C3 x C3 x C3):A4 and 32 < t(G) < 33 by the same argument as the
above. •

REMARK 2. We note here that if G/N = {T2, C2), then G - (N,x, y, a), where
{x, y) = C2 x C2 and cr3 = 1, and

a* =a, ay = a2, a" = c, bx = b2, by = b2, b" = a,

cf =c2, c> =c, c" = b, x" =y, y" = xy.

These equalities will be used in the proof of the next lemma.

LEMMA 10. If N = C3-3 x Q x Q with m > 5, then (6) holds.

PROOF. Assume N = C3—3 x C3 x C3. Then G/N is contained isomorphically in
GL(3, 3), and so G/N = A4, Ci3:C3 or SL (2, 3).

If G/N = C13:C3 then

t(G) < t(Q(N)) • t(G/t>(N)) (Wallace [3, page 313])

= 3 m - 4 • 32 (Motose [4])
-im—2

— ^ )

which contradicts our assumption.
Next we show that the case 'G/N = A4' also does not occur. Set N = (a, b, c),

where a3""3 = b3 = c3 = 1. Let (JC, v> (= C2 x C2) be a Sylow 2-subgroup of G and
a an element of G — (N:{x, y)) such that a71 e N. If G/(a3) is a group discussed in
the proof of Lemma 9, then one of the following holds:

a" = be, b" = ac, c" = ab (mod (a3)).

But this is impossible because if a" = be then the order of be would be 3"'~\ and the
other two cases are also impossible. If C/(a3) is a group given in Remark 2, we also
reach a contradiction by using the equalities given there.
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Assume now G/N = SL(2, 3). Let Q — (x, y) (= Q&) be a Sylow 2-subgroup
of G and a an element of G — (N:(x, v)) such that a3 e N. Then G is generated by
a,b,c and a. In view of the proof of Lemma 9, we may assume that the the following
holds:

ax = al+3i, ay = a1+3j, a" = ai+3k,

where 0 < i, j , k < 3m~3 - 1, 0 < a, 0, y, X,fi,v < 2. Because x4 = y4 = 1, the
first two equalities force i and j to be 0. This implies that Z(N Q) = (a), and so
a3 € (a).

We now show that a3 g (a3). By way of contradiction, we assume a3 € (a3). Then
(a, a) is a 3-group of order 3m~2 and exponent 3m~3, and so (a) has a complement
in {a, a). Thus we may assume that a3 — I. We now show that the inequality
t(G) < 3m~~2 holds, which contradicts our assumption. By Lemma 3, we have

J(k[G]) = J(k[(a}])Q+k[G] + J(k[T])k[G] + J(k[N])k[G],

where

r = {/,r,r2}, / = J C 2 - 1 , T=a(l+x+y-xy)f.

Now set G = G/(a3). Then G = C3 x Qd(3), and

J(k[G]) = J{k[{d)])Q+k[G] + J(k[f])k[G] + J(k[N])k[G].

Because

(/(*[(*>]) Q+k[G] + J(k[f])k[G])5 = 0 (Lemma 3),

we have

(J(k[(cr)])Q+k[G] + J(k[T])k[G])5 C J(k[{a3)])k[G),

and so

(J(k[(cr)])Q+k[G] + J(k[T])k[G])53m~4 = 0.

On the other hand, by a result of Loncour and Motose (see [3, page 119]) we have

(J(k[N])klG])3"^ = J(k[N])3""3+4k[G] = 0.

We therefore get

and t(G) < 3m~2 as desired.
Thus we have a3 g {a3). To complete the proof, it suffices to prove that the

inequality 3m~2 < t (G) < 3m~l holds in this case. We may assume that a3 — a, from
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which it follows that k = 0. Because x2 = y2, we have b*2 = by2 and c"2 = cv".
These equalities give the following congruences:

a + 2 A s 2 j 3 + 2/i, a + l s 2 ^ (mod 3).

Similarly, from the equalities xy = j r \ JCCT = x3.y, ;yCT = y the following congruences
follows:

2a + 2/3 + A. = 2A., a + A. + /x = a (mod 3),

a + 2 y + 2v = 2A. + /M, 2a + 2y + A. = a + 2/3 (mod 3),

/3 + 2v = a, 2y3 + 2y +/i , + 2v EE A. (mod 3).

These congruences with respect to (a, fi,y,\, fi, v) have the following solutions:

(i) ( 0 , 0 , 0 , 0 , 0 , 0 ) (ii) ( 1 , 2 , 0 , 0 , 0 , 1 , ) (iii) (2 ,1 ,0 ,0 ,0 ,2 )
(iv) ( 1 ,1 ,0 ,1 ,2 ,0 ) (v) (2 ,2 ,0 ,2 ,1 ,0 ) (vi) (2 ,0 ,0 ,1 ,2 ,1 )

(vii) ( 1 ,0 ,0 ,2 ,1 ,2 ) (viii) (0 ,2 ,0 ,1 ,2 ,2 ) (ix) (0 ,1 ,0 ,2 ,1 ,1 ) .

If (i) holds, then we have

(*)

If (ii) holds, then setting B = a?"' * b, C = ay" ' c, we have

a" = a, ay —a, a = a,
bx = c \ b> = be2, ba = b,
c" = b, cv = b2c2, c" = be.

Bx = C2, By = BC2, B° = B, C = B, Cy = B2C2, C = BC.

This shows that the group corresponding to the solution (ii) is isomorphic to the one
corresponding to the solution (i). One can also prove that the groups corresponding
to the solutions (iii)-(ix) are all isomorphic to the one corresponding to the solution
(i). Therefore, G is generated by N, x, v and a and the action of x, y and a on /V is
given by (*). Set

Z = J(k[(o)])Q+k[G].

Then Z c J(k[G]) (Lemma 3) and

Z2 = J(k[(a)])Q+k[N]J(k[{a)])Q+k[G]

= J(k[{o)]) • Q+k[N]Q+ • J(k[(a)])k[G}.

Since Q+k[N]Q+ is a it-space generated by the elements of the form Q+ £ s e ( ? «*
(M 6 N), we see that a acts trivially on Q+k[N]Q+. Hence

Z2 = J(k[((j)])2Q+k[N]Q+k[Gl
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and we have

Z' = J(k[{a)])' Q+k[N]Q+k[G]

for every/. We therefore see that the nilpotency index ofZ is 3"' ~2, and so t(G) > 3"'~2.
This together with Theorem 6, Theorem 8 and Theorem 9 implies 3"'~2 < t{G) < 3"'~]

as desired. •
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