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Plasma turbulence plays a critical role in the transport of energy from large-scale
magnetic fields and plasma flows to small scales, where the dissipated turbulent energy
ultimately leads to heating of the plasma species. A major goal of the broader heliophysics
community is to identify the physical mechanisms responsible for the dissipation of
the turbulence and to quantify the consequent rate of plasma heating. One of the
mechanisms proposed to damp turbulent fluctuations in weakly collisional space and
astrophysical plasmas is electron Landau damping. The velocity-space signature of
electron energization by Landau damping can be identified using the recently developed
field–particle correlation technique. Here, we perform a suite of gyrokinetic turbulence
simulations with ion plasma beta values βi = 0.01, 0.1, 1 and 10 and use the field–particle
correlation technique to characterize the features of the velocity-space signatures of
electron Landau damping in turbulent plasma conditions consistent with those observed
in the solar wind and planetary magnetospheres. We identify the key features of the
velocity-space signatures of electron Landau damping as a function of varying plasma
βi to provide a critical framework for interpreting the results of field–particle correlation
analysis of in situ spacecraft observations of plasma turbulence.

Keywords: plasma simulation, space plasma physics

1. Introduction

Plasma turbulence plays an important role in the transport of energy throughout the
heliosphere, governing the conversion of the energy of large-scale magnetic fields and
plasma flows into heat of the plasma species. Under the hot and diffuse conditions
typical of heliospheric plasmas, collisionless interactions between the electromagnetic
fields and the individual plasma particles govern the rate of damping of the turbulent
fluctuations and the resulting particle energization. Landau damping (Landau 1946) is one
of several collisionless mechanisms that may transfer electromagnetic energy to particle
energy in a weakly collisional plasma, and it has been proposed to be of considerable
importance in dissipating the turbulent energy in the solar wind (Leamon et al. 1998,
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1999; Quataert 1998; Howes et al. 2008a; Schekochihin et al. 2009; Howes 2011; Howes,
Tenbarge & Dorland 2011a; TenBarge & Howes 2013; Howes 2015; Li et al. 2016).
Recent analyses of observations in the Earth’s turbulent magnetosheath plasma from
the Magnetospheric Multiscale (MMS) mission (Burch et al. 2016) have provided the
first in situ evidence of electron Landau damping acting to dissipate turbulence in any
space plasma (Chen, Klein & Howes 2019; Afshari et al. 2021). Understanding how
energy is transferred to plasma particles in turbulent dissipation is a major goal in
heliophysics, needed to explain the long-standing problem of how the solar corona is
heated to temperatures above 1 × 106 K (Edlén 1943, 1945) in which turbulence is thought
to play a crucial role (Withbroe & Noyes 1977; Heyvaerts & Priest 1983; Parker 1988;
Klimchuk 2006; Cranmer 2009; Chandran 2010), or to predict the observed non-adiabatic
temperature profile of the expanding solar wind (Richardson & Smith 2003). A variety of
mechanisms are likely to be involved in the dissipation process; descriptions of these can
be found in a recent literature review (Verscharen, Klein & Maruca 2019).

In the solar wind, observations show that the incompressible (Alfvénic) component
dominates turbulent fluctuations within the inertial range (Bruno & Carbone 2005;
Alexandrova et al. 2008). As the turbulent cascade of Alfvénic fluctuations reaches the ion
kinetic length scales, finite Larmor radius effects lead to the development of a non-zero
component of the electric field parallel to the local mean magnetic field. Particles with a
parallel velocity near the parallel phase velocity of an Alfvén wave can resonantly interact
with the parallel electric field of the wave and thereby gain or lose energy. This results
in net energization of the particles if, in the region of the resonance, the initial slope
of the distribution function is negative (positive) for particles with v‖ > 0 (v‖ < 0). This
collisionless transfer of energy from the electric field to the particles is entropy conserving
and thus reversible. However, in practice arbitrarily weak Coulomb collisions acting on
small velocity scales in the particle distribution function serve to thermalize the energy,
realizing thermodynamic heating of that plasma species (Howes et al. 2006; Howes 2008;
Schekochihin et al. 2009). Landau damping is capable of energizing ions at perpendicular
scales near the ion Larmor radius, k⊥ρi ∼ 1, and electrons at smaller perpendicular scales,
k⊥ρi � 1 (Leamon et al. 1999; Quataert 1998; Howes et al. 2008a; Schekochihin et al.
2009; Howes 2011; Howes et al. 2011a; TenBarge & Howes 2013; Howes 2015; Kiyani,
Osman & Chapman 2015; Told et al. 2015; Li et al. 2016).

Recent analyses of burst-mode measurements from the MMS mission (Burch et al.
2016) using the field–particle correlation technique (Klein & Howes 2016; Howes,
Klein & Li 2017; Klein, Howes & Tenbarge 2017) have provided the first direct
observational evidence of electron Landau damping acting to damp turbulence in the
Earth’s magnetosheath plasma (Chen et al. 2019). Following this groundbreaking study,
a survey of the field–particle correlation signatures in 20 MMS intervals was conducted,
revealing evidence for electron Landau damping in 19 of the intervals. In one-third of
those intervals, the study indicated that this mechanism may be responsible for a dominant
fraction of the damping required to terminate the solar wind turbulent cascade (Afshari
et al. 2021).

Motivated by these results, we previously used a high-resolution, gyrokinetic simulation
to recreate the field–particle correlation signature of electron Landau damping in plasma
conditions matching the first MMS interval that yielded an in situ observation of electron
Landau damping (Chen et al. 2019). The study demonstrated that electron Landau damping
is observable in gyrokinetic turbulence simulations and confirmed the complex features
of Landau damping in the regime of dispersive kinetic Alfvén waves (KAWs) (Horvath,
Howes & McCubbin 2020). In particular, we showed how the bipolar signatures of Landau
damping of KAWs at different phase velocities may appear together in velocity-space to

https://doi.org/10.1017/S0022377823001046 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001046


Characterizing the signature of electron Landau damping 3

produce field–particle correlations with multiple bipolar signatures or with superimposed
signatures that create a single, broadened structure. Furthermore, we demonstrated that
the broadband frequency content in velocity-space fluctuations increases the difficulty of
observing signatures in broadband turbulence due to the inability to choose the correlation
interval τ such that it averages over an integer multiple of all of the wave modes
represented (Klein & Howes 2016; Howes et al. 2017; Klein et al. 2017; Horvath et al.
2020)

In this paper, it is our goal to follow up on our previous work by applying the
field–particle correlation technique to a suite of gyrokinetic simulations. Through this, we
will construct a framework for identifying the presence of electron Landau damping in situ
throughout the inner heliosphere. Though the fiducial field–particle correlation signature
of ion Landau damping is well understood (Klein & Howes 2016; Klein et al. 2017), our
first study showed that electron Landau damping produces more complicated signatures
due to the dispersive nature of KAWs at spatial scales smaller than the ion Larmor radius,
k⊥ρi � 1 (Horvath et al. 2020). Further, the range of wavenumbers and frequencies over
which KAWs are dispersive changes with the ion plasma beta βi = 8πniTi/B2 – the ratio of
the ion thermal to magnetic pressure – and with the ion-to-electron temperature ratio Ti/Te.
Both of these quantities change throughout the heliosphere. In order to understand how
the signature of electron Landau damping will appear at different locations in the inner
heliosphere, therefore, we create four high-resolution gyrokinetic simulations at different
ion plasma beta βi values and analyse these simulations with the field–particle correlation
technique, described in § 2.1. In addition, we create and analyse a set of single KAW
simulations to aid in interpreting the field–particle correlation signatures in turbulence.
Both of these simulation types are described in more detail in § 2.2. The insights gained
from the single-wave runs are discussed in § 3, and we present results from the turbulent
simulations in § 4, and discuss the implications for observing these signatures in situ in § 5.

2. Methods
2.1. The field–particle correlation technique

The field–particle correlation technique (Klein & Howes 2016; Howes et al. 2017; Klein
et al. 2017) uses single-point measurements of the velocity distribution function and
electromagnetic fields to measure the rate of change of the particle phase-space energy
density ws(x, v, t) = 1

2 msv
2fs(x, v, t) and to identify particle energization mechanisms in

weakly collisional plasmas. Energization mechanisms interact with particles in specific
regions of velocity-space, thereby creating characteristic patterns as net energy is
transferred between fields and particles. Correlating field and particle data together
generates these characteristic velocity-space signatures and, in doing so, makes possible
the identification of the physical mechanism at work and determines the net change in
phase-space energy density. The field–particle correlation technique has been successfully
applied to understand particle energization in a wide range of fundamental plasma physics
processes: (i) collisionless damping of electrostatic (Klein & Howes 2016; Howes et al.
2017) and electromagnetic (Howes 2017; Klein et al. 2017; Howes, McCubbin & Klein
2018) plasma waves; (ii) kinetic instabilities (Klein 2017); (iii) damping of electromagnetic
plasma turbulence through ion Landau damping (Klein et al. 2017; Howes et al. 2018;
Klein et al. 2020), ion transit-time damping (Arzamasskiy et al. 2019; Cerri, Arzamasskiy
& Kunz 2021), electron Landau damping (Chen et al. 2019; Horvath et al. 2020; Afshari
et al. 2021; Horvath, Howes & McCubbin 2022), ion cyclotron damping (Klein et al.
2020; Afshari et al. 2023), electron magnetic pumping (Montag & Howes 2022), ion
stochastic heating (Arzamasskiy et al. 2019; Cerri et al. 2021); (iv) electron energization
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in collisionless magnetic reconnection (McCubbin, Howes & TenBarge 2022); and (v)
ion and electron acceleration in collisionless shocks (Juno et al. 2021, 2023; Brown et al.
2023).

The field–particle correlation is derived by multiplying the Vlasov equation for species
s by msv

2/2 to obtain an equation for the rate of change of phase-space energy density
∂ws(x, v, t)/∂t. Time-averaging the electric field term in the resulting equation over a
correlation interval τ yields the form of the field–particle correlation. The contribution
from the component of the parallel electric field yields the net energy transfer from Landau
damping at a given spatial point r0, and is called the parallel field–particle correlation
(Howes et al. 2017; Klein et al. 2017),

CE‖(r0, v, t; τ) = 1
τ

∫ t+τ/2

t−τ/2
−qs

v2
‖

2
∂fs(r0, v, t′)

∂v‖
E‖(r0, t′) dt′. (2.1)

Taking a cylindrical coordinate system in velocity-space that is aligned with the direction
of the local mean magnetic field, (v‖, v⊥, θ), we can integrate the parallel correlation over
the gyrophase θ to obtain the parallel field–particle correlation in gyrotropic phase space,
CE‖(v‖, v⊥, t), with the correlation (time-averaging) interval τ centred at time t and taken
at a specified spatial location r0 (e.g. see contour plots in figure 7). Below we suppress
the r0 argument, with the implication that each field–particle correlation is computed
using data from a single spatial point. The resulting energy transfer between the parallel
electric field and the particles includes two contributions in the case of Landau damping:
(i) the conservative, oscillating energy transfer between the waves and the particles that
is associated with undamped waves; and (ii) the secular energy transfer from the parallel
electric field to the particles that is associated with collisionless damping via the Landau
resonance. In the case of plasma turbulence, the oscillatory energy transfer is often larger
in amplitude than the secular energy transfer. Applying a time average over a suitably
chosen correlation interval cancels out the large-amplitude oscillatory energy transfer
to reveal the smaller amplitude signature of the collisionless damping. For turbulence
simulations, one may choose a correlation interval τ that is longer than the period of waves
at the simulation domain scale (Klein & Howes 2016; Howes et al. 2017; Klein et al. 2017).
For spacecraft observations, in which there is a broadband frequency spectrum, including
wave periods much longer than the MMS burst-mode intervals used for the analysis, one
may employ a high-pass filter to the electric field to eliminate the large-amplitude, low
frequency contribution to undamped wave motion, isolating the wave periods at kinetic
scales where collisionless damping is expected to arise (Chen et al. 2019; Afshari et al.
2021).

The velocity-space signatures of the particle energization can be presented in a variety
of useful ways. To determine if the signature is coherent over time, CE‖(v‖, v⊥, t) may be
integrated over the perpendicular velocity v⊥ to obtain the reduced parallel correlation
CE‖(v‖, t). This rate of energization versus v‖ can be plotted as a line plot at a single time
t (e.g., figure 7, lower subpanels), or the v‖-dependence at each time can be stacked to
generate a timestack plot of CE‖(v‖, t) (e.g. see figure 8, central contour plots), revealing
the persistence of the energization mechanism over time. To determine the net effect of the
energization mechanism as a function of v‖, integrating the reduced parallel correlation
over time yields the time-integrated, reduced parallel correlation CE‖(v‖) (e.g., figure 8,
lower subpanels), providing the full time-averaged change in the phase-space energy
density ws as a function of v‖. Alternatively, one may instead integrate the reduced
parallel correlation over v‖ to obtain the total rate of change of spatial energy density at
position r0 due to the parallel electric field, (∂Ws/∂t)E‖ (e.g., figure 8, left-hand subpanels).
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Note that (∂Ws/∂t)E‖ = je,‖E‖ is simply the rate of electromagnetic work done by the
parallel electric field on the electrons.

2.2. AstroGK simulations
The astrophysical gyrokinetics code, AstoGK (Numata et al. 2010), was used to generate
a suite of four plasma turbulence simulations spanning expected conditions in the solar
wind of the inner heliosphere. These four simulations use a realistic mass ratio, mi/me =
1836, in order to properly separate the ion and electron scales within the turbulent
cascade, have a unity temperature ratio Ti/Te = 1 and sweep through four different plasma
beta values, βi = 0.01, 0.1, 1, 10. Each AstroGK simulation evolves the complementary,
perturbed gyrokinetic distribution function, gs(v‖, v⊥, t), where gs(v‖, v⊥) = hs(v‖, v⊥) −
(qsF0s/T0s)〈φ − v⊥ · A⊥〉Rs , hs is the gyrokinetic distribution function and 〈〉Rs denotes
a gyroaverage about a fixed gyrocentre coordinate Rs (Numata et al. 2010). We choose
gs(v‖, v⊥, t) at a fixed probe position r0 as the distribution function fs(r0, v, t) in our
computation of the parallel field–particle correlation by (2.1).

We choose the physical (x, y, z) and velocity (λ, ε) space resolution in each simulation
to be (nx, ny, nz, nλ, nε, ns) = (64, 64, 32, 128, 32, 2), where ns is the number of plasma
species and velocity-space is partitioned into a gyrotropic grid by pitch angle λ = v2

⊥/v2

and energy ε = v2. Velocity v is normalized to the thermal velocity, vts = √
2Ts/ms, for

each species. Each simulation domain is an elongated three-dimensional Eulerian slab
with dimensions L‖ × L2

⊥, given by L‖ = 2πa0 and L⊥ = πρi, where the ion thermal
Larmor radius is ρi = vti/Ωi, and the ion cyclotron frequency is given by Ωi = qiB0/mic.
The elongation of the simulation domain is characterized by the small gyrokinetic
expansion parameter, where ε ∼ ρi/a0 	 1 (Howes et al. 2006, 2008b, 2011b). For these
parameters, the fully resolved range of perpendicular scales is given by 2 ≤ k⊥ρi ≤ 42, or
0.05 � k⊥ρe � 1, capturing a broad range of dispersive KAW frequencies (see figure 2).
Note that, for each timeslice, the fields are output at each point on the high-resolution
spatial grid but the electron velocity distribution function is output only at 24 individual
‘probes’ spread throughout the simulation box. Sixteen are in the midplane (z = 0) and
the remaining eight along the z-axis (x = y = 0), as indicated in figure 2 of Horvath et al.
(2020).

An oscillating Langevin antenna (TenBarge et al. 2014) drives counter-propagating,
perpendicularly polarized Alfvén waves with (kxρi, kyρi, kza0) = (2, 0,±1) and (0, 2,±1)
to launch a turbulent cascade for each simulation. The driving frequencies ω0 and
decorrelation rates γ0 for each driven mode are listed in table 1, where ω̄ ≡ ω/k‖0vA
and k‖0 = 2π/L‖. The amplitude of the driving is chosen in accordance with critically
balanced KAW turbulence (Howes et al. 2008a, 2011a) in order to self-consistently
produce a strong turbulent cascade that begins at the driving scale of k⊥ρi = 2. The
turbulent cascade transfers energy to ever smaller length scales, ultimately reaching
k⊥ρi = 42 where the resolved electron collisionless damping is sufficiently strong to
terminate the cascade, enabling a turbulent steady state to be achieved. To prevent
a build-up of fine-scale structure in velocity space that is unresolved by our finite
grid, we set non-zero collisionalities for the ions and electrons. This allows the energy
that is transferred to the particles via collisionless Landau damping to thermalize.
These values may be changed somewhat during the course of a simulation to ensure
good conservation of energy. In table 1, we display the final values of the electron
and ion collisionalities in normalized units (ν̄e,f ≡ νe,f /k‖0vA; ν̄i,f ≡ νi,f /k‖0vA) for each
simulation. These values may be compared with the maximum damping rate (−γ̄max,
not listed) and the driving-scale wave frequency (ω̄0) to ensure that ν̄s is large enough
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βi Ti/Te mi/me −γ̄0/ω̄0 ω̄0 ω̄sd ω̄max T̄0 T̄min �t/T0 ν̄e,f ν̄i,f

0.01 1 1836 0.17 2.044 — 5.57 3.074 1.128 68.9 0.4 0.1
0.1 1 1836 0.063 2.082 2.845 14.9 3.018 0.422 13.6 0.6 0.3
1 1 1836 0.042 1.576 3.856 38.56 3.987 0.163 2.63 1.2 1.2
10 1 1836 0.19 0.6832 0.989 13.55 9.197 0.464 1.01 1.0 2.0

TABLE 1. Parameters of the four turbulent simulations.

FIGURE 1. Perpendicular magnetic energy spectra (EB⊥) of the four simulations, as a function
of k⊥ρi, time-averaged over a representative portion of the full simulations. The vertical dotted
lines mark the driving scale (k⊥ρi = 2) and the smallest fully resolved scale (k⊥ρi = 42). By-eye
power law fits are shown as references for each spectrum.

to dissipate fine-scale structure in velocity space but small enough such that the driving
scale remains collisionless.

We present the average spectra of the perpendicular magnetic field energy for the four
simulations in steady state in figure 1. The spectra have been separated in amplitude in
order to highlight the individual power law slopes, and by-eye fits (dashed black lines)
are presented alongside the data. At βi = 10 and βi = 1, the slope of the perpendicular
magnetic energy spectra agree well with dissipation-range spectra that have been observed
in βi � 1 plasmas near 1 AU, EB⊥ ∝ k−2.8

⊥ (Sahraoui et al. 2013). The simulation spectra
steepen as beta decreases, up to EB⊥ ∝ k−3.5

⊥ at βi = 0.01. Such low beta plasmas are
rarely observed near the Earth (Wilson et al. 2018), and dissipation-range simulations of
turbulence at this beta are uncommon, though one recent work studying the low-β limit
of plasma turbulence also finds steep magnetic energy spectra (Zhou, Liu & Loureiro
2023). Additionally, our steepest spectrum is within the range of early dissipation-range
observations (Leamon et al. 1998) and the trend we observe of the spectra steepening
as beta decreases is consistent with the electrons transferring more energy from the
turbulence within the dissipation range in the case of more significant damping (Told et al.
2015).

The linear phase velocity normalized to the electron thermal velocity, ω/k‖vte, and
the normalized damping rate −γ /ω for the KAWs over the parameter range of each of
these four simulations are computed using the linear Vlasov–Maxwell dispersion relation
solver PLUME (Klein & Howes 2015) and are presented in figure 2. The normalized
frequencies ω̄0 ≡ ω0/(k‖vA) of the domain scale KAWs with wavevector components
k⊥0ρi = 2πρi/L⊥ = 2 and k‖0a0 = 2πa0/L‖ = 1 are listed in table 1. Note that the
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(a) (b)

FIGURE 2. Linear Vlasov–Maxwell dispersion relation for plasmas with Ti/Te = 1,
mi/me = 1836, and βi = 0.01 (cyan), 0.1 (green), 1 (blue) and 10 (red). (a) Parallel phase
velocity normalized to the electron thermal velocity ω/k‖vte. (b) Normalized damping rate
−γ /ω, with the onset of strong damping (−γ /ω � 0.1) marked by a horizontal dashed line.

Alfvén wave and electron thermal velocity normalizations of the frequency are related
by ω/k‖vte = ω̄β

−1/2
i (Ti/Te)

1/2(me/mi)
1/2. Also, the normalized Alfvén wave frequencies

have departed from the magnetohydrodynamic (MHD) limit of ω̄ = 1, since we are
modelling KAWs with k⊥ρi > 1 (figure 2a). The maximum frequency KAW found in
each simulation can be determined from figure 2 (listed in table 1 as ω̄max), along with
the frequency corresponding to the onset of strong damping at −γ /ω ∼ 0.1 (figure 2b),
which is listed as ω̄sd in table 1 if this frequency is above that of the domain scale.

The postsaturation length of each of the four simulations, �t/T0, is listed in table 1 in
terms of time normalized to the period of the domain-scale KAWs, T0 = 2π/ω0. Note
that the time scale separation between the faster electron thermal velocity and the slower
Alfvén velocity, vte/vA = β

1/2
i (Te/Ti)

1/2(mi/me)
1/2, decreases for lower values of βi. Since

the maximum time step in AstroGK is determined by the electron thermal velocity, lower
βi simulations are substantially less computationally costly to run.

In addition to the nonlinear turbulence simulations described above, we also use
AstroGK to model a total of 20 individually driven, damped KAWs at a single value
of k⊥ρi. For each value of βi = 0.01, 0.1, 1, 10 we use the oscillating Langevin antenna
to separately drive linear modes at k⊥ρi = 2, 4, 8, 16, 32, where (kxρi, kyρi, kza0) =
(k⊥ρi, 0, 1) in each case. The parallel spatial grid and velocity-space resolutions for each
wave are (nz, nλ, nε, ns) = (32, 128, 32, 2), where the variables and normalization are the
same as described for the turbulence runs. Each driven, damped linear wave was evolved
for a minimum of 10 wave periods.

3. Velocity-space signatures of single KAWs

To develop a framework for interpreting the velocity-space signatures of electron
Landau damping in turbulence simulations, we first present the results of applying
field–particle correlation analysis to the suite of single KAWs described in § 2. The
analysis of single, damped waves eliminates the complications which arise from
overlapping bipolar signatures of Landau damping in broadband turbulence, as illustrated
in figure 1 of Horvath et al. (2020). Thus, we are able to more easily identify trends in
the behaviour of the field–particle correlation signatures of this mechanism as the ion
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(a) (b)

FIGURE 3. (a) Gyrotropic field–particle correlation signature CE‖(v‖, v⊥) at t/T0 = 6.75 and
(b) timestack plot CE‖(v‖, t) of a driven, damped wave simulation with βi = 0.1, k⊥ρi = 8 and
a correlation interval of τ/T0 = 1. In the time-integrated subpanel (below) in (b), the full-width
at half-maximum (FWHM) of the positive portion of the bipolar signature is indicated.

plasma βi is changed. Later, these clearly identified features will aid our interpretation of
signatures in the turbulence simulations, which we present in § 4.

Figure 3(a) shows a gyrotropic signature CE‖(v‖, v⊥, t) and figure 3(b) a timestack
plot CE‖(v‖, t) of the field–particle correlation for an individual KAW simulation with
βi = 0.1 and k⊥ρi = 8. In figure 3(a), the characteristic bipolar form of the field–particle
correlation signature of Landau damping (Klein & Howes 2016; Howes et al. 2017; Klein
et al. 2017; Chen et al. 2019; Horvath et al. 2020) is clearly visible in both the colourmap
plot and in the line plot of the time-integrated, reduced parallel correlation CE‖(v‖) shown
below. In this example, the correlation interval τ is equal to a full wave period (τ/T0 = 1)
and the gyrotropic correlation in figure 3(a) is shown centred at time t/T0 = 6.75. The
significant energy transfer shown in the bipolar velocity-space signature is localized in v‖
around the parallel phase velocity of the damped wave (vertical dashed line, vph,‖/vte =
ω/k‖vte = 0.51), with a loss of phase-space energy density (blue) at v‖ < vph,‖ and a gain
of of phase-space energy density (red) at v‖ > vph,‖. The dominance of the positive region
indicates a net transfer of energy from the parallel electric field to the resonant electrons.
As expected for Landau damping, the bipolar structure does not vary in the perpendicular
direction apart from an exponential decrease at high perpendicular velocities due to the
equilibrium velocity distribution. Therefore, we may integrate over all of v⊥ to yield the
total change in ws as a function of v‖ at the spatial point being considered (lower subpanel).
This lower subpanel is then calculated for all times and combined to create figure 3(b) a
timestack plot of the correlation CE‖(v‖, t). The subpanel beneath the timestack plot is the
time-integrated, reduced parallel correlation CE‖,e(v‖). The left-hand subpanel (to the left
of the timestack) is the rate of change of the electron spatial energy density due to the
parallel electric field, (∂We/∂t)E‖ , which is calculated by integrating the correlation over
v‖ and is equal to je,‖E‖.

3.1. Velocity-space signature location and wave phase velocity
A key feature of a bipolar signature of Landau damping is its concentration in
velocity-space about the parallel phase velocity of the damped wave (Klein & Howes
2016). The form of the signature is consistent with flattening of the distribution function
around the resonant velocity, as predicted by quasilinear theory of Landau damping, and
indicates that a resonant mechanism is producing the energization (Howes et al. 2017).
Through the sweep of βi and k⊥ρi parameter space provided by our 20 single-wave
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(a) (b)

FIGURE 4. (a) Velocity-space signature location v‖/vte versus parallel wave phase velocity
vph,‖/vte for the linear runs. (b) The FWHM value of the bipolar signatures versus the damping
rate −γ /ω of the wave. Plasma βi and k⊥ρi are differentiated using marker styles and colour,
respectively.

simulations, we show here quantitatively that the location of the zero crossing in the
bipolar signature of Landau damping (the velocity v‖/vte where CE‖(v‖) = 0) is indeed
very well correlated with the parallel phase velocity of the damped wave. These two
quantities are plotted against each other in figure 4(a), and the results lie almost entirely
on the line of v‖ = vph. The linear Vlasov–Maxwell dispersion relation (Stix 1992; Klein
& Howes 2015) was used to find vph for each wavemode, and the zeros are found from
gyrotropic plots with correlation interval τ/T0 = 1. Note that the exception to the close
agreement between v‖ and vph,‖ occurs for the signatures with βi = 10 (circles). This error
likely arises due to a combination of the small KAW phase velocity at high βi and the
finite v‖-resolution �v‖/vte = 0.133 of the simulations. The slight deviation of the other
signatures from the v‖ = vph line appears to fall within the error due to finite v‖-resolution.

3.2. Velocity-space signature width and wave damping rate
The second observation we are able to make using the single-wave simulations is that
the width of the field–particle correlation signatures changes with both βi and k⊥ρi. The
width tends to vary directly with k⊥ρi (for instance, see the five single-wave signatures
for βi = 1 shown in Appendix A) and indirectly with βi. Similarly, the damping rate of
the KAWs increases with k⊥ρi and decreases with βi, suggesting a possible relationship.
Note that this connection with k⊥ρi is true specifically for dispersive KAWs, where
vph generally increases monotonically with k⊥ρi. Indeed, when the signature width –
quantified by the FWHM of the positive portion of the bipolar structure (e.g. see the lower
subpanel of figure 3) – is plotted against the corresponding normalized damping rate of
the KAW in the simulation, −γ /ω, a logarithmic dependence emerges, roughly described
by FWHM ∝ 1

6 ln(−γ /ω). This relationship is shown in figure 4(b). Though logarithmic
dependencies are weak, broadening of the signatures due to increased damping rates has
plausible theoretical support. Specifically, it may be analogous to the frequency-space
broadening of the Fourier transform of a damped sine wave. A pure sine wave yields a
Dirac delta function in frequency space under a Fourier transform, while a damped wave
yields a peak of finite width due to its decrease in amplitude over time.
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(a) (b)

FIGURE 5. Diagram of the effect of v2
‖-weighting on bipolar signatures of Landau damping.

3.3. The effect of weighting by v2
‖ in the parallel field–particle correlation

Another feature that becomes clear through the suite of single-wave signatures is the effect
of v2

‖ in the definition of the field–particle correlation, (2.1). Since particle velocities
are normalized by the species thermal velocity, this factor enhances the velocity-space
signature for v‖/vte > 1 and suppresses the signature for v‖/vte < 1.1 This behaviour is
due to the mathematical form of the field–particle correlation, which arises from the
derivation of the rate of change of phase-space energy density. Therefore, the enhancement
or suppression of the energy transfer rate due to v2

‖ is a physical effect that can hinder
the ability to recognize bipolar velocity-space signatures. Specifically, for damped waves
that are resonant with particles at low parallel velocities with v‖/vte < 1, the preferential
suppression of signal at small v‖ can mask the characteristic bipolar structure that identifies
the energization as being due to Landau damping. Figure 5 presents two sketches of this
effect, showing the separate magnitudes of the weighting by v2

‖/2 (cyan dashed) and the
remaining parallel electric field correlation qsE‖∂f /∂v‖ (blue dot–dashed) along with their
product (red solid). The relative magnitudes of the negative and positive regions of the
bipolar signature of CE‖ when (i) vph/vte > 1 is contrasted with the relative magnitudes
when (ii) vph/vte < 1. For the Landau damping of ions, the wave resonance is typically
vph,‖/vti  1, as in figure 5(a), where the bipolar structure of the signature of Landau
damping is easily observed. For electron Landau damping, however, the resonances
are typically less than the electron thermal velocity vph,‖/vte < 1, and asymptotically
reach vph/vte → 1 at the smallest spatial scales (k⊥ρe → 1), as seen in figure 2(a).
Additionally, as βi increases, the parallel phase velocity ω/k‖vte across all dissipation range
scales becomes an even smaller fraction of vte. Therefore, for electron Landau damping
signatures in high βi plasmas, the resonant velocities are often deep in the centre of the
electron distribution function, so the negative portion of the signature can be significantly
suppressed and become nearly unobservable, as in figure 5(b). For our 20 single-wave
simulations binned in parallel velocity to a resolution of �v‖ = 0.133 vte, the v2

‖-weighting
made the negative portion of the bipolar signatures difficult or impossible to observe for
resonant waves with vph ≤ 0.3 vte: the case for 11 out of the 20 signatures.2

1Note that the inflection point of vte = 1 is peculiar to our normalization choice. However, a similar effect would be
observed for any choice of normalization.

2When the factor of v2
‖ is removed from the correlation in such cases, the bipolar structure becomes clear.
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(a) (b)

FIGURE 6. Timestack field–particle correlation of driven, damped KAWs at k⊥ρi = 8 with
(a) βi = 1 and (b) β = 10 and τ/T0 = 1 for both. The bipolar signature of Landau damping
appears in (a) along with an antisymmetric, non-resonant feature. In (b), the non-resonant feature
is dominant.

3.4. Non-resonant feature
Finally, we use the single-wave simulations to address a prominent, non-resonant feature
that begins to appear in the field–particle correlations for βi � 1. Specifically, we
see a large-amplitude feature across all parallel velocities that is antisymmetric about
v‖ = 0. Figure 6 shows the non-resonant feature for two individual wave simulations
at perpendicular wavenumber k⊥ρi = 8 and βi = 1 (see figure 6a) and betai = 10 (see
figure 6b). At βi = 1, the non-resonant feature is visible but subdominant to the resonant,
bipolar signature which is centred around v‖/vte = 0.133. At βi = 10, however, the
amplitude of the non-resonant feature has completely eclipsed the amplitude of the
resonant feature, which is centred close to zero at v‖/vte = 0.018.

Our explanation of the source of this non-resonant feature are electron density
oscillations, δne, that arise naturally in the turbulent plasma at βi � 1. A local spatial
density perturbation has a Maxwellian δf , which is even in v and therefore contributes an
odd variation in v‖ to the correlation due to the velocity derivative of the distribution
function in (2.1). The effect of a density perturbation on the parallel field–particle
correlation is illustrated in a diagram shown in figure 5(b) of McCubbin et al. (2022).
The code, AstroGK, evolves the perturbed electron distribution function (Numata et al.
2010), which in our KAW simulations contains disturbances due to resonant field–particle
interactions and due to non-resonant density oscillations. A density perturbation may
appear in the field–particle correlation at high βi due to a combination of two factors.
First, as βi increases, the relative magnitude of the compressive density perturbation to the
resonant perturbations grows as the KAWs become more compressible (TenBarge et al.
2012; Matteini et al. 2020) and as the phase velocity of the damped KAW decreases
and moves deeper into the core of the electron distribution function. Second, in order
for the compressive signature to appear in the field–particle correlation, it must have
an appropriate phase-offset from the parallel electric field fluctuation. At low βi, E‖
and (∂fe/∂v‖)δne are approximately out of phase, φ  π/2; as βi increases, the phase
offset shifts and the product of E‖ and (∂fe/∂v‖)δne contributes more significantly to
the field–particle correlation. Appendix B discusses the density perturbation and how it
appears in the field–particle correlation in greater detail. In § 5.5.1, we present a technique
for removing this feature from the data.

4. Turbulence analysis

Next, we present the results of the field–particle correlation analysis of the four full
turbulence simulations. The features of the bipolar signatures of electron Landau damping
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 7. Gyrotropic parallel field–particle correlations CE‖,e(v‖, v⊥) from different probes in
the (a,b) βi = 0.01 (τ/T0  17.2, τ/Tmin  47.0), (c,d) βi = 0.1 (τ/T0  2.47, τ/Tmin  17.7)
and (e, f ) βi = 1 (τ/T0  2.43, τ/Tmin  35.0) simulations. The features of the velocity-space
signatures are described in the text.

that were isolated in the suite of damped individual waves – including variations in
signature width, suppression of the negative portion of the bipolar signatures at low
resonant velocity, and the presence of a non-resonant feature arising in βi = 1 and 10 – are
also present. To illustrate some of the commonly observed features, we present examples
of the gyrotropic parallel field–particle correlation CE‖(v‖, v⊥, t) in figure 7 and of the
timestack plot of CE‖(v‖, t) in figure 8.

4.1. Gyrotropic field–particle correlations
Figure 7 shows six example gyrotropic field–particle correlations, two from each of the
turbulence simulations at βi = 0.01, 0.1 and 1. We exclude βi = 10, since signatures
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(a) (b)

(c) (d )

FIGURE 8. Timestacks of the reduced field–particle correlations CE‖,e(v‖) from the simulations
with plasma (a) βi = 0.01 (τ/T0  17.2, τ/Tmin  47.0), (b) 0.1 (τ/T0  4.94, τ/Tmin  35.3),
(c) 1 (τ/T0  1.43, τ/Tmin  35.0) and (d) 10 (τ/T0  0.06, τ/Tmin  1.21). The correlations
in panels (a) and (b) are calculated from the same probe points as those in figures 7(b) and 7(c),
respectively.

are not easily observed in this case, given that the v‖-resolution of our simulations
is binned at �v‖/vte = 0.133 while the largest fully resolved wave mode in the
βi = 10 simulation has a phase velocity around vph/vte ∼ 0.1. Though the positive
portion of the damping signature can be seen in some cases, the negative portion is
unresolved (and would be strongly suppressed due to the factor of v2

‖). Further, the large
relative magnitude of the non-resonant feature dominates the field–particle correlations
at βi = 10.

Each example plot in figure 7 shows a contour map of CE‖,e(v‖, v⊥), the gyrotropic
correlation, that has been averaged over a correlation interval of length τ , included in the
caption in terms of both the largest (T0) and smallest (Tmin) KAW periods resolved within
each simulation, and centred at some time t/T0 (displayed in the upper left-hand corner).
The range of phase velocities at which we expect to see signatures of Landau damping are
marked with vertical dotted lines. The inner vertical lines correspond to the magnitude of
the phase velocity of the lowest frequency waves in this range: having a period of either
T0 (the driving-scale wave) or Tmax (the wave at the onset of strong damping) for βi ≥
0.1. This minimum damped frequency occurs when the damping rate reaches a threshold
of −γ /ω = 0.1, which we take to be the onset of strong damping. Figure 2(b) shows
that for βi = 0.1 and 1, this wave is above the driving-scale wave of k⊥ρi = 2. For βi =
10, the initial peak above −γ /ω = 0.1 is due to ion Landau damping; therefore, we take
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the onset of strong electron damping to be around k⊥ρi ∼ 3. The vertical dotted lines
at higher velocities correspond to the highest frequency wave that we expect to undergo
Landau damping (with period Tmin), found simply by the taking the peak of the curve in
figure 2(a). The phase velocities of these two limiting cases are marked for both upward
(v‖/vte > 0) and downward (v‖/vte < 0) wave propagation. Each line plot in the lower
subpanels of figure 7 displays the reduced correlation integrated over all v⊥, CE‖,e(v‖).

Figures 7(a) and 7(b) show gyrotropic correlations from the βi = 0.01 turbulent
simulation. Figures 7(a) is from a probe in the z = 0 plane of the simulation box,
calculated using a correlation interval of length τ  17.2 T0 (τ  47.0Tmin) and shown
centred at time t/T0 = 43.52. This example contains a pair of bipolar signatures: one
at positive and the other at negative parallel velocity, indicating damping of KAWs
propagating in both directions relative to the background magnetic field. As shown in
figure 4(a), the location of the zero crossing in the integrated correlation CE‖(v‖) in the
lower subpanels of figure 8 corresponds to the phase velocity of the damped wave. Thus,
the upward-propagating damped wave has a lower phase velocity than the downward
propagating damped wave. However, the signature at v‖/vte > 0 is significantly wider
than the one at v‖/vte < 0. This seems to contradict the conclusion of figure 4(b), which
predicts a direct relationship between phase velocity and signature width for constant
βi. However, the v‖/vte > 0 signature has a subtle, divided positive peak. This may
indicate that the signature is a superposition of the damping signatures of two waves
closely spaced in parallel phase velocity such that their individual bipolar signatures
cannot be resolved. Instead, the two signatures merge into a single, broadened peak
(Horvath et al. 2020). This interpretation is supported by gyrotropic plots centred at
earlier times and by the timestack plot of the correlation at this probe point. The plot
in figure 7(b) is an example of an imbalanced signature, which occurs when damping
is present for only upward or downward propagating waves at a given time. In this
case, an upward-propagating wave produces a bipolar signature but no clear resonant
damping signature is visible for v‖/vte < 0. This correlation is averaged over the same
interval τ , but is taken at a probe point along the z-axis (z �= 0) and is centred at an
earlier time.

Figures 7(c) and 7(d) contain correlations from the βi = 0.1 simulation, taken from two
different probe points along the z-axis (z �= 0). Each is averaged over a correlation interval
of τ = 2.47 T0 (17.7 Tmin) and is centred at t/T0 = 10.49. Note that the velocity range
marked by the pairs of vertical dotted lines has shifted towards smaller v‖, reflecting the
shift towards smaller parallel phase velocities in the dispersion relation as βi increases, as
shown in figure 2(a). In figure 7(c), the example correlation shows signatures of damped
KAWs propagating in both directions along the background magnetic field. For v‖/vte > 0,
there is evidence of two bipolar signatures, spaced far enough apart to be resolved in v‖
space. The higher-frequency signature is centred around the upper vertical dotted line,
indicating that the damped wave is at the maximum phase velocity that we expect in this
simulation. This signature is also wider than the signature at smaller v‖, consistent with our
theoretical expectations illustrated in figure 4(b). Note also that the lower resonant-velocity
has a significantly suppressed negative portion of its bipolar signature that is difficult to
observe at this colour scale, consistent with the effect of v2

‖ weighting as illustrated in
figure 5. For v‖/vte < 0, one signature is visible just below the dotted line marking the
magnitude of the most highly damped phase-velocity. The relative width of this signature
is between that of the two upward-propagating wave signatures, as expected. Figure 7(d)
shows an example of another imbalanced signature with a clear velocity-space signature
of electron Landau damping for only downward-propagating waves. In this case, there are
two bipolar structures: one centred at v‖/vte  −1 and another at v‖/vte  −0.25. Again,
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the low-velocity signature is strongly affected by the v2
‖ weighting; however, this fainter

signature is persistent throughout the whole simulation. The structures in the positive
velocity region of the plot do not show a clear bipolar signature indicative of electron
Landau damping of upward propagating KAWs, but rather may simply be the remnants
of oscillatory fluctuations that are poorly cancelled out by the average over our chosen
correlation interval τ .3

Figures 7(e) and 7( f ) show gyrotropic correlations from the βi = 1 simulation, from
two different probe points in the midplane (z = 0). These correlations are averaged over
an interval τ = 1.43 T0 (τ = 35.0 Tmin). As before, the vertical dotted lines mark out
a range of resonant parallel phase velocities that are yet nearer to v‖ = 0. The largest
expected velocity is now at v‖/vte < 1, meaning that the v2

‖-weighting will act to suppress
all of the signatures relative to any incomplete cancellation that appears at v‖/vte > 1.
These examples show how the non-resonant feature begins to dominate the correlations
at βi � 1, and this feature is particularly prominent in figure 7(e). Despite this, a faint
bipolar signature of an upward-propagating wave can still be seen in the colour map of
this example at the shown scale, though it has become indistinguishable in the reduced
correlation due to the overwhelming magnitude of the non-resonant feature. As discussed
for the damped individual waves, this feature arises due to the increased compressibility
of KAWs at βi � 1, and due to the changing phase offset φ �= π/2 between E‖ and
the compressive density fluctuation in ∂f /∂v‖. In many cases, this non-resonant feature
hinders the observation of bipolar signatures at βi � 1, though at times it can be removed
so that the signatures may be observed via a folding technique discussed in § 5.5.1. At
the time of the correlation in figure 7( f ), the non-resonant feature is smaller in amplitude
relative to the resonant signatures, and a bipolar structure is visible (with a somewhat
attenuated negative portion) at v‖/vte  0.3.

In summary, this section presents one of the key results of this paper, the gyrotropic
velocity-space signature of electron Landau damping CE‖(v‖, v⊥), as exemplified for
βi = 0.01 in figure 7(a) at v‖/vte  −1.2 and figure 7(b) at v‖/vte  +0.75, for βi = 0.1
in figure 7(c) at v‖/vte  −0.8 and +1.1 and figure 7(d) at v‖/vte  −1.0, and for
βi = 1 in figure 7( f ) at v‖/vte  +0.4. These qualitative and quantitative features of
the velocity-space signatures as a function of the ion plasma βi provide an essential
framework for identifying electron Landau damping in both kinetic turbulence simulations
and spacecraft observations.

4.2. Timestack plots of the field–particle correlation
To observe how the gyrotropic velocity-space signatures of electron energization in
figure 7 evolve over time, we take advantage of the fact that these gyrotropic signatures
do not strongly depend on v⊥ (other than the exponential decrease with increasing v⊥, a
consequence of the underlying Maxwellian equilibrium velocity distribution) to integrate
over v⊥ and generate a timestack plot of reduced parallel correlation CE‖(v‖, t). These
timestack plots are invaluable for determining the persistence of a signature over time and
for establishing an overall view of the net energy transfer at a given location. In figure 8, we
present one timestack plot from a single probe in each of the four simulations at (figure 8a)
βi = 0.01, (figure 8b) 0.1, (figure 8c) 1 and (figure 8d) 10. In each, we integrate over the

3Note that it is impossible to completely cancel out oscillatory signal from field–particle correlations in the case
of broadband turbulence, since only oscillations from constant amplitude waves with periods of τ (or integer multiples
of τ ) will exactly cancel. Furthermore, turbulence is intermittent in space and time, meaning that the magnitude of the
remnant, oscillatory signal that does not cancel out over the correlation interval in broadband turbulence is expected – and
generally observed – to be a highly variable value. This imperfect cancellation leads to an effective amplitude threshold
for the identification of electron Landau damping.
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full duration of the simulation to obtain the time-integrated, reduced parallel correlation
CE‖(v‖) at the probe position (figure 8c and figure 8d); we also integrate over v‖ to obtain
the rate of change of the spatial energy density (∂Ws/∂t)E‖ = je,‖E‖ due to the parallel
electric field.

In figure 8(a), we show the timestack from the βi = 0.01 simulation at the same probe
point as the gyrotropic correlation in figure 7(b) and averaged over the same correlation
interval τ/T0  17.2, τ/Tmin  47.0. Note that the v‖/vte > 0 signature observed at t/T0 =
26.18 in the gyrotropic plot was present at the beginning of the averaging interval and
persisted for over 30 domain-scale wave periods. Other signatures (of both upward and
downward propagating waves) appear later in the simulation. The proximity of these
signatures in velocity-space can make it difficult to distinguish their bipolar form due to
overlap with signatures at other parallel phase velocities in addition to the v2

‖ suppression
of the bipolar form. The timestack from the βi = 0.1 simulation in figure 8(b) is taken
from the same probe point as the gyrotropic plot in figure 7(c) but averaged over a longer
correlation interval, τ/T0  4.94, τ/Tmin  35.3. At t/T0 = 10.49 – the central time of the
correlation interval for the gyrotropic plot – the three signatures seen in the gyrotropic plot
are clearly visible. The timestack shows that each of these signatures are present through
the whole simulation, but two of the three shift somewhat in velocity, leading to the overlap
of signatures at slightly different resonant parallel velocities when integrated over the full
simulation (lower subpanel).

In figure 8(c), we plot a timestack from the βi = 1 simulation, taken at a midplane
(z = 0) probe that is not represented in figure 7, but averaged over the same correlation
interval τ/T0  1.43, τ/Tmin  35.0. At this value of βi, the broad non-resonant feature
has become prominent in the correlation, though the lower amplitude resonant signatures
can still be seen at small parallel velocities. For instance, at v‖/vte  −0.2 a signature is
visible in the range 1.2 < t/T0 < 2, which creates an obvious positive region in the lower,
time-integrated subpanel. Note that the negative portion of this bipolar signature is not
visible in the timestack at this colour scale and does not appear in the time-integrated
correlation. At many probe points, such evidence of a damping signature at lower parallel
velocities than the non-resonant feature is much more difficult to observe. When βi is
increased further, these difficulties are exacerbated, as illustrated in figure 8(d) for the
βi = 10 simulation. This correlation is taken from a midplane probe, and averaged over
a mere τ/T0  0.06, or τ/Tmin  1.21. The correlation interval is a very small fraction
of the driving scale wave period T0, so we would not expect to see bipolar signatures in
the timestack due to these waves. The full interval of this simulation is long enough to
give τ/T0  1.01 (shown in the lower subpanel), so in order to display a timestack at this
plasma beta we have chosen a low value of τ/T0 for the contour plot. As in the case of
βi = 1, at some probe points in the βi = 10 simulation evidence of energization due to
Landau damping can be found by observing positive bumps near the range of expected
resonant velocities in the time-integrated correlation. However, the increased amplitude of
the non-resonant feature with respect to the resonant damping signatures, coupled with the
finite resolution of our parallel velocity grid, make damping signatures nearly impossible
to observe clearly in correlations for βi = 10. It is worthwhile noting here that, at higher
ion plasma beta values βi � 1, ion Landau and transit-time damping are expected to play
a significant role in the dissipation of turbulent energy at scales k⊥ρi ∼ 1 (Klein et al.
2017), so electron Landau damping of turbulent energy that reaches the KAW cascade
at k⊥ρi � 1 is expected to be less significant in the overall dissipation of the turbulent
cascade.
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5. Discussion: features of the velocity-space signatures of electron landau damping
as a function of plasma βi

In the previous sections, we have demonstrated general qualitative and quantitative
features that are present in the velocity-space signatures of electron Landau damping as
a function of the ion plasma βi for linear KAWs. These indicate the general trends that
should be visible in the velocity-space signatures generated by turbulence dissipation
measured at different locations throughout the inner heliosphere. Next, we presented
example velocity-space signatures from our suite of four kinetic plasma turbulence
simulations to illustrate how these general trends appear in the context of broadband
turbulent energy dissipation via the mechanism of electron Landau damping. Here, we
recap these features and discuss implications for making in situ observations of electron
Landau damping.

5.1. Imbalanced velocity-space signatures
Since the earliest studies of turbulence in MHD plasmas, it was recognized that
the turbulent cascade is mediated by nonlinear interactions between Alfvén wave
packets propagating up and down the magnetic field (Iroshnikov 1963; Kraichnan 1965;
Sridhar & Goldreich 1994; Goldreich & Sridhar 1995). These ‘collisions’ between
counterpropagating Alfvén wave packets have been invoked as the fundamental building
block of astrophysical plasma turbulence, with theoretical (Howes & Nielson 2013),
numerical (Nielson, Howes & Dorland 2013) and experimental (Howes et al. 2012, 2013;
Drake et al. 2013) confirmation of the underlying physics. Further work has illustrated
the role of the Alfvén wave collisions in the self-consistent development of current sheets
in kinetic plasma turbulence (Howes 2016; Verniero, Howes & Klein 2018; Verniero &
Howes 2018) and the role of Landau damping in the dissipation of those current sheets
(Howes et al. 2018). When the turbulent fluctuations have more Alfvénic energy flux
propagating in one direction along the local magnetic field than the other direction –
known as imbalanced turbulence (Lithwick & Goldreich 2003; Lithwick, Goldreich &
Sridhar 2007; Beresnyak & Lazarian 2008; Chandran 2008; Markovskii & Vasquez 2013),
or turbulence with non-zero cross-helicity – it is predicted to alter the dynamics of the
turbulent cascade (Meyrand et al. 2021; Squire et al. 2022), and therefore will likely also
impact the dominant mechanisms of its dissipation.

Even if the turbulence is balanced on longer time scales, during short periods of time
local regions of imbalanced turbulence may develop. Averaged over space and time, such
imbalanced regions are not thought to affect the overall energy spectra of the turbulent
cascade (Perez & Boldyrev 2009). Further, in this work we find that one may measure
a local dominance of wave damping in one direction or another even if the turbulence
remains relatively balanced locally. The field–particle correlation analysis of our suite
of turbulence simulations frequently finds asymmetric signatures of electron Landau
damping, e.g. figure 7(b). An inspection of the timestack plots in figure 8 clearly shows
that the damping of the turbulent fluctuations varies significantly in time over the evolution
of the simulations, with upward- or downward-propagating fluctuations dominating the
energy transfer to the electrons over intervals of time from a few to tens of characteristic
wave periods. This is consistent with the results of our previous simulations (Horvath et al.
2020) and with in situ observations in the magnetosheath (Afshari et al. 2021). Using
MMS data, Afshari et al. (2021) connected the imbalance in the wave damping with the
dominant direction of the Poynting flux in the data interval. In our suite of simulations
presented here, however, we find that the overall flux of electromagnetic energy remains
roughly balanced at all times. This is not surprising since the turbulence is driven by
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approximately equal amplitude, oppositely directed Alfvén waves. Nonetheless, on shorter
time scales and at individual probe positions in the simulations, local imbalances of
damping arise that lead to the asymmetric signatures that are frequently observed in these
simulations and in MMS observations (Afshari et al. 2021).

5.2. Temporal intermittency and the overlap of velocity-space signatures
As was found in previous field–particle correlation studies of electron Landau damping
in simulations (Horvath et al. 2020, 2022), we find that electron damping signatures in
broadband, dispersive KAW turbulence contain more structure than the simple bipolar
signature of a single, damped wave. This was illustrated in figure 7(c), where the
time-integrated signature at v‖ > 0 is composed of at least two overlapping bipolar
signatures, creating a broadened, double-peaked structure. In the timestack plot of
figure 8(b), closely spaced signatures overlap in the time-average to create the appearance
of a single signature that ‘shifts’ in v‖. Note that, if the resonant velocities were spaced
more closely and were unresolved along v‖, this would result in a smoothly broadened
signature. The superposition of multiple bipolar signatures creating a complicated final
signature was most commonly observed in our lowest beta simulation (βi = 0.01), which
has the largest range of expected resonant parallel phase velocities. Additionally, AstroGK
evolves low-beta plasmas significantly faster than high-beta plasmas, resulting in a longer
time interval over which temporally intermittent wave damping can be observed (see
the simulation lengths, �t/T0, in table 1). If we continued running the higher beta
simulations to create longer time intervals, we would expect to see the effects of signature
superposition ubiquitously (with the exception of the βi = 10 simulation, in which the v‖
resolution is insufficient to resolve multiple signatures in the region of expected damping).
In observations, obtaining long time intervals – in terms of the underlying KAW periods
– is not a problem. On the other hand, finite instrumental resolution in parallel velocity
(Verniero et al. 2021a,b) is a significant limitation that must be taken into account when
interpreting the velocity-space signatures from the field–particle correlation analysis of
spacecraft observations.

5.3. Velocity-space resolution and weighting by v2
‖

The effects of v2
‖ weighting on the velocity-space signatures are visible in the various

examples from the turbulence simulations in figures 7 and 8. In particular, we have shown
that this weighting may obscure the negative portion of a bipolar signature of electron
Landau damping when the parallel resonant phase velocity falls at a sufficiently small
value of v‖/vte. From our individual wave simulations in § 3, we found that our binned
parallel velocity resolution of �v‖/vte = 0.133, coupled with the v2

‖ weighting, resulted in
difficulty observing the full bipolar structure of the velocity-space signatures of electron
Landau damping at parallel velocities v‖/vte ≤ 0.3. The entire dispersive range of parallel
phase velocities is above this threshold for the βi = 0.01 simulations, but as βi is increased,
more and more of the dispersive range of phase velocities falls below this threshold. For in
situ signatures, clear bipolar signatures may therefore be more easily observed for a given
finite resolution in parallel velocity closer to the Sun, where βi may be smaller due to
increased local magnetic energy density relative to the plasma thermal energy density.
For plasma conditions and velocity resolutions where v2

‖ does result in obscuring the
negative portion of the characteristic bipolar structure, electron Landau damping may still
be identified through the timestack correlations. If energization is persistent and localized
at a given parallel velocity in a regime where the negative portion is not observed, this
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still indicates the action of a resonant energization mechanism that may be identified as
electron Landau damping.

5.4. Variations in velocity-space signature width
As discussed above, in both individual KAW and turbulence simulations, we observe
that the velocity-space signature of electron Landau damping varies in width as the
perpendicular wavenumber and plasma parameters change. We explain this relationship
by showing that the increased width (quantified by the FWHM value of the positive
portion of the bipolar signature) is associated with an increased normalized damping rate
of KAWs, as shown in figure 4(b). Our simulations indicate that we should expect to
observe widths of the velocity-space signatures of electron Landau damping that depend
on the local plasma βi and the perpendicular scale k⊥ρi of the wave being damped,
which is generally a monotonically increasing function of the parallel phase velocity, as
shown in dispersion relation plotted in figure 2(a). As observed in the gyrotropic plot of
figure 7(a) at v‖/vte > 0, if an unexpectedly wide velocity-space signature is observed, it
may indicate the damping of multiple dispersive KAW packets with different characteristic
perpendicular wavenumbers k⊥ρi (and therefore multiple resonant parallel phase velocities
ω/k‖vte). In this case, the overlap of multiple bipolar signatures is expected to lead to a
broadened velocity-space signature, as illustrated in figure 1 of Horvath et al. (2020).

5.5. Non-resonant feature
Finally, here we show that, as the plasma parameters are varied, a non-resonant feature
may arise in the field–particle correlation that obscures the signatures of secular particle
energization in velocity-space. Our results show, for a constant ion-to-electron temperature
ratio, that a non-resonant feature due to electron density oscillations becomes problematic
for βi ≥ 1. This feature is antisymmetric in v‖, so it cancels out when the correlation
is integrated over parallel velocity, yielding zero net change to the total electron spatial
energy density We(r, t). However, it is the velocity-space signatures of the rate of change
of the phase-space energy density we(r, v, t) that are used to distinguish the mechanisms of
energy transfer using the field–particle correlation technique. Therefore, this non-resonant
feature may hinder the identification of energization mechanisms in high-βi, KAW
turbulence which has non-negligible levels of compressibility and in which the phase
offset between E‖ and the compressive fluctuation of ∂fe/∂v‖ has shifted away from
φ  π/2.

5.5.1. Eliminating the non-resonant feature by ‘folding’ parallel velocity-space
At the expense of losing the distinction between signatures of upward (v‖ > 0)

and downward (v‖ < 0) propagating waves, the non-resonant feature can be removed
by taking advantage of its antisymmetric nature. ‘Folding’ the reduced parallel
correlation across v‖ = 0, obtaining CE‖(|v‖|, t) = CE‖(v‖ > 0, t) + CE‖(v‖ < 0, t), causes
the large-amplitude, non-resonant feature to cancel out, often revealing an underlying
bipolar velocity-space signature, as shown in figure 9. In figure 9(a), we plot the timestack
correlation CE‖(v‖, t) from the βi = 1 simulation, which clearly shows an antisymmetric
feature that obscures a portion of the expected velocity-range for Landau damping. When
the data in the central and lower panels are folded over v‖ = 0 – like closing a book
with v‖ = 0 as the spine – a bipolar structure is revealed that is persistent throughout
the entire simulated interval, shown in figure 9(b). The amplitude of the resulting
signature of electron Landau damping has a peak amplitude approximately one-quarter
of the amplitude of the broad non-resonant feature. Though by folding the correlation
we have lost insight into whether the signature is due to the damping of upward or
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(a) (b)

FIGURE 9. (a) Reduced parallel field–particle correlation CE‖(v‖, t) timestack plot in the
βi = 1 turbulence simulation using τ = 2.6 Tmax. (b) The same timestack plot in (a) folded
across v‖ = 0 to obtain CE‖(|v‖|, t), showing a clear signature of electron Landau damping
at v‖/vte ∼ 0.1 (albeit with the negative region suppressed by the v2

‖ weighting) that persists
throughout the simulation, with a peak amplitude approximately one quarter of the non-resonant
feature.

downward propagating waves, it reveals the structure in velocity-space that is necessary for
identifying the mechanism of electron Landau damping. This method of ‘seeing beneath’
the non-resonant feature was effective for our βi = 1 simulations, but we note that in our
βi = 10 simulations the Landau resonances with the electrons are so close to v‖ = 0 that
the velocity-space resolution of the simulation is insufficient for revealing signatures with
certainty, even after folding the data.

Alternatively, high-pass filtering could be an effective way of removing a low-frequency
non-resonant feature while retaining the distinction between the damping of forward and
backward propagating waves. We tested this with some success in our simulations, but
since the time step in AstroGK simulations varies dynamically in order to satisfy the
numerical Courant–Friedrichs–Lewy stability condition, it is unclear if the results of the
filtered AstroGK datasets are reliable. We report that applying a fast-Fourier transform,
backward and forward high-pass Butterworth filters, and an inverse fast-Fourier transform
did remove the non-resonant feature in tests performed on the βi = 1 simulation. Due
to the variable time step, however, we did not pursue this method of removing the
non-resonant feature in depth.

6. Summary and conclusions

Application of the field–particle correlation technique to measurements of weakly
collisional plasma turbulence in space and astrophysical plasma environments generates
velocity-space signatures of particle energization. These signatures can be used to identify
the specific physical mechanisms that dominate the dissipation of the turbulence. Recent
field–particle correlation analyses of MMS observations of turbulence in the Earth’s
magnetosheath plasma have provided the first direct evidence of electron Landau damping
as a significant mechanism for the dissipation of space plasma turbulence (Chen et al.
2019; Afshari et al. 2021). Here, we employ linear KAW simulations and a suite of
four gyrokinetic simulations of turbulence with βi = 0.01, 0.1, 1, 10 and Ti/Te = 1 to
characterize the qualitative and quantitative features of the velocity-space signature of
electron Landau damping in a turbulent space plasma. Linear KAW simulations have
demonstrated that the zero-crossing of the bipolar velocity-space signature of electron
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Landau damping falls at the resonant parallel phase velocity of the wave, and that the
width of the signature increases with increasing normalized damping rate. Furthermore,
unlike in the case of ion Landau damping where both the negative and positive regions
of the bipolar velocity-space signature are clearly observable (Klein et al. 2017; Howes
et al. 2018; Klein et al. 2020), for the electron Landau damping of dispersive KAWs,
the negative region of the bipolar signature can be suppressed by the v2

‖ weighting in the
field–particle correlation for waves with low parallel phase velocities compared with the
electron thermal velocity, vph,‖/vte ≤ 0.3.

A key result of this paper is the characterization of the typical gyrotropic velocity-space
signatures CE‖(v‖, v⊥) of electron Landau damping, with typical examples presented
in figure 7 for βi = 0.01, 0.1 and 1. Similarly, timestack plots of the reduced parallel
field–particle correlation CE‖(v‖, t), shown in figure 8, provide a clear means to determine
the electron energization rates as a function of time, showing both temporal intermittency
and the overlap of bipolar velocity-space signatures of KAW wave packets with
different resonant parallel phase velocities. Furthermore, even in balanced turbulence –
characterized by approximately equal wave energy fluxes up and down the local mean
magnetic field – over periods of a few to tens of KAW periods, one frequently observes
an imbalance of the velocity-space signatures of electron Landau damping of upward
and downward propagating KAWs, consistent with previous MMS observations (Afshari
et al. 2021). In addition, a significant non-resonant feature that is asymmetric in v‖
appears due to the plasma density fluctuations associated with KAWs at higher values
of plasma beta, βi � 1. This large-amplitude, non-resonant feature can make it difficult
to identify the velocity-space signatures of electron Landau damping, but a method of
folding over the correlations in v‖ can effectively eliminate the feature, revealing the
generally smaller amplitude velocity-space signatures of resonant damping. All of these
factors should be taken into consideration when analysing the field–particle correlation
signatures of electron Landau damping. It is our hope that these results can provide
insight for interpreting future field–particle correlation analysis of in situ spacecraft
observations: helping to identify the signatures of electron Landau damping throughout
the inner heliosphere and advancing the wider goal of determining the contribution of this
mechanism to electron energization in the solar wind and other weakly collisional plasma
environments.
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Appendix A. Velocity-space signatures of electron Landau damping of single KAWs

Here (figure 10) we reproduce timestack plots of the field–particle correlations CE‖(v‖, t)
in steady state for five of the 20 individual KAW simulations. For a βi = 1 plasma, we plot
the cases of a KAW with k⊥ρi = 2, 4, 8, 16 and 32. Each correlation shows clear electron
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(a) (b)

(c) (d )

(e)

FIGURE 10. Field–particle correlations of a set of driven, damped KAWs with βi = 1 and (a)
k⊥ρi = 2, (b) 4, (c) 8, (d) 16 and (e) 32. The zero-crossing of the bipolar signatures correspond
to the parallel wave phase velocity (vertical dotted lines), and the width of the signature increases
with increasing damping rate as k⊥ρi increases.

energization due to Landau damping of the wave by the resonant electrons, where the
resonant parallel phase velocity for each wave is indicated by the vertical dotted lines. At
the parallel velocity-space resolution of the AstroGK simulations, the negative portion
of the bipolar damping signature is only visible in the time-integrated panels for the
two smallest-scale waves (those at the largest resonant velocities), but all have a clear,
localized and persistent energization signature due to the action of Landau damping. The
non-resonant feature, antisymmetric in v‖, is visible in these correlations. Though the
compressibility of the KAWs increases with k⊥ρi (Matteini et al. 2020), the non-resonant
feature is most clearly visible at lower k⊥ρi in these plots, likely due to the lower damping
rate and the resonance’s increased proximity to v‖ = 0 for these larger perpendicular
wavelength waves.

Appendix B. Non-resonant feature analysis

Here we explore more deeply the antisymmetric, non-resonant feature that appears in
the field–particle correlation, which we attribute to the electron density perturbations,
δne, that constitute a dynamic part of the KAW. This non-resonant feature arises in the
field–particle correlation due to (i) an increase in the amplitude of δne relative to the
resonant perturbations and (ii) the relative phase between E‖ and ∂f /∂v‖ as a function of
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(a) (b)

(c) (d )

FIGURE 11. Detail of the density perturbations giving rise to the non-resonant feature in the E‖
field–particle correlations of high-βi plasmas. (a) The parallel electric field–particle correlation
CE‖,e(v‖); (b) the perturbed distribution function ge; (c) the parallel electric field weighted by
parallel velocity factor E‖v2

‖ ; (d) the parallel velocity derivative of the perturbed distribution
function ∂ge/∂v‖.

v‖. The compressive nature of the non-resonant feature, its amplitude, and its dependence
on the phase offset φ are seen clearly when the factors in the mathematical form of the
correlation are divided into separate plots, as shown in figure 11.

The reduced parallel field–particle correlation CE‖(v‖, t) is shown in figure 11(a)
for the individual wave simulation at k⊥ρi = 8, βi = 0.1. The reduced, complementary
perturbed distribution function ge(v‖, t) (Numata et al. 2010) is plotted in figure 11(b).
The location of the resonant KAW phase velocity is marked by the vertical dashed
line at v‖/vte = 0.51, and the resonant perturbations in ge(v‖, t) peak broadly around
this resonant parallel velocity. In the background, at lower amplitude, there is a broad
oscillatory signature that is an even function in v‖ and that spans all velocities (fading to
zero with the distribution function at large v‖). This non-resonant, even perturbation in
ge(v‖, t) represents compression in the electron density, δne, when integrated over v‖. In
figure 11(d), we show the parallel velocity derivative of the reduced perturbed distribution
function, ∂ge/∂v‖. Here, it can be seen that the even function in ge, yielding δne �= 0,
turns into an odd function when the derivative with respect to v‖ is computed. Finally,
figure 11(c) contains the parallel electric field multiplied by v2

‖ ; note that E‖ itself is
constant over v‖. Upon close inspection, it can be observed that the oscillation in E‖ and the
background oscillation in ∂ge/∂v‖ have the same period but are offset in phase. This phase
offset φ is ultimately what causes the density oscillation to lead to the odd, non-resonant
signature that appears in the field–particle correlation in figure 11(a).

In the main body of this paper, we have explained how the relative amplitudes of the
resonant and density perturbations to ge change due to the combined effects of increasing
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FIGURE 12. The phase offset φ between E‖ and the density oscillation in ∂ge/∂v‖ as a function
of v‖/vte. Horizontal sections, separated by black lines, correspond to different βi. Within each
of these sections, there are five separate strips that correspond to a different k⊥ρi. Increasing
vertically within each section, k⊥ρi cycles through {2, 4, 8, 16, 32}. The phase velocity of the
KAW for each βi, k⊥ρi pair is marked with a vertical black line.

compressibility of KAWs and to the decreasing phase-velocity of KAWs as βi increases.
However, we did not discuss the origin of the phase offset between the density perturbation
and the parallel electric field from φ  π/2 at low βi to φ �= π/2 at higher βi. If the
electron response is approximately instantaneous, the density perturbation will be exactly
π/2 out of phase with the finite E‖ that drives it. In this case, the average acceleration of
the particles by E‖ is zero. This is approximately the background phase relationship we
observe in the low βi (0.01 and 0.1) single-wave runs.

The phase offset is approximately φ  π/2 at all parallel velocities except those that
resonantly interact with the E‖ wave around vph = ω/k‖, as shown in figure 12. For small
perpendicular wavenumbers at large βi (1 and 10) the phase offset is also φ  π/2. As
k⊥ρi increases, however, the phase offset deviates from π/2 and moves towards π or 0,
resulting in detectable non-resonant features in the field–particle correlation signatures.
As βi and k⊥ρi increase, the compressive wave begins to lag E‖, shifting the relative
phase φ and thereby enabling E‖ to do work on the particles, which results in a local
non-zero contribution to the change in phase-space energy density. Averaged over parallel
velocity, however, the contribution of the non-resonant feature goes to zero, and therefore
the compressions do not change the total spatial energy density of the electrons We(r, t).
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