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Abstract

There is an extensive academic literature that documents that stocks which have performed
well in the past often continue to perform well over some holding period—so-called
momentum. We study the optimal timing for an asset sale for an agent with a long position
in a momentum trade. The asset price is modelled as a geometric Brownian motion with
a drift that initially exceeds the discount rate, but with the opposite relation after an
unobservable and exponentially distributed time. The problem of optimal selling of the
asset is then formulated as an optimal stopping problem under incomplete information.
Based on the observations of the asset, the agent wants to detect the unobservable change
point as accurately as possible. Using filtering techniques and stochastic analysis, we
reduce the problem to a one-dimensional optimal stopping problem, which we solve
explicitly. We also show that the optimal boundary at which the investor should liquidate
the trade depends monotonically on the model parameters.
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1. Introduction

Momentum is the notion that an asset which has performed well in the past will continue to do
so for some time. Momentum trades may be the most common asset management strategy, with
a large associated literature. The pioneering paper [16] documents that stocks with high recent
performance continue to generate significant positive returns over a 3–12 month holding period.
This conclusion was further established in [18], and Rouwenhorst [31] found that momentum
is also present in international markets. These papers also showed that the momentum effect
decays in time, eventually disappearing entirely. Having accepted the existence of momentum
as a ‘stylized fact’ of equity markets, recent academic literature focuses on explaining the
phenomenon; a nonexhaustive list is [2], [4], [5], [8], [9], [10], [12], [13], [14], [15], [17], [19],
[23], [24], [25], [27], and [28].

Clearly, one way to benefit from a detected momentum opportunity is to buy the stock
and then liquidate it at some pre-determined future time. An obvious risk with such a strategy,
however, is that the momentum effect disappears much earlier or much later than the
pre-determined liquidation time.

In this paper we analyze how to choose optimal liquidation strategies for momentum trades.
More precisely, we seek to maximize the expected profit from a momentum trade. The expected
return of a stock is assumed to be a constant larger than the discount rate up until some random,
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and unobservable, time θ , at which it drops to a constant smaller than the discount rate. The
assumption that the momentum trend eventually disappears is in accordance with the consensus
in the financial literature; see, e.g. [16], [18], and [31] (for an alternative model for momentum,
see [36]). Based on this model for the expected return, we seek the optimal liquidation time for
an investor with a long position in a momentum trade. Clearly, the investor wants to hold the
position as long as the momentum is present, thereby taking advantage of the drift exceeding
the discount rate. On the other hand, when the momentum disappears, the investor would like
to exit the position to avoid an investment in an asset with an unfavourable drift. However,
the time point θ at which the momentum disappears is not directly observable, so to exit the
position exactly at θ is not possible in general. Instead, the agent has to make a guess based
merely on his/her observations of the asset price fluctuations.

We formulate the optimal liquidation problem as an optimal stopping problem under
incomplete information. Applying the filtering techniques used in the quickest detection
problem for a Brownian motion, see [32], we arrive at an optimal stopping problem under
complete information. In addition to the underlying asset, this problem also involves the
Markov process given by the conditional probability that θ has occurred given the asset price
observations up to the current time. Next, using a Girsanov change of measure and stochastic
analysis, we reduce the number of spatial dimensions and express the optimal liquidation
problem in terms of an auxiliary one-dimensional optimal stopping problem with an affine
payoff function for a diffusion. An explicit solution to this auxiliary problem is found by
solving the related free boundary problem involving an ordinary differential equation. We
show that, for the auxiliary problem, the optimal stopping boundary is a constant barrier which
depends monotonically on each of the model parameters. Accordingly, the optimal liquidation
strategy for the momentum trade is to sell the asset the first time t the conditional probability
that θ ≤ t exceeds a certain level. We also analyze the dependence of the solution on the
different model parameters. This is important, both from a mathematical and from a practical
perspective, in order to obtain an understanding of the model sensitivity to changes in the
parameter input and to possible mis-specifications. In particular, we show that the optimal
liquidation level is decreasing in the intensity at which the momentum opportunity disappears,
and it is also decreasing with respect to the volatility of the underlying asset.

The problem under study in the present paper was also addressed in [1]. The authors of
[1] showed that the optimal liquidation time, for most parameter choices, coincides with the
first hitting time of some level for the conditional probability that θ has occurred. However, no
characterization of this level or means of calculating it were provided. The same problem is also
discussed in [34]. The authors of [34] formulated the liquidation problem as an optimal stopping
problem for a two-dimensional Markov process. In view of the results of these references, the
main mathematical contribution of the current paper is to show that the two-dimensional optimal
stopping problem can be reduced to a one-dimensional problem using the Girsanov theorem,
together with a detailed analysis of the resulting one-dimensional problem, thereby providing
a full solution of the liquidation problem. For related studies where optimal stopping theory is
applied to optimal stock selling problems, see, e.g. [6], [7], [11], [33], and [35].

We define the asset price model in Section 2, and the optimal liquidation problem is setup.
Moreover, filtering techniques and the Girsanov theorem are used to formulate the problem in
terms of a one-dimensional auxiliary optimal stopping problem. In Section 3, the auxiliary
optimal stopping problem is studied, and the optimal stopping time is determined. In Section 4
we study the dependency of the solution on the different model parameters. Finally, in Section 5
we study a similar case but with an investor who has a short position in a momentum trade.
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2. The model

We take as given a complete probability space (�,F ,P). On this probability space, let θ be
a random variable with distribution P(θ = 0) = π and P(θ ≥ t | θ > 0) = e−λt . We assume
that the intensity λ is positive and that π belongs to [0, 1).

Next, let W be a Brownian motion which is independent of θ . The asset price process X
is modelled by a geometric Brownian motion with a drift that drops from µ2 to µ1 at time θ .
More precisely,

dXt = µ(t)Xt dt + σXt dWt

and X0 = x > 0, where
µ(t) = µ2 − (µ2 − µ1) 1{t≥θ}

and 1{·} is the indicator function. Here µ1, µ2, and σ > 0 are constants with µ1 < µ2. Denote
by F X = (F X

t )t∈[0,∞) the filtration generated by X, and note that F X is strictly contained in
the filtration generated by X and θ .

Now, let T be the set of (possibly infinite) F X-stopping times. We consider the optimal
stopping problem

V = sup
τ∈T

Ee−rτXτ , (1)

where the discount rate r ≥ 0 is a given constant. Here (and in all other similar situations
below) we use the convention that e−rτXτ = 0 on the event {τ = ∞}.

Note that if r < µ1 < µ2 then e−rtXt is an F X-submartingale, and V = ∞ (choose
deterministic stopping times τ = t , and let t → ∞). If r = µ1 < µ2 then e−rtXt is an
F X-submartingale and again the supremum is attained along a sequence of deterministic times
(the value V is then infinite if µ2 ≥ r + λ, and V = πx + (1 − π)xλ/(λ + r − µ2) if
µ2 < r + λ). Similarly, if µ1 < µ2 ≤ r then e−rtXt is a supermartingale, V = x, and the
supremum is attained for τ = 0. Therefore, throughout the remainder of this article, we assume
that µ1 < r < µ2.

Remark. We emphasize that the supremum in (1) is with respect to F X-stopping times. This
models a situation in which the agent cannot directly observe the change point θ . Instead,
he/she merely observes the asset price trajectory, and based on these observations he/she tries
to determine an optimal liquidation strategy.

On the other hand, an agent with complete information about the change point would choose
to liquidate exactly at θ . The expected payoff for such an agent would then be

Ee−rθXθ = πx + (1 − π)x

∫ ∞

0
e(µ2−r)tλe−λt dt

=
⎧⎨
⎩
πx + (1 − π)xλ

λ+ r − µ2
if µ2 < r + λ,

∞ if µ2 ≥ r + λ.

Clearly, this value is an upper bound for V .

Remark. Another possible interpretation of the liquidation problem described above would be
that X models the price of an asset bubble. As long as the bubble lives, the agent clearly wants
to keep the asset, but once the bubble bursts, it is optimal to sell it.
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Remark. The optimal liquidation problem (1) is also studied in [1]. The authors of [1] showed
that the optimal liquidation time is the first passage time over some unknown level for the a
posteriori probability process � defined below. However, no characterization of the optimal
liquidation level is obtained.

In [34] a similar problem is studied, but with the difference that the asset price is modelled
by a linear Brownian motion instead of a geometric Brownian motion. The authors also briefly
discussed the case of a geometric Brownian motion as in (1), and derived a representation in
terms of a two-dimensional optimal stopping problem. One key observation of the present paper
is that, in fact, problem (1) can be reduced to a one-dimensional optimal stopping problem,
and, therefore, also be solved explicitly.

We define the a posteriori probability process � by

�t = P(θ ≤ t | F X
t ).

Note that �0 = π . It is well known from filtering theory, see [26, Chapter 9], that � satisfies

d�t = λ(1 −�t) dt − ω�t(1 −�t) dW̄t ,

where ω = (µ2 − µ1)/σ and W̄t is a P-Brownian motion with respect to F X
t given by

dW̄t = dXt
σXt

− 1

σ
(�tµ1 + (1 −�t)µ2) dt

= 1

σ
(µ(t)−�tµ1 − (1 −�t)µ2) dt + dWt.

Moreover, in terms of W̄ we have

dXt = (�tµ1 + (1 −�t)µ2)Xt dt + σXt dW̄t ,

and the filtration generated by W̄ coincides with F X. Furthermore, if

	t := �t

1 −�t

then 	0 = φ := π/(1 − π) and Itô’s formula gives

d	t =
(

λ

1 −�t
+ ω2�t	t

)
dt − ω	t dW̄t .

Next, we note that

Mt := exp

{
−1

2

∫ t

0
(σ + ω�s)

2 ds +
∫ t

0
(σ + ω�s) dW̄s

}

is an F X-martingale, and apply a generalized version of Girsanov’s theorem (Corollary 3.5.2
of [21]) to find the unique probability measure Q such that

Q(A) = E[1AMt ]
for A ∈ F X

t , 0 ≤ t < ∞. Under Q, the new process Z defined by

dZt = −(σ + ω�t) dt + dW̄

is a {Q,F X}-Brownian motion. Furthermore,

d	t = (λ+ (λ− ωσ)	t) dt − ω	t dZt .
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Our first result shows that the Radon–Nikodym derivative Y can be expressed conveniently in
terms of	 andX. This important observation is motivated by the results of Klein, who showed
a similar result in [22] in a setting with incomplete information about a constant (but random)
drift.

Proposition 1. Let τ be an F X-stopping time. Then

Ee−rτXτ = x

1 + φ
EQe(µ2−λ−r)τ (1 +	τ ).

Proof. Let ηt = 1/Mt . Then

ηt = exp

{
1

2

∫ t

0
(σ + ω�t)

2 dt −
∫ t

0
(σ + ω�t) dW̄t

}

= exp

{
−1

2

∫ t

0
(σ + ω�t)

2 dt −
∫ t

0
(σ + ω�t) dZt

}

and
dηt
ηt

= −(σ + ω�t) dZt .

Moreover,
Ee−rτXτ = EQητ e−rτXτ . (2)

Now, consider the process

Yt = (1 +	t)e(µ2−λ)t x
(1 + φ)Xt

.

Using Itô’s formula, it is straightforward to check that

dYt
Yt

= −(σ + ω�t) dZt = dηt
ηt
.

Since Y0 = 1 = η0, it follows that ηt = Yt for all t almost surely. In view of (2), the result
follows.

It follows from Proposition 1 that

V = x

1 + φ
sup
τ∈T

EQe(µ2−λ−r)τ (1 +	τ ). (3)

In the next section we study the optimal stopping problem in the above form. The implications
for problem (1) are summarized in Corollary 1 below.

3. The auxiliary optimal stopping problem

In this section we study the optimal stopping problem in (3). Thus, on some probability
space, let 	t be a diffusion process satisfying

d	t = (λ+ (λ− ωσ)	t) dt − ω	t dZt ,

where Z is a standard Brownian motion. Define

F(φ) = sup
τ

Eφe(µ2−λ−r)τ (1 +	τ ), (4)

where the index indicates that 	0 = φ, and the supremum is taken over random variables that
are stopping times with respect to the filtration generated by Z. Note that V defined in (1)
satisfies V = xF(φ)/(1 + φ); cf. (3).
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The quantityF is infinite ifµ2 ≥ λ+r since	will reach any positive level with probability 1
(choose τ = inf{t : 	t ≥ b} and let b → ∞).

We therefore assume throughout this section that µ2 < λ + r . It then follows from an
application of Itô’s formula that the drift of the process e(µ2−λ−r)t (1 +	t) is positive if
	t < (µ2 − r)/(r − µ1) and negative if 	t > (µ2 − r)/(r − µ1). This suggests that
the optimal stopping time in (4) is of the form

τB := inf{t ≥ 0 : 	t ≥ B}
for some level B > (µ2 − r)/(r −µ1); cf. [37]. Moreover, optimal stopping theory (see [30])
suggests that the pair (F, B) satisfies the free boundary problem

LF + (µ2 − λ− r)F = 0, 0 < φ < B,

F(φ) = 1 + φ, φ ≥ B; F ′(B) = 1, F (0+) < ∞,
(5)

where

LF = ω2φ2

2
F ′′ + (λ+ (λ− ωσ)φ)F ′. (6)

The ordinary differential equation in (5) has the general solution

F(φ) = Cψ(φ)+Dϕ(φ), (7)

where

ψ(φ) =
∫ ∞

0
e−at t (b+γ−3)/2(1 + φt)(γ−b+1)/2 dt (8)

and

ϕ(φ) =
∫ 1/φ

0
eat t (b+γ−3)/2(1 − φt)(γ−b+1)/2 dt,

with

γ =
√
(b − 1)2 + 4c, a = 2λ

ω2 , b = 2

ω

(
λ

ω
− σ

)
, and c = 2(λ+ r − µ2)

ω2 > 0.

(The functions ϕ andψ can alternatively be expressed in terms of the confluent hypergeometric
functions of the first and second kind, respectively.)

Lemma 1. The function ψ is increasing and convex on (0,∞). The function ϕ is decreasing
and satisfies ϕ(0+) = ∞.

Proof. We have

ψ ′(φ) = γ − b + 1

2

∫ ∞

0
e−at t (b+γ−1)/2(1 + φt)(γ−b−1)/2 dt,

which is positive since γ = √
(b − 1)2 + 4c > b − 1. Hence, ψ is increasing. Moreover,

2ψ ′′(φ)
γ − b + 1

= γ − b − 1

2

∫ ∞

0
e−at t (b+γ+1)/2(1 + φt)(γ−b−3)/2 dt.

Now note that µ1 < r implies that b < c, which in turn implies that γ > b+ 1. Consequently,
ψ is convex.

Similarly,

ϕ′(φ) = b − 1 − γ

2

∫ 1/φ

0
eat t (b+γ−1)/2(1 − φt)(γ−b−1)/2 dt < 0,
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so ϕ is decreasing. Moreover, for small φ, we have

ϕ(φ) =
∫ 1/φ

0
eat t (b+γ−3)/2(1 − φt)(γ−b+1)/2 dt

≥ (1 − √
φ)(γ−b+1)/2

∫ 1/
√
φ

0
t (b+γ−3)/2 dt

≥ εφ(1−γ−b)/4,
where ε is some positive constant. Since γ > 1 − b, it follows that ϕ(0+) = ∞.

Remark. The function ψ is the unique (up to multiplication with a positive constant), positive,
and increasing solution of Lf + (µ2 − λ − r)f = 0; cf. pages 18–19 of [3]. Similarly, ϕ is
the unique, positive, and decreasing solution.

Note that the condition F(0+) < ∞ implies that we must have D = 0. The two boundary
conditions at B in (5) then imply that the two remaining unknowns B and C satisfy

Cψ(B) = 1 + B, Cψ ′(B) = 1.

Using (8), we find that

C

∫ ∞

0
e−at t (b+γ−3)/2(1 + Bt)(γ−b+1)/2 dt = 1 + B,

C
γ − b + 1

2

∫ ∞

0
e−at t (b+γ−1)/2(1 + Bt)(γ−b−1)/2 dt = 1,

and solving for B gives the free boundary equation

2
∫ ∞

0
e−at t (b+γ−3)/2(1 + Bt)(γ−b+1)/2 dt

= (γ − b + 1)(1 + B)

∫ ∞

0
e−at t (b+γ−1)/2(1 + Bt)(γ−b−1)/2 dt. (9)

Lemma 2. There exists a unique positive solution B to the free boundary equation (9).

Proof. Define the function g : (0,∞) → R by

g(x) := 2
∫ ∞

0
e−at t (b+γ−3)/2(1 + xt)(γ−b+1)/2 dt

− (γ − b + 1)(1 + x)

∫ ∞

0
e−at t (b+γ−1)/2(1 + xt)(γ−b−1)/2 dt. (10)

Then

g(0+) = 2
∫ ∞

0
e−at t (b+γ−3)/2 dt − (γ − b + 1)

∫ ∞

0
e−at t (b+γ−1)/2 dt

=
(

4a

b + γ − 1
− (γ − b + 1)

) ∫ ∞

0
e−at t (b+γ−1)/2 dt,

where the last equality follows by integration by parts. Since 4a > 4c = (γ −b+1)(γ +b−1),
it follows that g(0+) > 0. Moreover,

g(x) ∼ −x(γ−b−1)/2(γ − b − 1)
∫ ∞

0
e−at tγ−1 dt

for large x. Since γ > b+1, it follows that g(x) is negative for large x. Existence of a solution
now follows from the continuity of g.
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Figure 1: Top: a simulated path of the process 	t for µ1 = −0.2, µ2 = 0.2, σ = 0.4, r = 0.05, and
λ = 3. These parameters yield B = 1.84 using (9). Bottom: the stock price Xt for the same simulation
as above. The change point θ and the optimal stopping time τB are marked with dashed and dotted lines,

respectively.

Uniqueness of solutions follows from the fact that

g′(x) = −(γ − b + 1)(1 + x)

∫ ∞

0
e−at t (b+γ+1)/2(1 + xt)(γ−b−3)/2 dt < 0

for all x ∈ (0,∞).

We next show that the first hitting time of the level B is an optimal stopping time. For a
graphic illustration of the optimal stopping time, see Figure 1.

Theorem 1. The function F defined in (7) satisfies

F(φ) =
⎧⎨
⎩

1 + B

ψ(B)
ψ(φ), φ < B,

1 + φ, φ ≥ B,

where B is the unique solution to the free boundary equation (9). Moreover, we have B ≥
(µ2 − r)/(r − µ1), and the stopping time τB := inf{t ≥ 0 : 	t ≥ B} is optimal in (4).

Proof. Let B be the unique solution to (9), and define G by

G(φ) :=
⎧⎨
⎩

1 + B

ψ(B)
ψ(φ), φ < B,

1 + φ, φ ≥ B.

Then G(φ) ≥ 1 + φ, and G(φ) > 1 + φ if and only if φ < B. By (a generalized version of)
Itô’s formula, the process Yt = e(µ2−λ−r)tG(	t) satisfies

dYt = e(µ2−λ−r)t (µ2 − r + (µ1 − r)	t ) 1{	t>B} dt − e(µ2−λ−r)tω	tG′(	t ) dZt .

Now assume that the solutionB to the free boundary equation (9) satisfiesB ≥ (µ2−r)/(r−µ1)

(this is indeed verified below). Then the drift of Y is negative, and Y is a supermartingale.
Moreover, Yt∧τB is a martingale with a last element.
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Now, let τ be a stopping time. An application of the optional sampling theorem (see
Problem 1.3.16 and Theorem 1.3.22 of [21]) yields

Eφe(µ2−λ−r)τ (1 +	τ ) ≤ EφYτ ≤ EφY0 = G(φ). (11)

Consequently, F(φ) ≤ G(φ).
Conversely, for τ = τB , the inequalities in (11) are in fact equalities. Therefore,

F(φ) = sup
τ

EQ
y Yτ ≥ EQ

y YτB = G(φ).

It follows that F(φ) = G(φ).
It remains to show that B ≥ (µ2 − r)/(r − µ1) =: d. To this end, first recall that, by

general optimal stopping theory, see, e.g. [20, Theorem D.12], it is optimal to stop the first
time 	 enters the stopping region {φ ∈ (0,∞) : F(φ) = 1 + φ}. Moreover, points where
(L +µ2 − λ− r)(1 + φ) = µ2 − r + (µ1 − r)φ is positive belong to the continuation region
{y ∈ (0,∞) : F(φ) > 1 + φ} (this follows by a local argument; see, e.g. the remark after
Theorem 10.1.12 of [29]). It follows that F satisfies

F(φ) = sup
{τ : 	τ≥d}

Eφe(µ2−λ−r)τ (1 +	τ ), (12)

i.e. it suffices to take the supremum over stopping times τ such that	τ ≥ d. Define the function

Gd(φ) :=
⎧⎨
⎩

1 + d

ψ(d)
ψ(φ), φ < d,

1 + φ, φ ≥ d.

Now, assume that the unique solution B to the free boundary equation satisfies B < d. In that
case, the function g in (10) satisfies g(d) < 0. Consequently, the left derivative of Gd at the
point d is larger than the right derivative. In particular,Gd(φ) < 1 +φ for some φ < d. It also
follows (again, by a generalized version of Itô’s formula) that the process e(µ2−λ−r)tGd(	t ) is a
supermartingale, and e(µ2−λ−r)(t∧τd )Gd(	t∧τd ) is a martingale. For stopping times τ satisfying
	τ ≥ d, we therefore obtain

Eφe(µ2−λ−r)τ (1 +	τ ) = Eφe(µ2−λ−r)τGD(	τ ) ≤ Gd(φ).

In view of (12), the inequality F(φ) ≤ Gd(φ) follows. However, this is a contradiction since
there exist points with Gd(φ) < 1 + φ, whereas F(φ) ≥ 1 + φ everywhere. This completes
the proof.

Remark. A more direct approach to prove that B ≥ (µ2 − r)/(r − µ1) would be to show
that g((µ2 − r)/(r − µ1)) ≥ 0, where g is defined in (10). However, we did not find a short
argument for this.

The following result is a consequence of Proposition 1 and Theorem 1.

Corollary 1. Let B be the unique positive solution to (9), and let φ = π/(1 − π). Then the
value V defined in (1) satisfies

V =
⎧⎨
⎩
(1 + B)ψ(φ)

(1 + φ)ψ(B)
x, φ < B,

x, φ ≥ B.
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Moreover, the stopping time

τ ∗ = inf

{
t ≥ 0 : �t ≥ B

B + 1

}

is optimal in (1).

4. Parameter dependencies

In this section we study the dependence of the optimal liquidation strategy B and the value
V on the different parameters of the model. Figure 2 illustrates numerically the dependence of
B on σ and λ.

Theorem 2. The value V is decreasing in π , λ, and σ . The optimal liquidation level B is
decreasing in λ and σ .

Proof. Recall that φ �→ F(φ) is convex and satisfies F(φ) = 1 + φ for φ ≥ B. It follows
that

(1 + φ)F ′(φ)− F(φ) ≤ 0. (13)

Using the relation V = xF(φ)/(1 + φ), we find that

∂V

∂φ
= x

∂

∂φ

F(φ)

1 + φ
= (1 + φ)F ′(φ)− F(φ)

(1 + φ)2
≤ 0.

Since π = φ/(1 + φ), π is increasing in φ, so V is also decreasing in π .
Next, let λ2 ≥ λ1 > 0 and σ2 ≥ σ1 > 0, and let F1 and F2 be the corresponding value

functions defined by (7). Moreover, let B1 and B2 be the corresponding optimal liquidation
levels, and let L1 and L2 be the corresponding linear operators defined by (6). For y ≤ B2, it
follows from the fact that (L2 + µ2 − λ2 − r)F2 = 0, the convexity of F2, and (13) that

(L1 + µ2 − λ1 − r)F2 = φ2(µ2 − µ1)
2

2
(σ−2

1 − σ−2
2 )F ′′

2 + (λ1 − λ2)((1 + φ)F ′
2 − F2) ≥ 0.

σ= 0.35
σ= 0.40

σ= 0.30
25

20

15

10

5

0

B

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
λ

Figure 2: The optimal threshold B as a function of the jump intensity λ for three different values of the
volatility σ . The model parameters are µ1 = −0.2, µ2 = 0.2, and r = 0.05.
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Thus, F2 is superharmonic on (0, B2) with respect to the operator L1 + µ2 − λ1 − r , so if 	
is the process with parameters λ1 and σ1, then it is straightforward to check that

F2(φ) ≤ Eφe(µ2−λ1−r)τB2F2(	τB2
).

Consequently,

F2(φ) ≤ Eφe(µ2−λ1−r)τB2F2(	τB2
) = Eφe(µ2−λ1−r)τB2 (1 +	τB2

) ≤ F1(φ).

Note that if φ ≥ B2 then F2(φ) = 1 + φ ≤ F1(φ), so this inequality holds for all φ.
Consequently, F (and, hence, also V ) is decreasing in λ and in σ . Since B = inf{φ : F(φ) =
1 + φ}, it also follows that the optimal liquidation level B is decreasing in λ and in σ .

5. Optimal closing of a short position

In this section we consider the opposite situation in which the agent believes in a small initial
drift, and that the small drift is replaced with a larger drift at a random and unobservable change
point. To trade on this belief, the agent has a short position in the asset, and he/she seeks an
optimal time to close the short position. As in the previous case, the optimal closing time would
be precisely at the change point, but this is in general impossible due to the change point being
unobservable.

Let θ be as in the previous sections, let µ1 < r < µ2, and model X by

dXt = µ(t)Xt dt + σXt dWt,

where the drift now is given by

µ(t) = µ1 + (µ2 − µ1) 1{t≥θ} .

We define
U = inf{τ∈T : τ<∞} Ee−rτXτ . (14)

Note that the infimum is taken over almost surely finite F X-stopping times (in this way we do
not need to define the pay off for τ = ∞). Define the a posteriori probability process � by

�t = P(θ ≤ t | F X
t ),

and let 	t = �t/(1 −�t). By the same arguments as in the case of a long investor, we find
that

Ee−rτXτ = x

1 + φ
EQe(µ2−λ−r)τ (1 +	τ )

for finite F X-stopping times τ . Here 	 satisfies

d	t = (λ+ (λ+ ωσ)	t) dt + ω	t dZt ,

where Z is a {Q,F X}-Brownian motion. Consequently,

U = xH(φ)

1 + φ
,

where
H(φ) = inf

τ
E
Q
φ e(µ1−λ−r)τ (1 +	τ ). (15)
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By Itô’s formula, the drift of the process e(µ1−λ−r)t (1 +	t) is positive if 	t >

(r − µ1)/(µ2 − r) and negative if 	t < (r − µ1)/(µ2 − r). This suggests that the optimal
stopping time is the first hitting time of the set [A,∞) for some level A. Moreover, the pair
(H,A) should satisfy the free boundary problem

LH + (µ1 − λ− r)H = 0, 0 < φ < A,

H(φ) = 1 + φ, φ ≥ A; H ′(A) = 1, H(0+) < ∞,
(16)

where

LH = ω2φ2

2
H ′′ + (λ+ (λ+ ωσ)φ)H ′.

The differential equation in (16) has the general solution

H(φ) = Cψ(φ)+Dϕ(φ),

where

ψ(φ) =
∫ ∞

0
e−at t (b+γ−3)/2(1 + φt)(γ−b+1)/2 dt

and

ϕ(φ) =
∫ 1/φ

0
eat t (b+γ−3)/2(1 − φt)(γ−b+1)/2 dt,

with

γ =
√
(b − 1)2 + 4c, a = 2λ

ω2 , b = 2

ω

(
λ

ω
+ σ

)
, and c = 2(λ+ r − µ1)

ω2 .

Using the boundary conditions in (16), we arrive at the free boundary equation

2
∫ ∞

0
e−at t (b+γ−3)/2(1 + At)(γ−b+1)/2 dt

= (γ − b + 1)(1 + A)

∫ ∞

0
e−at t (b+γ−1)/2(1 + At)(γ−b−1)/2 dt. (17)

The following result can then be proved along the same lines as Theorem 1 above.

Theorem 3. Let A be the unique positive solution to the free boundary equation (17). Then

H(φ) =
⎧⎨
⎩

1 + A

ψ(A)
ψ(φ), φ < A,

1 + φ, φ ≥ A.

Moreover, the stopping time τA := inf{t ≥ 0 : 	t ≥ A} is optimal in (15).
Furthermore, with ϕ = π/(1 − π) we have

U =
⎧⎨
⎩
(1 + A)ψ(ϕ)

(1 + ϕ)ψ(A)
x, ϕ < A,

x, ϕ ≥ A,

and the supremum in (14) is attained for τ ∗ := inf{t ≥ 0 : �t ≥ A/(A+ 1)}.
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