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A conjecture of reputable vintage states that c(G)sfe(G) + l for a finite p-group G
of class c{G) and breadth b(G). This result has been proved in a medley of special cases
and in particular whenever b{G)^3. We now prove it for b{G) = 4.

1. Introduction. Let G be a finite p-group and let C(x) denote the centraliser of the
element x in G. The breadth b(x) is defined by

pbM = \G:C(x)\,

and the breadth b = b(G) of G is defined by

= max{b(x):xsG}.

Discussion of the conjecture that the class c(G) of the finite p-group G is bounded by
b(G) + l may be found in the references, especially [6] and [7]. The result for b(G) = l
was proved by Burnside [1, pp. 125-6]. Knoche [5] proved that c(G)^fc(G) + l for
2 ^ b ( G ) ^ 3 . Other special cases have been studied. The general case may yet prove to be
false. The results of [7] suggest that the cases with b(G)^6 may well be decisive because
counter-examples with b(G) = 6 are there presented to settle certain closely-related
conjectures, which appear as Problems 3.5 and 3.6 in [6].

In this note we show that well-tried methods suffice to settle the case b(G) = 4. More
precisely we prove:

THEOREM. If G is a finite p-group with b(G) = 4 then c(G)^5.

2. Definitions and preliminaries. To prove the theorem we need the apparatus of
commutator manipulation. In this section we survey the necessary equipment and, to give
a taste of the argument, apply the methods to the case b(G) = 3.

Let Xj, x 2 , . . . , xn , . . . be elements of the group G. Then

[*1» *2J = xl X2 *1X2

and if n^2 then

l * l > * 2 J • • • i Xn + ll = LL*1> *2> • • • > Xnh Xn + U-

We use the "semicolon notation", according to which

L X j , . . . , xp ; x p + 1 , . . . , xp+qj = [cp, cq\,

> Xp > *p+l» • • • » p + q ' Xp+q+l) • • * ) Xp+q+ri L^p) q̂> ^r J>
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and so on, where
Cp ~ L^l> • • • > XpJ, ^q ~~ L^-p+1) • • • » *p+qj> *"r ~~ I.Xp+q+1, • • • » *p+q+rj-

The terms ^(G) of the lower central series of G are defined by putting yi(G) =
and

for i>\. The group G is said to have class n = c(G) if yn+l(G)= 1 but 7n(G)* 1. The
two-step centralisers Q corresponding to the lower central series are defined for 1 < i < c
by

G = <xeG:ifyey,(G) then [x,y]6yl+2(G)>.

Notice that Q ^ G, and that Q is normal in G, for 1 ^ i < c.
Next we summarise some useful results. The multilinearity property of commutators

will be referred to (if at all) as (ML), at its frequent appearances; we are thinking of
statements like

j , x 2 , . . . , x j = [y,, x 2 , . . . , xn][zu x 2 , . . . , x j mod yn+1.

(In fact what = really denotes in statements like K = D mod yn+1 o ru = « mod yn+l(G) is
that the cosets uyn+l(G) and vyn+1(G) in G/yn+i(G) are equal.)

We denote by (JW) the result of a standard identity, namely

[cp, cq, cr][cq, cr, cp][cn cp, cq]= 1 mod -yp+q+r+1

or

[cp, [cq, cr]] = [cp, c,,, cr][cp, cr, c,]"1 mod rP+«,+r+i

where cp, cq, cr are defined as above.
Two consequences of (JW) are helpful. The first, (LN), states that a commutator of

the form [xu ..., xn] is the product of commutators like [xn, y 1 ; . . . , yn_J and its inverse,
mod yn+u where {yu ..., yn_i} = {x!, . . . , xn_J. The second is denoted by (AB):

[xj, x2, x1( x2] = [xi, x2, x2, xj] mod y5.

Now consider a finite p-group G with breadth b and class c>b + l. We can make a
reduction by replacing G with G/yb+3(G), for an obvious inductive assumption allows us
to suppose that the breadth of G/yb+3(G) is not less than b. In other words, in proving the
theorem we may take c(G) = b(G) + 2.

Lemma 3.1 of [6] shows that Q U . . . U Cc_, ^ G implies that c < b +1. But C, < Q for
l < j < c , as (LN) clearly implies. We shall prove that if 3 < 6 < 4 then c^b + l by first
establishing: if 3 < b < 4 and c = ft + 2 fnen C2 U... U Cb+1 * G.

Let us consider the case of a finite p-group G with ft(G) = 3 and c(G) = 5, and let us
suppose that G = C2UC3UC4. It is a known fact that if D = C2C\C3DC4 then G/D is
non-cyclic of order 4, and though this is due to Scorza (1926), according to [3], a more
convenient reference is [4].
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Therefore p = 2, G = (a, b, D), C2 = (a, D), C3 = (b, D), C4 = (ab, D). Let x 1 ( . . . , x5

be elements of G for which w = [x 1 ( . . . , x5] ^ 1. Clearly D does not contain x3 or x4 or
xs, and without losing generality we may take x3 = b, x4 = a. If we work mod y5(G) then

[x,, x2, b, a] = [xu x2; b, a][xu x2, a, b] (JW).

But [xi, x2, a, b] = 1 since for instance a € C2. Further

[x1;x2; b, a ] s [ a , b;xi,x2]

and another application of (JW), whose details we suppress, shows that if xa or x2 lies in
D, and so in both C2 and C3, then [a, b; x,, x2] = 1. So we may assume that Xj = a, x2 = b,
in which case by (AB),

[xj, x2, x3, x4] = [a, b, b, a] = [a, b, a, b].

Since a € C2, it follows that w = 1. This is a contradiction, and shows that G^ C2U C3U
C4. The result that if b = 3 then c :£ 4 follows as explained above.

3. Proof of the theorem: the redundant case. In order to prove the theorem we
suppose that G is a finite p-group with b(G) = 4, c(G) = 6, and G = C2U C3U C4U Cs.
The calculations in this case will be presented in a more succinct form than above.

A complication immediately arises, for G may be the union of just three of the
proper subgroups Cf(2^i^5) , and disposing of this case is not trivial. Consideration of
subcases is necessary. We always suppose that w ^ l where

W = \_Xi, X 2 , X 3 , X 4 , X 5 , XsJ.

(i) Suppose that G = C3UC4UCS. Put D = C3nC4DC5, C3 = (a,D), C4 = <fc,D>,
C5 = (ab, D). We take x4 = b, x5 = a, x6 = a.

Our first aim is to show that no xf lies in D. By (LN), if some xt e D then we can take
i= 1. We have

[*!, x2, x3, b, a] = [x1; x2, x3; b, a] (JW; a € C3)
and

w = [x1; x2, x3; b, a; a]
= [a, b, a; xu x2, x3][x,, x2, x3, a; b, a] (JW).

The former of these commutators is trivial because x1eC3nC4nC5—note that (JW) is
used here—and the latter because a e C3. So if xt e D then w = 1.

This means that we can take Xj = a, x2
 = b. But if x3 = a then (AB) gives w = 1; so

x3 = b. Then
w = [a, b, b, b, a, a]

= [a, b, b; a, b; a]'1 (JW;aeC3)

= [a, b,a;a, b, b][a, b, b, a; a, b]"1 (JW)

= [a, b, a; [a, b], b] (aeCJ

= [a, b, a; a, b; fc][a, fc, a, ft; a, b]"1 (JW)

= 1 (AB;aeC3).
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(ii) Suppose that G = C2 U C4 U Cs. Put D = C2 n C4 n Cs, C2 = <a, D), C4 = (fe, D),
C5 = (afc, £>}. We take x3 = b, x5 - a, x6 = a.

Note that since

[*i, x2, b] = [b, x2, xj_b, xu Xa]"1 mod y4

we have w = 1 if x1 e D and x2 e D; or if xx e D and x2 = a. Indeed we can suppose that
X! 6 D or Xj = a, and that x2 = b.

Let us next consider x4. If x4 e D then

w = [xu b, b, x4, a, a]

= [xu b, b; x4, a; a][x1; 6, b, a, x4, a] (JW)

= [xj, b, b; x4, a; a] (x4eC4)

= [x4, a, a; xu b, b ] " 1 ^ , , b, b, a; x4, a] (JW)

= 1 (aeC2; x4eC4nC5) .

Next suppose that x4 = a. If c and d are commutators of weight 2 then modulo y6 we have

[cd.aMd.a^rtca.d] (JW)

and in our case, with a e C2, we have w = 1. We conclude therefore that we can take x4=b
without losing any generality.

Finally we can take Xj = a by the following reasoning. If (LN) is applied to [x1; b, b, b,
a] then this element becomes a product (modulo y6) of commutators of the form
[a , . . . j * 1 , all of which are trivial when both b and xx lie in C4. Therefore Xx i D, and as
above we have Xi = a. Then

w = [a, b, b, b, a, a]

= [a, b, b; a, b; a]'1^, b, b, a, b, a] (JW)

= [a, b,a;a, b, b][a, b, b, a; a, by1 (JW)

= 1 (aeC2).

Note that [a, b, b, a] = 1 because a e C2.
(iii) The cases in which C4 is redundant and C5 is redundant may be combined. Make

the obvious definitions of D and put C2 = (a, D), C3 = (b, D). We take x3 = b, x4 = a; and
applying (JW) twice to

[xu x2; a, b][a, b; xu x2]= 1 mod 75
we obtain

[xj, x2, a, b][xu x2, b, aY^a, b, x,, x2][a, b, x2, x j " 1 = 1.

It is clear that if x x eD then w = 1. So by (LN), every entry of w may be chosen from
{a, b}. But in that case [a, b, b, a] = [a, b, a, b]=l, and we are finished.

4. Proof of the theorem: fhe irredundant case. In this section we suppose that G is
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a finite p-group with b(G) = 4, c(G) = 6, and G= C2U C3UC4UC5 as above, but G is
not the union of any three of the Q. Put D = C2 n C3 n C4 n Cs. We have to consider the
possibilities for G/D and, just as important, for each CJD.

Fortunately the structure of a group covered by four proper subgroups has been given
by Greco [3] and by Neumann [8]. For convenience we use the latter reference. Thus
either p = 2 and |G:D| = 8, or p = 3 and |G:D| = 9.

Because the results of [8] do not give us the coverings of G/D in the various cases we
shall need a little elaboration. Let H be a finite p-group which is irredundantly the union
of its proper subgroups S1( S2, S3, S4 whose intersection is trivial. Suppose first that p = 2
and that H is elementary abelian, H = {a, b, c). We may choose a, b, c so that St = (a, b)
and S2 = (a, c) (see the table on p. 239 of [8]). Some juggling shows that in case (i) of that
table we can choose a, b, c so that

S1 = (a,b), S2 = (a,c), S3 = (b,c), SA = {abc). (1)

Case (ii) which is simpler yields

S1 = (a,b), S2 = (a,c), S3 = (bc), SA = (abc). (2)

Another possibility is that H is abelian of order 8 and H = (a, b) with a 4 = b2= 1.
Though case (i) does not occur now, case (ii) gives

S^ia), S2 = (ab), S3 = (b), S4 = (a2b). (3)

Finally we may have p = 3 and H = (a, b) of order 9 with

Sx = (a), S2 = (ab), S3 = (a2b), S4 = <b>. (4)

Our next move is to cut down the numbeT of possibilities embodied in (l)-(4) by
borrowing some arguments of Gallian [2]. Suppose that x is an element of G such that
xi C4 U C5. Since x£ C4, b(xy5)< b(xy6); since x£ C5, b(xy6)<b(x)<4—here we are using
that part of Lemma 2.1 of [6] stated as Lemma 2 of [2]. So fr(xy5)<2. It follows that
c((xy5: xt C4 U Cs» < 3, by Theorem 2 of [5] also to be found as Lemma 1 of [2]. Because
K = <xeG:x£C4U Cs> therefore has c(K) rs, 5, we see that K^ G. (In rough terms we can
say that "C4 and C5 must not be too small.")

This at once implies that (4) does not occur. Neither does (3), though this is less
obvious. First we note that if 4 < j < 5 then CJD must have order 4. Next we lose no
generality in taking b e C2, a

2b e C3, a e C4, ab e C5. As usual in these calculations we put

w = [xu x2, x3, x4, x5, x 6 ] * l ,

and we assume that x3 = a, x5 = b. Suppose every x; lies in {a, b} and take xr = a, x2=b.
Since abeCs, we lose no generality in putting x6 = b. Thus

w = [a, b, a, x4, b, b].

If x4 = b we find that w = 1 by applying (AB) to [a, b, a, x4] and noting that b e C2. If
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x4 = a then

w = [a, b, a; a, b\ bja, b, a, b, a, b] (JW)

= [a, b, a; a, b; b] (AB; beC2)

= [a, b, b; a, b, aT\a, b, a, b; a, b] (JW)

= 1 (AB;beC2).

Thus the final stage of the argument requires *! e D. If x4 = b then

[*!, x2, a, b][xlt x2, b, d]~\a, b, xu x2][a, b, x2, x j " 1 = 1 mod y5

gives w = 1, while if x4 = a then

w = [xx, x2, a; a, b; a] (JW; aeCJ

= [a, b; xlt x2; a; a r ' t a , fc, a; xu x2; a] (JW)

= 1 (x,eD).
So (3) does not occur.

In cases (1) and (2) G has at least three generators, and we make a remark which will
be important later: we can assume that the case when G is generated by two elements has
been disposed of.

Gallian's argument shows that in both (1) and (2) we can take C4 = (a, b, D),
C5 = (a, c, D). Correspondingly we can assume that x5 = c, x6 = b in the usual way. In fact,
we get more by applying (LN) to [ x j , . . . , x4, c]; we may suppose that in addition xx = c.
So

w = [c, x2) x3, x4, c, b].

We proceed to dispose of the subcase of (1) in which C2 = (b, c, D), C3 = {abc, D). We
can suppose that x3 = a. Since

[c, b, a][b, a, c][a, c,b]=l mod y4,

the composition of C2 shows that [c, b, a]= 1 mod y4, and so if x2=b then w = 1. So

w = [c, a, a, x4, c, b].
If x4 = b then

[c, a, a, b, c]^[c, a; a; b, c] (JW; fceC4)

= [t, c,a;c, a][b, c; c, a; a]'1 (JW)

= 1

because [b,c,a]^l and because aeC4. If x4 = c then w = l by (AB) and ceC2.
Therefore the fact that abce C3 shows that if x4= a then w = 1.

The subcase does not occur then, and we recapitulate by rewriting (1) and (2) as

C2 = (abc,D), C3 = (b,c,D), C4 = (a,b,D), C5 = (a, c, D), (V)

C2 = (abc,D), C3 = (bc,D), C4 = (a,b,D), C5 = (a, c, D). (2')
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Note that interchanging C2 and C3 in (2') gives nothing essentially new.
In (I1) we have w = [c, x2, x3, a, c, ft]. First suppose that x2

 = a. If x3 = c then (AB)
gives w = 1. If x3 = ft then

w = [c, a, b, a, c, b]

= [c, a; b, a; c; b] (JW;fteC3)

= [b, a, c; c, a; ft^c, a, c; b, a; b] (JW)

= [b, a, c, a, c, b] (JW; aeC4; beC4).

However both [b, a, a, a, c, b] and [b, a, b, a, c, ft] are trivial, because (LN) can be applied
to [b, a, x, a, c] and the composition of C4 used. The fact that abc e C2 then shows that
w = 1. Next we suppose that x3= a. In that case abceC2 implies that w = 1. So if x 2

= a
then w = 1.

If x 2
= b then we apply (LN) to [c, b, x3, a]; when x3 = b or c we have [c, ft, x3, a]= 1

because of C3, and so w = 1. It follows that if x3 = a then w = 1 because afcc 6 C2.
To complete the case (1') we discuss the implications of taking x2eD. Mod y5,

[c, x2, x3, a] = [c, x2, a, x3][c, x2; x3, a] (JW)

= [c, x2, a, x3]

because x2 e n C3 gives [x3, a; c, x2] = 1; so if x3 = b or c then w = 1 in view of C3, and
consequently if x3 = a then w = 1 because aftc€ C2. Thus if x2eD then w = 1.

In case (2') we have w = [c, x2, x3, x4, c, ft]. First suppose that x2 = a. It suffices to
prove that w = 1 whenever x3, x4e{a, c} in view of C2 and C3. But this is obvious.

Secondly suppose that x2= ft. If x4= ft then c(G)<6 by a remark above (note that we
may assume x3 = ft or c), so we take x4 = a. Mod y6 we have

[c, ft, x3, a, c] = [c, ft, x3; a, c] (JW; a e C4)

= [a, c, x3; c, ft][a, c; c, b; x-,]""1 (JW)

= [a, c, x3; c, ft] (x3eC4),

provided we assume (as we may) that x3 = a or ft. So

w = [a, c, x3, ft, c, ft]"1

since ft e C4, and w = 1 follows because the case x2 = a was dealt with in the previous
paragraph.

Thirdly suppose that x2eD. We may take

w = [c, x2, x3; x4, c;ft]

because x4 = a or ft in view of C3, and so x4e C4. Next we apply (LN) to (c, x2, x3, [x4, c]].
The fact that x 2 eD then shows that w = 1.

This completes the case (2') and with it the proof of the theorem.
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