GROUPS OF BREADTH FOUR HAVE CLASS FIVE

by I. D. MACDONALD

(Received 23 February, 1977)

A conjecture of reputable vintage states that $c(G) \le b(G) + 1$ for a finite p-group G of class c(G) and breadth b(G). This result has been proved in a medley of special cases and in particular whenever $b(G) \le 3$. We now prove it for b(G) = 4.

1. Introduction. Let G be a finite p-group and let C(x) denote the centraliser of the element x in G. The breadth b(x) is defined by

$$p^{b(x)} = |G:C(x)|,$$

and the breadth b = b(G) of G is defined by

$$b = b(G) = \max\{b(x) : x \in G\}.$$

Discussion of the conjecture that the class c(G) of the finite p-group G is bounded by b(G)+1 may be found in the references, especially [6] and [7]. The result for b(G)=1 was proved by Burnside [1, pp. 125-6]. Knoche [5] proved that $c(G) \le b(G)+1$ for $2 \le b(G) \le 3$. Other special cases have been studied. The general case may yet prove to be false. The results of [7] suggest that the cases with $b(G) \le 6$ may well be decisive because counter-examples with b(G)=6 are there presented to settle certain closely-related conjectures, which appear as Problems 3.5 and 3.6 in [6].

In this note we show that well-tried methods suffice to settle the case b(G) = 4. More precisely we prove:

THEOREM. If G is a finite p-group with b(G) = 4 then $c(G) \le 5$.

2. Definitions and preliminaries. To prove the theorem we need the apparatus of commutator manipulation. In this section we survey the necessary equipment and, to give a taste of the argument, apply the methods to the case b(G) = 3.

Let $x_1, x_2, \ldots, x_n, \ldots$ be elements of the group G. Then

$$[x_1, x_2] = x_1^{-1} x_2^{-1} x_1 x_2$$

and if $n \ge 2$ then

$$[x_1, x_2, \ldots, x_{n+1}] = [[x_1, x_2, \ldots, x_n], x_{n+1}].$$

We use the "semicolon notation", according to which

$$[x_1, \ldots, x_p; x_{p+1}, \ldots, x_{p+q}] = [c_p, c_q],$$

$$[x_1, \ldots, x_p; x_{p+1}, \ldots, x_{p+q}; x_{p+q+1}, \ldots, x_{p+q+r}] = [c_p, c_q, c_r],$$

Glasgow Math. J. **19** (1978) 141–148

and so on, where

$$c_p = [x_1, \ldots, x_p], c_q = [x_{p+1}, \ldots, x_{p+q}], c_r = [x_{p+q+1}, \ldots, x_{p+q+r}]$$

The terms $\gamma_i(G)$ of the lower central series of G are defined by putting $\gamma_1(G) = G$ and

$$\gamma_i(G) = \langle [x_1, \ldots, x_i] : x_1 \in G, \ldots, x_i \in G \rangle$$

for i > 1. The group G is said to have class n = c(G) if $\gamma_{n+1}(G) = 1$ but $\gamma_n(G) \neq 1$. The two-step centralisers C_i corresponding to the lower central series are defined for $1 \le i < c$ by

$$C_i = \langle x \in G : \text{ if } y \in \gamma_i(G) \text{ then } [x, y] \in \gamma_{i+2}(G) \rangle.$$

Notice that $C_i \neq G$, and that C_i is normal in G, for $1 \leq i < c$.

Next we summarise some useful results. The multilinearity property of commutators will be referred to (if at all) as (ML), at its frequent appearances; we are thinking of statements like

$$[y_1z_1, x_2, \ldots, x_n] \equiv [y_1, x_2, \ldots, x_n][z_1, x_2, \ldots, x_n] \mod \gamma_{n+1}.$$

(In fact what \equiv really denotes in statements like $u \equiv v \mod \gamma_{n+1}$ or $u \equiv v \mod \gamma_{n+1}(G)$ is that the cosets $u\gamma_{n+1}(G)$ and $v\gamma_{n+1}(G)$ in $G/\gamma_{n+1}(G)$ are equal.)

We denote by (JW) the result of a standard identity, namely

 $[c_p, c_q, c_r][c_q, c_r, c_p][c_r, c_p, c_q] \equiv 1 \mod \gamma_{p+q+r+1}$

or

$$[c_p, [c_q, c_r]] \equiv [c_p, c_q, c_r] [c_p, c_r, c_q]^{-1} \mod \gamma_{p+q+r+1}$$

where c_p , c_q , c_r are defined as above.

Two consequences of (JW) are helpful. The first, (LN), states that a commutator of the form $[x_1, \ldots, x_n]$ is the product of commutators like $[x_n, y_1, \ldots, y_{n-1}]$ and its inverse, mod γ_{n+1} , where $\{y_1, \ldots, y_{n-1}\} = \{x_1, \ldots, x_{n-1}\}$. The second is denoted by (AB):

 $[x_1, x_2, x_1, x_2] \equiv [x_1, x_2, x_2, x_1] \mod \gamma_5.$

Now consider a finite p-group G with breadth b and class c > b+1. We can make a reduction by replacing G with $G/\gamma_{b+3}(G)$, for an obvious inductive assumption allows us to suppose that the breadth of $G/\gamma_{b+3}(G)$ is not less than b. In other words, in proving the theorem we may take c(G) = b(G)+2.

Lemma 3.1 of [6] shows that $C_1 \cup \ldots \cup C_{c-1} \neq G$ implies that $c \leq b+1$. But $C_1 \leq C_i$ for 1 < i < c, as (LN) clearly implies. We shall prove that if $3 \leq b \leq 4$ then $c \leq b+1$ by first establishing: if $3 \leq b \leq 4$ and c = b+2 then $C_2 \cup \ldots \cup C_{b+1} \neq G$.

Let us consider the case of a finite p-group G with b(G) = 3 and c(G) = 5, and let us suppose that $G = C_2 \cup C_3 \cup C_4$. It is a known fact that if $D = C_2 \cap C_3 \cap C_4$ then G/D is non-cyclic of order 4, and though this is due to Scorza (1926), according to [3], a more convenient reference is [4].

https://doi.org/10.1017/S0017089500003530 Published online by Cambridge University Press

Therefore p = 2, $G = \langle a, b, D \rangle$, $C_2 = \langle a, D \rangle$, $C_3 = \langle b, D \rangle$, $C_4 = \langle ab, D \rangle$. Let x_1, \ldots, x_5 be elements of G for which $w = [x_1, \ldots, x_5] \neq 1$. Clearly D does not contain x_3 or x_4 or x_5 , and without losing generality we may take $x_3 = b$, $x_4 = a$. If we work mod $\gamma_5(G)$ then

$$[x_1, x_2, b, a] \equiv [x_1, x_2; b, a] [x_1, x_2, a, b]$$
 (JW).

But $[x_1, x_2, a, b] \equiv 1$ since for instance $a \in C_2$. Further

$$[x_1, x_2; b, a] \equiv [a, b; x_1, x_2]$$

and another application of (JW), whose details we suppress, shows that if x_1 or x_2 lies in D, and so in both C_2 and C_3 , then $[a, b; x_1, x_2] \equiv 1$. So we may assume that $x_1 = a$, $x_2 = b$, in which case by (AB),

$$[x_1, x_2, x_3, x_4] = [a, b, b, a] \equiv [a, b, a, b].$$

Since $a \in C_2$, it follows that w = 1. This is a contradiction, and shows that $G \neq C_2 \cup C_3 \cup C_4$. The result that if b = 3 then $c \le 4$ follows as explained above.

3. Proof of the theorem: the redundant case. In order to prove the theorem we suppose that G is a finite p-group with b(G) = 4, c(G) = 6, and $G = C_2 \cup C_3 \cup C_4 \cup C_5$. The calculations in this case will be presented in a more succinct form than above.

A complication immediately arises, for G may be the union of just three of the proper subgroups $C_i(2 \le i \le 5)$, and disposing of this case is not trivial. Consideration of subcases is necessary. We always suppose that $w \ne 1$ where

$$w = [x_1, x_2, x_3, x_4, x_5, x_6].$$

(i) Suppose that $G = C_3 \cup C_4 \cup C_5$. Put $D = C_3 \cap C_4 \cap C_5$, $C_3 = \langle a, D \rangle$, $C_4 = \langle b, D \rangle$, $C_5 = \langle ab, D \rangle$. We take $x_4 = b$, $x_5 = a$, $x_6 = a$.

Our first aim is to show that no x_i lies in D. By (LN), if some $x_i \in D$ then we can take i = 1. We have

$$[x_1, x_2, x_3, b, a] \equiv [x_1, x_2, x_3; b, a] \qquad (JW; a \in C_3)$$

and

$$w = [x_1, x_2, x_3; b, a; a]$$

= [a, b, a; x_1, x_2, x_3][x_1, x_2, x_3, a; b, a] (JW).

The former of these commutators is trivial because $x_1 \in C_3 \cap C_4 \cap C_5$ —note that (JW) is used here—and the latter because $a \in C_3$. So if $x_i \in D$ then w = 1.

This means that we can take $x_1 = a$, $x_2 = b$. But if $x_3 = a$ then (AB) gives w = 1; so $x_3 = b$. Then

$$w = [a, b, b, b, a, a]$$

= [a, b, b; a, b; a]⁻¹ (JW; a \epsilon C_3)
= [a, b, a; a, b, b][a, b, b, a; a, b]⁻¹ (JW)
= [a, b, a; [a, b], b] (a \epsilon C_3)
= [a, b, a; a, b; b][a, b, a, b; a, b]⁻¹ (JW)
= 1 (AB; a \epsilon C_3).

(ii) Suppose that $G = C_2 \cup C_4 \cup C_5$. Put $D = C_2 \cap C_4 \cap C_5$, $C_2 = \langle a, D \rangle$, $C_4 = \langle b, D \rangle$, $C_5 = \langle ab, D \rangle$. We take $x_3 = b$, $x_5 = a$, $x_6 = a$.

Note that since

$$[x_1, x_2, b] \equiv [b, x_2, x_1][b, x_1, x_2]^{-1} \mod \gamma_4$$

we have w = 1 if $x_1 \in D$ and $x_2 \in D$; or if $x_1 \in D$ and $x_2 = a$. Indeed we can suppose that $x_1 \in D$ or $x_1 = a$, and that $x_2 = b$.

Let us next consider x_4 . If $x_4 \in D$ then

$$w = [x_1, b, b, x_4, a, a]$$

= [x₁, b, b; x₄, a; a][x₁, b, b, a, x₄, a] (JW)
= [x₁, b, b; x₄, a; a] (x₄ \in C₄)
= [x₄, a, a; x₁, b, b]⁻¹[x₁, b, b, a; x₄, a] (JW)
= 1 (a \in C₂; x₄ \in C₄ \cap C₄ \cap C₅).

Next suppose that $x_4 = a$. If c and d are commutators of weight 2 then modulo γ_6 we have

$$[c, d, a] \equiv [d, a, c]^{-1}[c, a, d]$$
 (JW)

and in our case, with $a \in C_2$, we have w = 1. We conclude therefore that we can take $x_4 = b$ without losing any generality.

Finally we can take $x_1 = a$ by the following reasoning. If (LN) is applied to $[x_1, b, b, b, a]$ then this element becomes a product (modulo γ_6) of commutators of the form $[a, \ldots]^{\pm 1}$, all of which are trivial when both b and x_1 lie in C_4 . Therefore $x_1 \notin D$, and as above we have $x_1 = a$. Then

$$w = [a, b, b, b, a, a]$$

= [a, b, b; a, b; a]⁻¹[a, b, b, a, b, a] (JW)
= [a, b, a; a, b, b][a, b, b, a; a, b]⁻¹ (JW)
= 1 (a \in C_2).

Note that $[a, b, b, a] \equiv 1$ because $a \in C_2$.

(iii) The cases in which C_4 is redundant and C_5 is redundant may be combined. Make the obvious definitions of D and put $C_2 = \langle a, D \rangle$, $C_3 = \langle b, D \rangle$. We take $x_3 = b$, $x_4 = a$; and applying (JW) twice to

$$[x_1, x_2; a, b][a, b; x_1, x_2] \equiv 1 \mod \gamma_5$$

we obtain

$$[x_1, x_2, a, b][x_1, x_2, b, a]^{-1}[a, b, x_1, x_2][a, b, x_2, x_1]^{-1} \equiv 1.$$

It is clear that if $x_1 \in D$ then w = 1. So by (LN), every entry of w may be chosen from $\{a, b\}$. But in that case [a, b, b, a] = [a, b, a, b] = 1, and we are finished.

4. Proof of the theorem: the irredundant case. In this section we suppose that G is

a finite p-group with b(G) = 4, c(G) = 6, and $G = C_2 \cup C_3 \cup C_4 \cup C_5$ as above, but G is not the union of any three of the C_i . Put $D = C_2 \cap C_3 \cap C_4 \cap C_5$. We have to consider the possibilities for G/D and, just as important, for each C_i/D .

Fortunately the structure of a group covered by four proper subgroups has been given by Greco [3] and by Neumann [8]. For convenience we use the latter reference. Thus either p=2 and |G:D|=8, or p=3 and |G:D|=9.

Because the results of [8] do not give us the coverings of G/D in the various cases we shall need a little elaboration. Let H be a finite p-group which is irredundantly the union of its proper subgroups S_1 , S_2 , S_3 , S_4 whose intersection is trivial. Suppose first that p = 2 and that H is elementary abelian, $H = \langle a, b, c \rangle$. We may choose a, b, c so that $S_1 = \langle a, b \rangle$ and $S_2 = \langle a, c \rangle$ (see the table on p. 239 of [8]). Some juggling shows that in case (i) of that table we can choose a, b, c so that

$$S_1 = \langle a, b \rangle, \qquad S_2 = \langle a, c \rangle, \qquad S_3 = \langle b, c \rangle, \qquad S_4 = \langle abc \rangle.$$
 (1)

Case (ii) which is simpler yields

$$S_1 = \langle a, b \rangle, \qquad S_2 = \langle a, c \rangle, \qquad S_3 = \langle bc \rangle, \qquad S_4 = \langle abc \rangle.$$
 (2)

Another possibility is that H is abelian of order 8 and $H = \langle a, b \rangle$ with $a^4 = b^2 = 1$. Though case (i) does not occur now, case (ii) gives

$$S_1 = \langle a \rangle, \qquad S_2 = \langle ab \rangle, \qquad S_3 = \langle b \rangle, \qquad S_4 = \langle a^2 b \rangle.$$
 (3)

Finally we may have p = 3 and $H = \langle a, b \rangle$ of order 9 with

$$S_1 = \langle a \rangle, \qquad S_2 = \langle ab \rangle, \qquad S_3 = \langle a^2b \rangle, \qquad S_4 = \langle b \rangle.$$
 (4)

Our next move is to cut down the number of possibilities embodied in (1)-(4) by borrowing some arguments of Gallian [2]. Suppose that x is an element of G such that $x \notin C_4 \cup C_5$. Since $x \notin C_4$, $b(x\gamma_5) < b(x\gamma_6)$; since $x \notin C_5$, $b(x\gamma_6) < b(x) \le 4$ —here we are using that part of Lemma 2.1 of [6] stated as Lemma 2 of [2]. So $b(x\gamma_5) \le 2$. It follows that $c(\langle x\gamma_5 : x \notin C_4 \cup C_5 \rangle) \le 3$, by Theorem 2 of [5] also to be found as Lemma 1 of [2]. Because $K = \langle x \in G : x \notin C_4 \cup C_5 \rangle$ therefore has $c(K) \le 5$, we see that $K \ne G$. (In rough terms we can say that " C_4 and C_5 must not be too small.")

This at once implies that (4) does not occur. Neither does (3), though this is less obvious. First we note that if $4 \le i \le 5$ then C_i/D must have order 4. Next we lose no generality in taking $b \in C_2$, $a^2b \in C_3$, $a \in C_4$, $ab \in C_5$. As usual in these calculations we put

$$w = [x_1, x_2, x_3, x_4, x_5, x_6] \neq 1,$$

and we assume that $x_3 = a$, $x_5 = b$. Suppose every x_i lies in $\{a, b\}$ and take $x_1 = a$, $x_2 = b$. Since $ab \in C_5$, we lose no generality in putting $x_6 = b$. Thus

$$w = [a, b, a, x_4, b, b].$$

If $x_4 = b$ we find that w = 1 by applying (AB) to $[a, b, a, x_4]$ and noting that $b \in C_2$. If

 $x_4 = a$ then

$$w = [a, b, a; a, b; b][a, b, a, b, a, b]$$
(JW)
= [a, b, a; a, b; b] (AB; b \in C_2)
= [a, b, b; a, b, a]^{-1}[a, b, a, b; a, b] (JW)
= 1 (AB; b \in C_2).

Thus the final stage of the argument requires $x_1 \in D$. If $x_4 = b$ then

$$[x_1, x_2, a, b][x_1, x_2, b, a]^{-1}[a, b, x_1, x_2][a, b, x_2, x_1]^{-1} \equiv 1 \mod \gamma_5$$

gives w = 1, while if $x_4 = a$ then

$$w = [x_1, x_2, a; a, b; a]$$
(JW; $a \in C_4$)
= $[a, b; x_1, x_2; a; a]^{-1}[a, b, a; x_1, x_2; a]$ (JW)
= 1($x_1 \in D$).

So (3) does not occur.

In cases (1) and (2) G has at least three generators, and we make a remark which will be important later: we can assume that the case when G is generated by two elements has been disposed of.

Gallian's argument shows that in both (1) and (2) we can take $C_4 = \langle a, b, D \rangle$, $C_5 = \langle a, c, D \rangle$. Correspondingly we can assume that $x_5 = c$, $x_6 = b$ in the usual way. In fact, we get more by applying (LN) to $[x_1, \ldots, x_4, c]$; we may suppose that in addition $x_1 = c$. So

$$w = [c, x_2, x_3, x_4, c, b].$$

We proceed to dispose of the subcase of (1) in which $C_2 = \langle b, c, D \rangle$, $C_3 = \langle abc, D \rangle$. We can suppose that $x_3 = a$. Since

$$[c, b, a][b, a, c][a, c, b] \equiv 1 \mod \gamma_4$$

the composition of C_2 shows that $[c, b, a] \equiv 1 \mod \gamma_4$, and so if $x_2 = b$ then w = 1. So

$$w = [c, a, a, x_4, c, b].$$

If $x_4 = b$ then

$$[c, a, a, b, c] \equiv [c, a; a; b, c] \qquad (JW; b \in C_4)$$
$$\equiv [b, c, a; c, a][b, c; c, a; a]^{-1} \qquad (JW)$$
$$\equiv 1$$

because $[b, c, a] \equiv 1$ and because $a \in C_4$. If $x_4 = c$ then w = 1 by (AB) and $c \in C_2$. Therefore the fact that $abc \in C_3$ shows that if $x_4 = a$ then w = 1.

The subcase does not occur then, and we recapitulate by rewriting (1) and (2) as

$$C_2 = \langle abc, D \rangle, \qquad C_3 = \langle b, c, D \rangle, \qquad C_4 = \langle a, b, D \rangle, \qquad C_5 = \langle a, c, D \rangle, \qquad (1')$$

$$C_2 = \langle abc, D \rangle, \quad C_3 = \langle bc, D \rangle, \quad C_4 = \langle a, b, D \rangle, \quad C_5 = \langle a, c, D \rangle.$$
 (2)

Note that interchanging C_2 and C_3 in (2') gives nothing essentially new.

In (1') we have $w = [c, x_2, x_3, a, c, b]$. First suppose that $x_2 = a$. If $x_3 = c$ then (AB) gives w = 1. If $x_3 = b$ then

$$w = [c, a, b, a, c, b]$$

= [c, a; b, a; c; b] (JW; b \epsilon C_3)
= [b, a, c; c, a; b]^{-1}[c, a, c; b, a; b] (JW)
= [b, a, c, a, c, b] (JW; a \epsilon C_4; b \epsilon C_4).

However both [b, a, a, a, c, b] and [b, a, b, a, c, b] are trivial, because (LN) can be applied to [b, a, x, a, c] and the composition of C_4 used. The fact that $abc \in C_2$ then shows that w = 1. Next we suppose that $x_3 = a$. In that case $abc \in C_2$ implies that w = 1. So if $x_2 = a$ then w = 1.

If $x_2 = b$ then we apply (LN) to $[c, b, x_3, a]$; when $x_3 = b$ or c we have $[c, b, x_3, a] \equiv 1$ because of C_3 , and so w = 1. It follows that if $x_3 = a$ then w = 1 because $abc \in C_2$.

To complete the case (1') we discuss the implications of taking $x_2 \in D$. Mod γ_5 ,

$$[c, x_2, x_3, a] \equiv [c, x_2, a, x_3][c, x_2; x_3, a] \quad (JW)$$
$$\equiv [c, x_2, a, x_3]$$

because $x_2 \in \cap C_3$ gives $[x_3, a; c, x_2] \equiv 1$; so if $x_3 = b$ or c then w = 1 in view of C_3 , and consequently if $x_3 = a$ then w = 1 because $abc \in C_2$. Thus if $x_2 \in D$ then w = 1.

In case (2') we have $w = [c, x_2, x_3, x_4, c, b]$. First suppose that $x_2 = a$. It suffices to prove that w = 1 whenever $x_3, x_4 \in \{a, c\}$ in view of C_2 and C_3 . But this is obvious.

Secondly suppose that $x_2 = b$. If $x_4 = b$ then c(G) < 6 by a remark above (note that we may assume $x_3 = b$ or c), so we take $x_4 = a$. Mod γ_6 we have

$$[c, b, x_3, a, c] \equiv [c, b, x_3; a, c] \qquad (JW; a \in C_4)$$
$$\equiv [a, c, x_3; c, b] [a, c; c, b; x_3]^{-1} \qquad (JW)$$
$$\equiv [a, c, x_3; c, b] \qquad (x_3 \in C_4),$$

provided we assume (as we may) that $x_3 = a$ or b. So

$$w = [a, c, x_3, b, c, b]^{-1}$$

since $b \in C_4$, and w = 1 follows because the case $x_2 = a$ was dealt with in the previous paragraph.

Thirdly suppose that $x_2 \in D$. We may take

$$w = [c, x_2, x_3; x_4, c; b]$$

because $x_4 = a$ or b in view of C_3 , and so $x_4 \in C_4$. Next we apply (LN) to $(c, x_2, x_3, [x_4, c]]$. The fact that $x_2 \in D$ then shows that w = 1.

This completes the case (2') and with it the proof of the theorem.

REFERENCES

1. W. Burnside, Theory of Groups of Finite Order, (Dover, 1955).

2. Joseph A. Gallian, On the breadth of a finite p-group, Math. Z. 126 (1972), 224-226.

3. Donato Greco, I gruppi finiti che sono somma di quattro sottogruppi, Rend. Accad. Sci. Fis. Mat. Napoli (4) 18 (1951), 74-85.

4. Seymour Haber and Azriel Rosenfeld, Groups as unions of proper subgroups, Amer. Math. Monthly 66 (1959), 491-494.

5. Hans-Georg Knoche, Über den Frobenius' schen Klassenbegriff in nilpotenten Gruppen II. Math. Z. 59 (1953), 8-16.

6. C. R. Leedham-Green, Peter M. Neumann and James Wiegold, The breadth and the class of a finite p-group, J. London Math. Soc. (2) 1 (1969), 409-420.

7. I. D. Macdonald, The breadth of finite p-groups I. Proc. Royal Soc. Edinburgh Sect A 78 (1977), 31-39.

8. B. H. Neumann, Groups covered by finitely many cosets, Publ. Math. Debrecen 3 (1954), 227-242.

DEPARTMENT OF MATHEMATICS University of Stirling Stirling Scotland