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ESTIMATES FOR FOURIER COEFFICIENTS OF

SIEGEL CUSP FORMS OF

DEGREE TWO, II
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Introduction

Let F be a Siegel cusp form of integral weight k on Γ2: = Sp2 (Z) and denote

by a(T) (T a positive definite symmetric half-integral (2,2)-matrix) its Fourier

coefficients. In [2] Kitaoka proved that

(1) a(T) « ε , F (det T)k/2~1/4+ε (ε > 0)

(the result is actually stated only under the assumption that k is even).

In our previous paper [3] it was shown that one can attain

(2) a(T) «ε,F(det T)k/2~um+ε (ε > 0)

provided that — 4det T is a fundamental discriminant, i.e. is the discriminant of

an imaginary quadratic field. Unlike Kitaoka's proof of (1) which was based on

estimates for generalized matrix argument Kloosterman sums which occur in the

Fourier coefficients of Poincare series of exponential type on Γ2, the method of [3]

used a combination of appropriate bounds both for the Fourier coefficients c(n, r)

of Jacobi cusp forms {n, r e Z; D '= r2 — 4mn a negative fundamental discrimi-

nant) and for the Petersson norms of the Fourier-Jacobi coefficients of F.

The purpose of the present paper is to prove that (2), in fact, is true for all

positive definite T (§ 2, Theorem). To do so we shall show that the estimate for

the coefficients c(n, r) referred to above, is true for all indices (w, r) with

D < 0 (§ 1, Proposition). The proof which is rather different from that given in

[3] in the special case where D is fundamental, is based on a closer direct inves-

tigation of the linear combination of Kloosterman sums occurring in the Fourier

coefficients of Poincare series on the Jacobi group. In particular, we shall connect

the latter with Salie sums and shall use similar arguments as those given in § 3 of
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Iwaniec's paper [1].

The rest of the proof of (2) in the general case follows the same pattern as in

[3]. We shall recall it briefly in § 2, for the reader's convenience.

§ 1. Estimates for Fourier coefficients of Jacobi forms

We let it be the upper half-plane. We put Γ\ — SL2(Z) and denote by Γ( '- —

Γ\ IX Z2 the Jacobi group which in the usual way operates on f X C.

If φ(τ, z) (r ^ $t, z e C) is a Jacobi cusp form of weight k ^ Z and index

m ^ N, we write

|| 0 ||2 = f I φ(z9 z) \2e-**mtfi/vΌk-a dudvdxdy ( Γ = u + iVy z = x + iy)

for the square of the Petersson norm of φ.

We shall prove

PROPOSITION. Let φ be a Jacobi cusp form of weight k > 2 and index m on Γ(

and let c(n, r) (n, r e Z; D '= r2 — 4mn < 0) be its Fourier coefficients. Then

D Λ/2-3/4
c(n, r) <ε,k(m + D | 1 / 2 + ε ) 1 / 2 J— { k _ 1 ) / 2 '\\Φ\\ (ε > 0)

w/ιgf£ ί/ie constant implied in C depends only on ε and k.

If Z) is a fundamental discriminant, this was proved in [3, §1]. Inspecting the

proof one checks that the hypothesis that D be fundamental was only used in

showing the estimate

(3) HmΛn, r, n, ± r) <εc-1/2+ε(D, c) (ε > 0)

where

Hm,c(n, r, n, ± r) := c~3/2 Σ ec((mx2 + rx + ή) y + ny ± γχ)e2mc(±r2)
xic),y(c)*

(notation: x resp. y run through Z/cZ resp. (Z/cZ)*, we have written y for an in-

verse of y (mod c) and ea{b) : = ^27r/7>/β for α e N, δ e Z/αZ), cf. [3, §1, Lemma].

To prove the proposition it is therefore sufficient to show that (3) is valid for

an arbitrary negative discriminant D. This is implied by the following

https://doi.org/10.1017/S0027763000004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004268


FOURIER COEFFICIENTS OF CUSP FORMS 1 7 3

LEMMA. For mf c e N and n, r e Z /wί

Hm,c(n, r) '-= Σ ec((mx2 + rx + ή)y + ny + r.r)
JΓ(c),tf(C)*

(same notation as above). Put D '-= r2 — 4mn. Then

(4) #± ) C («, r) « ε c 1 + ε ( β , c) (ε > 0).

Pwo/ Suppose that c = C\C2 with Ci, c2

 e N and (ci, c2) — 1. Write x =

X1C2 + X2C1 (mod t ) with x{ e Z/ciZ (/ = 1, 2) and ^ = 2/1̂ 2̂ 2 + UiCiCi (mod t)

with yi e (Z/c/Z)* (z = 1, 2) and where Ci resp. c"2 denote inverses of Ci resp.

c2 mod c2 resp. mod d (thus r̂ = y[ ~c2 c2 + ¥2 ~C\ C\ (mod c)). Then it is easily

checked that

H£tC(n, r) = #mci,c2 (nci, r) H£C2,ci (nc2tr).

Since D = r 2 — 4mciW?l (mod c2) and ΰ = r 2 — Amc2ήc2 (modcO, it is, there-

fore sufficient to prove (4) for c a prime power, c — pv (v > 1).

We shall distinguish several cases. Denote by pu (μ > 0) resp. pp (p > 0)

the exact ^-power of m resp. r (we put μ, — °° resp. p — °° if m = 0 resp.

r = 0).

We shall first look at the trivial case where μ > v. Then

H£,c(n, r) = Σ epv((rx + ή) y + ny ± rx)
x(pv),y(p»)*

= Σ ep,(n(y + y)) Σ ep,((y ± l)x)
y(pv)* χ(pv)

= pv Σ eP»(n(y + y)).
y(pv)*,r(y±l)=0(p»)

The number of elements y in (Z/^VZ)* with r{y± 1) = 0(pv) is Δp™^™\

Άnάpmm{v,p} <pm\niu,2p,ιΛ<φ9 pι>) s i n c e v < μ ^ 0 (4) follows.

Now suppose that μ < v and write

H£Λn,r)= Σ ( Σ eAymx2 + r(y ± l)x + n(y + y))).
y{pv)* \(pv) • '

If in the inner sum x is replaced by x + pv~u, then the inner sum is multiplied

with ePu(r(y ± 1)), hence vanishes unless pu X r(y ± 1). Therefore

H£Λn, r)=p» Σ eP»{n{y + y)) Σ eP^ (y~x2 + r ( ^ 1 } x).
y(pv)*,r(y±l)=0(p») zipv-n) χ pμ pμ '

In the following we shall assume that p Φ 2 (the case p — 2 which is similar,

will be left to the reader). If we use the standard formula (Gauss sum)
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(5) Σ ePr(ax2 + bx) = pΎ/2e{pr)[~] ePr ( - b2- Ta)
x(pΌ XpT/

(p odd, p X a; ε(pr) = 1 or i according as pr = l(mod 4) or = 3 (mod 4);

f (ti i
and b = — u

P" P"

_ t% f (ti i 1)
4α 4α Ξ 1 (mod^>r)) with γ = ι> — μ, a — y— and b = — u we find

P" P"
, r) = / > ω + * y))

m

If Mi denotes an inverse of 4 —

conveniently be written as

(6) m,c(n, r) = p(v-u)/2ε(p"-

the latter equality can more

2r2mι)

y)).

The number of summands in the sum over y in (6) is ^ pv+u. Hence

\H*Λn, r)\ <p(^)/2'P^f

and this is less than (pu)1+ε(D, pv) if pv \ D, since μ < v by assumption.

Now suppose that pλ(λ > 0, λ < v) exactly divides D. We then see from (6)

that

where

H£Λn, r)

a '-= v — λ + μ, K '= — p, 0}, Δ: = —
.

Note thatp X Δ. We shall simply write S for Sfr,p

To prove (4) we have to show that

(7) S <εp
εv-pω+u)/2.

The number of summands in S is < pa~κ = pW2+«'2-<*+*'*\ hence is

< p{v+»)/2 if a/2 < K + λ/2. We may therefore suppose that

(8) a/2 > K + λ/2.
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If a = 1 (so μ = tc = λ = 0, v = 1), then S is a Salie sum, hence

S<εp
1/2+ε,

by Lemma 4 in [1] with a = 1 and (7) follows.

Let us now suppose that a > 2. To prove (7) we shall use similar arguments

as those given in the proof of Lemma 4 in [1] in the case a > 2.

First assume that a is even, a = 2/3, β > 1. Write y = u + vpβ (mod p2β)

with ^ resp. f running over (Z/pβZ)* resp. Z/^Z. Then y = ΰ — ΰ2υpβ (mod

^ 2 / 3 ) , where ΰu = 1 (mod ^ 2 0 , hence using (8) we find

S = Σ (fV+V(zl(w + «)) Σ epβ(Δ(u2 -

( 1/ \ V+ti

f) epa(Δ(u + ΰ)).

The congruence u2 = 1 (mod pβ) has two solutions ± 1 in Z/pβZ, whence

I S\ < 2pβ = 2pω~λ+u)/2 <εp
εv-p{v+u)/2.

Suppose that α = 2^ + 1, β > 1. Write y=uΛ- vpβ+1 (mod p2β+ι) with

M e (Z/pβ+1Z)*, v e Z/^^Z. Then y - ΰ - ^ 2 ^ ^ + 1 (mod^2^+ 1>, where ^ Ξ 1

(mod p2β+1), so by (8) we get

S= Σ (fY+UeP«(Δ(u + u)) Σ ^ ( 4 ( « 2

= pβ Σ^ {-) ePa(Δ(u + ύ)).

The solutions to u2 = 1 (mod^O in Z/pβ+1Z are given by u = ± 1 + wpβ with

w ranging over Z/pZ, and then ΰ = ± 1 — wpβ ±w2p2β (mod ^ 2 / 3 + 1 ) .

Note that (8) implies that β > K. Therefore

pβepa(2 Δ) Σ ep(Δ w2) + psepa{- 2 Δ) ( - ^ - 1 Σ eP{- Δw2) (K = 0)

pβepa(T 2 Δ) - ^ Σ ep(- Δ w2)
X P ' wip)

hence by (5) with y — 1 we find

5 I < 2 ^ + 1 / 2 = 2piv-λ+u)/2 <εp
εv'p{v+u)/2.

This proves the Lemma.
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§ 2. Estimates for Fourier coefficients of Siegel cusp forms

Using the Proposition of §1 we shall show in the same way as in [3]:

THEOREM. Let F be a Siegel cusp form of integral weight k on Γ2 and denote by

a(T) (T a positive definite symmetric half-integral (2,2) -matrix) its Fourier coeffi-

cients. Then

(9) a{T) « ε,F (det T)k/2~13/36+ε (ε > 0).

We briefly recall the idea of proof. We may suppose that F Φ O (hence k > 10 as

is well-known). Both sides of (9) are invariant if T is replaced by U'TU

in r/2\
(U e GL2(Z)), so we may assume that T = ( ^ m ) w i t n m ~ m i n ^ where

min T denotes the least positive integer represented by T.

If φm (m e N) denote the Fourier-Jacobi coefficients of F, then it was proved

in [3, §2, Theorem 2] that

(10) || φ m || « ε , F m k / 2 - 2 / 9 + ε ( ε > 0 ) .

Observing that a(T) is the (n,r)-th Fourier coefficient of φm and combining

the Proposition in §1, the estimate (10) and the bound m — min Γ < (det Γ ) 1 / 2

(which is well-known from reduction theory), we obtain (9).
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