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H will denote a Hilbert space of infinite dimension, 35 (H) the algebra of bounded
linear operators on H, and 3£(H) the ideal of compact operators on H. We let a, ae and
cr^ denote the spectrum, essential spectrum and Weyl spectrum respectively. It is well
known that for arbitrary TeSft(H) we have by [5]

CTC(T) = <r(T + 3if(H)) = <r(T)\{A e <r(T): A1 - T is a Fredholm operator}
and

crjT)= H cr(T + K)
KtsX(H)

= a(T)\{X. e cr(T): A1 - T is a Fredholm operator of index zero}
and

A will always denote a non-empty compact subset of the plane. We say A is a lifting
set (for H) if for every TeS8(H) with <re(T) = A there exists KeX(H) such that
a(T+K) = A. (It is easily seen that there is always some TeS8(H) with ae(T) = A.) We
show that A is a lifting set if and only if it has no holes. The following theorem is stated for
reference (see also [1]). The result is due to Stampfli [6].

THEOREM 1. For any Te38(H) there exists KeSif(H) such that o-(T+K) = a(1>(T).

The following result is immediate from this theorem.

LEMMA 2. A is a lifting set if and only if ae(T) = aw(T) for every TeS8(H) such that
MT) = A.

THEOREM 3. A is a lifting set if and only if A is polynomially convex.

Proof. Suppose A is a lifting set, but is not polynomially convex. Let w be any hole of
A. It is a consequence of Berger and Shaw [2] that there exists TeS8(i-f) with cre(T) = A
and ind(A/-T) = 1 (A eo>). (Here ind denotes the Fredholm index.) Now since A is a
lifting set, cr(0(T) = cre(T) by the Lemma. But

o-JT) = <re(T)U{A : A / - T is Fredholm and ind (A/- T) + 0}.

Hence (o<=.alll(T) = ae(T) = A. This contradiction shows that lifting sets have no holes.
Conversely, suppose A is polynomially convex, and let <rf,(T) = A. By Stampfli's

theorem there exists Ke%(H) with o-(U(T) = cr(T+iC). Also, a^(T) consists of ae(T) with
some of its holes [4], and so in this case A = ae(T) = cr(i)(T) = cr(T+K). Thus A is a lifting
set.

It is interesting to note that the well-known result of West [7] that a Riesz operator T
can be written T = Q + K, where Q is quasinilpotent and KeJ{{H), says precisely that {0}
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is a lifting set. (By the Ruston characterization of Riesz operators [3 p. 43], T is Riesz if
and only if cre(T) = {0}.) It is unknown whether the West decomposition of a Riesz
operator holds in arbitrary Banach spaces.
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