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Abstract

It is an open question whether every derivation of a Fréchet GB∗-algebra A[τ] is continuous. We give an
affirmative answer for the case where A[τ] is a smooth Fréchet nuclear GB∗-algebra. Motivated by this
result, we give examples of smooth Fréchet nuclear GB∗-algebras which are not pro-C∗-algebras.
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1. Introduction

The algebras known as GB∗-algebras (that is, generalised B∗-algebras) are locally
convex ∗-algebras which are generalisations of C∗-algebras. They were introduced
in [4] by Allan in 1967, and the concept was later extended by Dixon in [11]
to incorporate nonlocally convex algebras. GB∗-algebras are also abstract algebras
of unbounded operators in the sense that the well-known Gelfand–Naimark
representation theorem for C∗-algebras extends to GB∗-algebras [11, Theorems 7.6
and 7.11].

Algebras of unbounded operators are important in quantum physics and quantum
statistical mechanics, in that the observables of a quantum mechanical system are
regarded as unbounded self-adjoint operators on a Hilbert space and the time evolution
of the system can be modelled by one-parameter automorphism groups of the latter
algebras. Furthermore, derivations are the generators of these groups [8].

If X is a bimodule over an algebra A, then we call a linear map δ : A→ X a
derivation if δ(ab) = aδ(b) + δ(a)b for all a, b ∈ A. The derivation δ is said to be inner
if there exists an x ∈ X such that δ(a) = ax − xa for all a ∈ A. It is well known that the
zero derivation is the only derivation of a commutative C∗-algebra [23, Corollary 2.2.8]
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and that all derivations of a C∗-algebra are continuous [23, Theorem 2.3.1]. Also, all
derivations of a von Neumann algebra are inner [23, Theorem 2.5.3]. An abundance of
automatic continuity results for derivations of Banach algebras can be found in [10].

The article of Brödel and Lassner [9] is the first article about derivations of
unbounded operator algebras to appear in the literature. Much later, in 1992, Becker
proved that every derivation δ : A→ A of a pro-C∗-algebra A[τΓ] is continuous [5,
Proposition 2]. By a pro-C∗-algebra, we mean a complete topological ∗-algebra A[τΓ]
for which there exists a directed family of C∗-seminorms defining the topology τΓ [13].

Becker also proved that commutative pro-C∗-algebras have no nonzero
derivations [5, Corollary 3]. Other results concerning derivations of nonnormed
topological ∗-algebras and unbounded operator algebras can be found in [1, 2, 6, 18,
26, 28, 30]. For a detailed survey of derivations of locally convex ∗-algebras, see [17].

All of the above, together with [17, discussion after Theorem 5.2], provide
motivation for a general investigation of derivations of GB∗-algebras. In [28],
we proved that a complete commutative GB∗-algebra having jointly continuous
multiplication has no nonzero derivations [28, Theorem 3.3]. In particular, every
Fréchet commutative GB∗-algebra has no nonzero derivations [28, Corollary 3.4].

A nuclear GB∗-algebra is a GB∗-algebra for which A[B0] is a nuclear C∗-
algebra [16]. Clearly, every commutative GB∗-algebra is a nuclear GB∗-algebra. Some
basic properties and examples of nuclear GB∗-algebras can be found in [16]. For
instance, [16, Theorem 6.8] is a characterisation of nuclear GB∗-algebras.

If A[τ] is a locally convex algebra with a defining family of seminorms Γ and X[τ′]
is a locally convex A-bimodule, then we say that X[τ′] is a τ − τ′ smooth A-bimodule if
there exist defining families of seminorms {pλ : λ ∈ Λ0} and {qα : α ∈ Λ1} for A[τ] and
X[τ′], respectively, such that Λ0 and Λ1 are directed and such that, for every α ∈ Λ1,
there exists λ ∈ Λ0 such that qα(ax) ≤ pλ(a)qα(x) and qα(xa) ≤ pλ(a)qα(x) for all a ∈ A
and x ∈ X.

We say that the locally convex algebra A[τ] is smooth if there exists a defining
family of seminorms {pλ : λ ∈ Λ0} for A[τ] such that, for every λ ∈ Λ0, there exists
µ ∈ Λ0 such that pλ(ab) ≤ pµ(a)pλ(b) and pλ(ba) ≤ pµ(a)pλ(b) for all a, b ∈ A. We say
that this family of seminorms is smooth. It is clear that every smooth locally convex
algebra is a smooth locally convex bimodule over itself.

Smooth modules were introduced in an attempt to generalise a result of Sheinberg
concerning the flatness of cyclic Banach modules over Banach algebras to locally
convex modules over locally convex algebras. This leads to a characterisation of the
notion of amenability in the context of Fréchet algebras (see [20] in this regard). Some
general information concerning smooth modules can be found in [21].

It is an open question whether every derivation of a Fréchet GB∗-algebra is
continuous. The purpose of this article is to give a partial answer to this question. To be
more specific, we prove in Section 4 that every derivation of a smooth Fréchet nuclear
GB∗-algebra is continuous. In [29], we proved that every derivation of a Fréchet GB∗-
algebra A[τ] is continuous, for which A[B0] is a W∗-algebra. It is clear that every pro-
C∗-algebra is a smooth GB∗-algebra and, in Section 3, motivated by the main result
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in Section 4, we give examples of smooth Fréchet nuclear GB∗-algebras which are
not pro-C∗-algebras in general. Section 2 consists of all the necessary background for
understanding and proving the main results of this paper.

2. Preliminaries

All vector spaces in the paper are over the field C of complex numbers and all
topological spaces are assumed to be Hausdorff. Moreover, all algebras are assumed
to have an identity element denoted by 1.

A topological algebra is an algebra which is also a topological vector space such
that the multiplication is separately continuous in both variables [13]. A topological
∗-algebra is a topological algebra endowed with a continuous involution. A topological
∗-algebra which is also a locally convex space is called a locally convex ∗-algebra. The
symbol A[τ] will stand for a topological ∗-algebra A endowed with given topology τ.

Definition 2.1 [4]. Let A[τ] be a topological ∗-algebra and B∗ a collection of subsets
B of A with the following properties:

(i) B is absolutely convex, closed and bounded;
(ii) 1 ∈ B, B2 ⊂ B and B∗ = B.

For every B ∈ B∗, denote by A[B] the linear span of B, which is a normed algebra
under the gauge function ‖ · ‖B of B. If A[B] is complete for every B ∈ B∗, then A[τ] is
called pseudo-complete.

An element x ∈ A is called (Allan) bounded if, for some nonzero complex number λ,
the set {(λx)n : n = 1, 2, 3, . . .} is bounded in A. We denote by A0 the set of all bounded
elements in A.

A topological ∗-algebra A[τ] is called symmetric if, for every x ∈ A, the element
(1 + x∗x)−1 exists and belongs to A0.

In [11], the collection B∗ in the definition above is defined to be the same as above,
except that B ∈ B∗ is no longer assumed to be absolutely convex. The notion of a
bounded element is a generalisation of the concept of a bounded operator on a Banach
space and was introduced by Allan in [3] in order to develop a spectral theory for
general locally convex ∗-algebras.

Definition 2.2 [4]. A symmetric pseudo-complete locally convex ∗-algebra A[τ] such
that the collection B∗ has a greatest member denoted by B0 is called a GB∗-algebra
over B0.

Every sequentially complete locally convex algebra is pseudo-complete
[3, Proposition 2.6]. In [11], Dixon extended the notion of GB∗-algebras to include
topological ∗-algebras which are not locally convex. In this definition, GB∗-algebras
are not assumed to be pseudo-complete, B0 is the only element in B∗ which is
necessarily absolutely convex (see the paragraph before Definition 2.2) and only A[B0]
is assumed to be complete with respect to the gauge function ‖ · ‖B0 . For a survey of
GB∗-algebras, see [15].
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[4] Derivations of Fréchet nuclear GB∗-algebras 293

Proposition 2.3 ([4, Theorem 2.6] and [7, Theorem 2]). If A[τ] is a GB∗-algebra, then
the Banach ∗-algebra A[B0] is a C∗-algebra sequentially dense in A and (1 + x∗x)−1 ∈

A[B0] for every x ∈ A. Furthermore, B0 is the unit ball of A[B0].

If A is commutative, then A0 = A[B0] [4, page 94]. In general, A0 is not a
∗-subalgebra of A and A[B0] contains all normal elements of A0 [4, page 94].

It is well known that every commutative C∗-algebra is topologically and
algebraically ∗-isomorphic to C(X) for some compact Hausdorff space (in fact, X
is the maximal ideal space of A). More generally, any commutative GB∗-algebra is
algebraically ∗-isomorphic to an algebra of functions on a compact Hausdorff space
X which are allowed to take the value infinity on at most a nowhere dense subset of
X [4, Theorem 3.9]. This algebraic ∗-isomorphism extends the Gelfand isomorphism
of A[B0] onto the corresponding C(X).

Recall that every C∗-algebra is topologically-algebraically ∗-isomorphic to a norm
closed ∗-subalgebra of B(H) for some Hilbert space H. In general, for every GB∗-
algebra A[τ], there exists a faithful ∗-representation π : A→ π(A) such that π(A)
is an algebra of closed densely defined operators on a Hilbert space H with B0
being identified with {x ∈ π(A) ∩ B(H) : ‖x‖ ≤ 1} [11, Theorem 7.11]. Therefore, for
every a ∈ A, it follows that ‖(1 + a∗a)−1‖ ≤ 1 (see also [4, Proposition 2.6]) and that
a(1 + a∗a)−1 ∈ A[B0].

Proposition 2.4 [19, Proposition 3.4]. If A[τ] is a pro-C∗-algebra and X[τ′] is a
complete locally convex A-bimodule having τ × τ′ − τ′ jointly continuous module
actions, then X[τ′] is a τ − τ′ smooth A-bimodule.

If, in particular, A[‖ · ‖] is a C∗-algebra and X[τ′] is a complete locally convex
A-bimodule having ‖ · ‖ × τ′ − τ′ jointly continuous module actions, then X[τ′] is a
‖ · ‖ − τ′ smooth A-bimodule.

3. Examples of smooth Fréchet GB∗-algebras

In this section, we give an example of a smooth Fréchet GB∗-algebra (Example 3.4)
and use it to construct an example of a smooth Fréchet nuclear GB∗-algebra
(Example 3.5). We begin by first outlining an example of a GB∗-algebra given in [12].

Definition 3.1 [12, Definition 1.1]. A set R of bounded self-adjoint linear operators on
a Hilbert space H is called a generating family if it satisfies the following conditions:

(i) 0 ≤ a ≤ 1 for all a ∈ R;
(ii) ab = ba for all a, b ∈ R;
(iii) for all a, b ∈ R, there exists c ∈ R such that a ≤ c and b ≤ c;
(iv) for every a ∈ R, there exists b ∈ R such that a ≤ b2.

Observe that 1 need not be in R. In what follows, we equip the set LR =
⋃

a∈R aH
with the inductive limit topology [12, Definition 1.3]. Let x be a densely defined linear
operator on H such that its domain contains LR. Then x is called R- bounded if xa is

https://doi.org/10.1017/S0004972715000404 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000404


294 M. Weigt and I. Zarakas [5]

a bounded linear operator for every a ∈ R [12, Definition 2.1]. The vector space of all
R-bounded linear operators is denoted by RB(H). For every x ∈ RB(H), the restriction
of x to LR is a continuous linear operator into H and, conversely, every continuous
linear operator from LR into H is R-bounded [12, remark, page 112]. Clearly,
R ⊂ RB(H).

On RB(H), we define the seminorms pa, a ∈ R, by pa(x) = ‖xa‖ for every x ∈
RB(H). From the previous paragraph, it follows that if pa(x) = 0 for all a ∈ R, then
x = 0 [12, page 112], implying that RB(H) is a Hausdorff locally convex space.

If A ⊂ RB(H), then we define A′ ⊂ RB(H) as follows [12, Definition 2.4]:

A′ = {y ∈ RB(H) : yx ∈ RB(H), xy ∈ RB(H)
and yxa = xya for all x ∈ A and a ∈ R}.

The map x 7→ x+ := x∗|LR defines an involution on R′ [12, Definition 3.3 and
Lemma 3.4], and pa(x) = pa(x+) for every a ∈ R and x ∈ R′ [12, Lemma 3.6(ii)].

Theorem 3.2 [12, Theorem 3.10, Lemma 3.6(i) and Corollary 3.8]. Let R be a
generating family of bounded linear operators on H. Then R′ is a sequentially
complete GB∗-algebra with respect to the locally convex topology defined by the family
of seminorms pa, a ∈ R, restricted to R′, and with respect to the involution defined
above. Furthermore, for every a ∈ R, there exists b ∈ R such that pa(xy) ≤ pb(x)pb(y)
for all x, y ∈ R′.

The last statement of Theorem 3.2 implies that R′ is a GB∗-algebra having jointly
continuous multiplication. Observe in Theorem 3.2 that the seminorms pa, a ∈ R, are
generally not smooth on R′. However, if R has the additional property that for every
a ∈ R, there exists q ∈ R such that a = qa, then, for every a ∈ R,

pa(xy) = ‖xya‖ = ‖xyqa‖ = ‖xq · ya‖ ≤ ‖xq‖ ‖ya‖ = pq(x)pa(y)

for all x, y ∈ R′.
In Example 3.4 below, we exhibit a countable generating family R2 having the

additional property mentioned above, thereby ensuring that (R2)′ is a smooth Fréchet
GB∗-algebra. For this example, we require Lemma 3.3 below.

In what follows, let 0 < a < 1 be a bounded (self-adjoint) linear operator on H and
let R1 = {a1/n : n ∈ N} ∪ {an : n ∈ N}. If M denotes the commutative von Neumann
algebra generated by R1, then r(x) denotes the support of x ∈ M relative to M, that
is, for every x ∈ M, r(x) is the least projection in M such that xr(x) = r(x)x = x. It is
easily seen that r(r(x)) = r(x) for all x ∈ M.

Lemma 3.3.

(i) If b1, b2 ∈ R1 are such that b1 ≤ b2, then r(b1) ≤ r(b2).
(ii) If x ∈ M and 0 ≤ x ≤ 1, then x ≤ r(x).
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Proof. (i) Let b1, b2 ∈ R1 be such that b1 ≤ b2. We consider the three cases below.

Case 1. b1 = an and b2 = ak for some n, k ∈ N, and therefore k ≤ n. Since R1 ⊂ M and
M is commutative, it follows that

r(b1) = r(an) = r(akan−k) ≤ r(ak)r(an−k) ≤ r(ak) = r(b2).

Case 2. b1 = a1/k and b2 = a1/m for some m, k ∈ N, and therefore k ≤ m. By using a
similar argument to that of Case 1, we get r(b1) ≤ r(b2).

Case 3. b1 = an and b2 = a1/k for some n, k ∈ N. Once again, by using a similar
argument to that of Case 1 above, we get r(b1) ≤ r(b2).

(ii) Let x ∈ M with 0 ≤ x ≤ 1. Then 1 − x ≥ 0 and, therefore, since r(x)x = x, it
follows for every ξ ∈ H that

〈(r(x) − x)ξ, ξ〉 = 〈r(x)(1 − x)ξ, ξ〉
= 〈r(x)∗r(x)(1 − x)ξ, ξ〉
= 〈(1 − x)r(x)ξ, r(x)ξ〉
≥ 0,

implying that x ≤ r(x). �

Example 3.4. Let a and R1 be as above. Then R1 clearly satisfies properties (i) and
(ii) of Definition 3.1. For any b1, b2 ∈ R1, it is clear that we either have b1 ≤ b2 or
b2 ≤ b1, so that property (iii) of Definition 3.1 holds. For any n ∈ N, we have that
an ≤ a = (a1/2)2. Observe that a1/2 ∈ R1. If n ∈ N, then there exists r ∈ N such that
n ≤ 2r and therefore a1/n ≤ a1/2r = (a1/4r)2. Note also that a1/4r ∈ R1. Hence, property
(iv) of Definition 3.1 holds.

Now let R2 = R1 ∪ {r(b) : b ∈ R1}. Clearly, properties (i) and (ii) of Definition 3.1
still remain valid. Since r(b) = r(b)2 for every b ∈ R1, it is clear that property (iv) of
Definition 3.1 also remains valid. We now show that property (iii) of Definition 3.1
still holds. Consider r(b1) and r(b2) for some b1, b2 ∈ R1. As noted above, we have
either b1 ≤ b2 or b2 ≤ b1. Without loss of generality, we may assume that b1 ≤ b2. It
follows from Lemma 3.3(i) that r(b1) ≤ r(b2).

Now let a1 = b1 and a2 = r(b2) for some b1, b2 ∈ R1. Once again, we have either
b1 ≤ b2 or b2 ≤ b1. If b1 ≤ b2, then it follows from Lemma 3.3(i) that r(b1) ≤ r(b2). By
Lemma 3.3(ii), b1 ≤ r(b1). Therefore, a1 = b1 ≤ r(b2) = a2. If b2 ≤ b1 instead, then, by
Lemma 3.3(i), r(b2) ≤ r(b1). It follows from Lemma 3.3(ii) that b1 ≤ r(b1) and hence
a1 ≤ r(b1) and a2 ≤ r(b1). Therefore, property (iii) of Definition 3.1 remains valid.

We conclude from the discussion preceding Lemma 3.3 that (R2)′ is a smooth
Fréchet GB∗-algebra.

We now use Example 3.4 to construct an example of a smooth Fréchet nuclear
GB∗-algebra from a nuclear C∗-algebra which is also a von Neumann algebra.
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Example 3.5. Let A be a von Neumann algebra which is also a nuclear C∗-algebra.
Then Z(A), the centre of A, is a commutative von Neumann algebra. Let 0 < a < 1 be
a bounded (self-adjoint) linear operator in Z(A) and construct from this the generating
family R2 of Example 3.4, that is,

R1 = {a1/n : n ∈ N} ∪ {an : n ∈ N}

and
R2 = R1 ∪ {r(b) : b ∈ R1},

where, as before, for any x in the von Neumann algebra M generated by R1, r(x)
denotes the support of x in M. Now R1 ⊂ Z(A) and so M ⊂ Z(A). Hence, R2 ⊂ Z(A).

It now follows that A ⊂ (R2)′: if x ∈ A, then cx and xc are in R2B(H) and xcb = cxb
for all c, b ∈ R2. Therefore, A ⊂ (R2)′.

This allows one to restrict the seminorms pc, c ∈ R2, on (R2)′ to A, thereby obtaining
a family of smooth seminorms on A (in Example 3.4, we have, from the discussion
preceding Lemma 3.3, that the family of seminorms pc, c ∈ R2, on (R2)′ is smooth).
We use the symbol τ to denote the locally convex topology on A defined by the above
family of (smooth) seminorms.

It is easily verified that the topology τ on A is weaker than the given norm topology
on A. Therefore, the completion Ã[τ] of A[τ] is a GB∗-algebra over the τ-closureU(A)
in A of the unit ballU(A) of A [14, Theorem 2.1].

We prove that U(A) is τ-closed in A. Let ‖x‖bd = supc∈R2
‖xc‖ for all x ∈ A. We

first show that ‖ · ‖bd is a C∗-norm on A. For every x ∈ A and c ∈ R2, we have that
‖xc‖2 ≤ ‖x+xc‖ (see the proof of [12, Theorem 3.10]). Therefore, for every x ∈ A,

‖x‖2bd = sup
c∈R2

‖xc‖2 ≤ sup
c∈R2

‖x+xc‖ = ‖x+x‖bd.

From Theorem 3.2, we have that for every c ∈ R2, there exists b ∈ R2 such that
pc(xy) ≤ pb(x)pb(y) for all x, y ∈ A. Therefore,

‖x+x‖bd = sup
c∈R2

pc(x+x)

≤ sup
b∈R2

pb(x)2 = ‖x‖2bd

for every x ∈ A. Therefore, ‖x‖2bd = ‖x+x‖bd for all x ∈ A.
We now show that ‖x∗x‖bd = ‖x+x‖bd for all x ∈ A. For any c ∈ R2,

‖x∗xc‖ = sup
‖ξ‖=1
‖x∗xcξ‖ = sup

‖ξ‖=1
‖(x∗x)∗cξ‖

= sup
‖ξ‖=1
‖(x∗x)+cξ‖ = sup

‖ξ‖=1
‖x+(x∗)+cξ‖

= sup
‖ξ‖=1
‖x+(x∗)∗cξ‖ = sup

‖ξ‖=1
‖x+xcξ‖

= ‖x+xc‖.

Therefore, ‖x∗x‖bd = supc∈R2
‖x∗xc‖ = supc∈R2

‖x+xc‖ = ‖x+x‖bd for all x ∈ A.
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It follows that ‖ · ‖bd is a C∗-norm on A and, therefore, by [25, Corollary I.5.4],
‖x‖ = ‖x‖bd for every x ∈ A. Finally, to show thatU(A) is τ-closed in A, we consider a
net (xα) inU(A) with xα→

τ
x ∈ A. Therefore, ‖xαc‖ ≤ ‖xα‖ ‖c‖ ≤ 1 for all α and c ∈ R2.

Since xα →
τ

x ∈ A, we have ‖xαc‖ → ‖xc‖ for all c ∈ R2, implying that ‖xc‖ ≤ 1 for
all c ∈ R2. Therefore, ‖x‖ = ‖x‖bd = supc∈R2

‖xc‖ ≤ 1. Hence, x ∈ U(A), and therefore
U(A) is τ-closed in A.

It follows that Ã[τ] is a GB∗-algebra over U(A), which yields (Ã[τ])[B0] = A, and
therefore Ã[τ] is a Fréchet nuclear GB∗-algebra. Since A[τ] is smooth (with respect
to the seminorms pc, c ∈ R2) and Ã[τ] has jointly continuous multiplication, it follows
that Ã[τ] is a smooth Fréchet nuclear GB∗-algebra (the extensions of the seminorms
pc, c ∈ R2, of A[τ] to Ã[τ] are seminorms which define the topology τ on Ã[τ]).

4. Main results

For the proof of the following theorem, we establish the convention that if X[‖ · ‖]
is a Banach space, then ‖ · ‖ will also be used to denote the norms on X∗ and X∗∗.

Let X[‖ · ‖0] be a normed space which is also a bimodule over a Banach algebra
A[‖ · ‖]. If the module actions of X over A are ‖ · ‖ × ‖ · ‖0 − ‖ · ‖0 jointly continuous,
then it is well known that there exists a norm ‖ · ‖1 equivalent to ‖ · ‖0 (that is, defining
the same topology on X as ‖ · ‖0) such that ‖ax‖1 ≤ ‖a‖ ‖x‖1 and ‖xa‖1 ≤ ‖a‖ ‖x‖1 for
every a ∈ A and x ∈ X. Therefore, X is a normed A-bimodule. This will also be needed
in the proof of the following theorem.

Theorem 4.1. Let A[‖ · ‖] be a nuclear C∗-algebra and τ a locally convex topology
on A such that τ is weaker than the topology defined by ‖ · ‖. If X[τ′] is a complete
(τ − τ′) smooth locally convex A-bimodule and δ : A→ X is a derivation, then δ is
τ − τ′ continuous.

Proof. By hypothesis, there exist defining families of seminorms {pλ : λ ∈ Λ0} and
{qα : α ∈ Λ1} for A[τ] and X[τ′], respectively, such that, for every α ∈ Λ1, there exists
λ ∈ Λ0 such that qα(ax) ≤ pλ(a)qα(x) and qα(xa) ≤ pλ(a)qα(x) for all a ∈ A and x ∈ X.
Furthermore, Λ0 and Λ1 are directed. It follows, for every α ∈ Λ1, that Xα ≡ X/Nα is
an A-bimodule with respect to the following (well-defined) module actions:

a · (x + Nα) = ax + Nα and (x + Nα) · a = xa + Nα,

where Nα = {x ∈ X : qα(x) = 0} for every α ∈ Λ1. Then X is isomorphic to lim
←−−

X̃α as

locally convex spaces, where X̃α is the completion of Xα = X/Nα with respect to the
topology induced by the norm qα(x + Nα) = qα(x), x ∈ X, on Xα.

Note that Xα is a normed A-bimodule with respect to the above module actions: let
(an) be a sequence in A such that an →

‖·‖
a ∈ A, and let (xn + Nα) be a sequence in Xα

such that xn + Nα → x + Nα ∈ Xα with respect to qα. Then an →
τ

a (since τ is weaker
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than the topology defined by ‖ · ‖ on A) and so

qα(an(xn + Nα) − a(x + Nα))
≤ pλ(an)qα((xn + Nα) − (x + Nα)) + pλ(an − a)qα(x + Nα)
→ 0,

that is, the module actions of Xα over A are jointly continuous. Therefore, Xα is a
normed A-bimodule for every α.

The normed A-bimodule X̃α is therefore a Banach A-bimodule. For every α, let
ρα : X −→ X̃α be the αth projection map, and let cα : X̃α −→ (X̃α)∗∗ be the embedding
into the second dual of X̃α, which is a module map. Let δα be defined as

cα ◦ ρα ◦ δ : A −→ (X̃α)∗∗

for every α. Then δα is a derivation. This follows from the definitions of the A-module
actions with respect to which X̃α and (X̃α)∗∗ turn into Banach A-bimodules. From
[22, Theorem 2], δα is ‖ · ‖ − qα continuous for every α ∈ Λ1. Since A is a nuclear
C∗-algebra and therefore amenable, it follows that, for every α ∈ Λ1, δα is inner, that
is, there is an element zα ∈ (X̃α)∗∗ such that δα(b) = zαb − bzα for all b ∈ A. It follows
easily from the hypothesis that, for every α, the module actions of Xα over A are τ − qα
smooth. Therefore, the module actions of X̃α over A are τ − qα smooth, that is, there
exists λ ∈ Λ0 such that qα(axα) ≤ pλ(a)qα(xα) and qα(xαa) ≤ pλ(a)qα(xα) for all a ∈ A
and xα ∈ X̃α. As can be easily seen, these inequalities extend to the case of the module
actions of (X̃α)∗∗ over A, which are proven therefore to be τ × qα − qα continuous.
Hence, δα is τ − qα continuous for all α. Therefore, δ is τ − τ′ continuous. �

Lemma 4.2. Let A[τ] be a complete GB∗-algebra having jointly continuous
multiplication. If (aα) is a net in A with aα →

τ
0, then (1 + a∗αaα)−1 →

τ
1.

Proof. Let {pλ : λ ∈ Λ} be a family of seminorms defining the topology τ on A. Since
τ is weaker than the topology defined by ‖ · ‖ on A[B0], A is an A[B0]-bimodule
with ‖ · ‖ × τ − τ jointly continuous module actions (the module actions being the
multiplication defined on A). By Proposition 2.4, A is a ‖ · ‖ − τ smooth A[B0]-
bimodule. Therefore, for every λ ∈ Λ,

0 ≤ pλ((1 + a∗αaα)−1 − 1)
= pλ(−(1 + a∗αaα)−1a∗αaα)
= pλ((1 + a∗αaα)−1a∗αaα)
≤ ‖(1 + a∗αaα)−1‖pλ(a∗αaα)
≤ pλ(a∗αaα).

The last inequality follows from the fact that ‖(1 + a∗αaα)−1‖ ≤ 1. Since aα →
τ

0, it
follows that pλ(a∗αaα)→ 0. Hence, the result follows. �

The proof of the following proposition is similar to that of [27, Proposition 3.1]. We
give the proof for completeness, for which we need Lemma 4.2.
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Proposition 4.3. Let A[τ] be a Fréchet GB∗-algebra. Let δ : A→ A be a derivation
such that δ|A[B0] is τ − τ closable. Then δ is τ − τ continuous. Conversely, if δ is τ − τ
continuous, then δ|A[B0] is τ − τ closable.

Proof. The converse statement is trivial. Therefore, consider the case where δ|A[B0] is
τ − τ closable. Since δ = δ1 + iδ2, where δi are ∗-derivations, that is, δi(a∗) = δi(a)∗ for
all a ∈ A, i = 1, 2, we may assume without loss of generality that δ is a ∗-derivation.
Take a sequence (an) in A such that an →

τ
0 and δ(an)→

τ
y.

Observe that an(1 + a∗nan)−1 ∈ A[B0] for all n ∈ N. Since A[τ] is a Fréchet GB∗-
algebra, multiplication of A is jointly continuous. By Lemma 4.2, it follows that
(1 + a∗nan)−1 →

τ
1 and therefore an(1 + a∗nan)−1 →

τ
0. If b ∈ A is invertible, then it

follows easily that δ(b−1) = −b−1δ(b)b−1 and hence

δ((1 + a∗nan)−1) = −(1 + a∗nan)−1(δ(1 + a∗nan))(1 + a∗nan)−1

= −(1 + a∗nan)−1(δ(a∗nan))(1 + a∗nan)−1

= −(1 + a∗nan)−1(a∗nδ(an) + δ(an)∗an)(1 + a∗nan)−1

→
τ
−1(0 · y + y∗ · 0)1

= 0.

Hence, δ(an(1 + a∗nan)−1)→
τ

y. Let bn = an(1 + a∗nan)−1 for every n ∈ N. Then (bn) is
a sequence in A[B0] with bn →

τ
0 and δ(bn)→

τ
y. Since δ|A[B0] is τ − τ closable, y = 0.

Therefore, by the closed graph theorem, δ is τ − τ continuous. �

A consequence of Theorem 4.1 is that if A[τ] is a smooth Fréchet nuclear GB*-
algebra, then every derivation δ : A→ A has the property that δ|A[B0] is τ − τ closable.
One therefore obtains the following result from Proposition 4.3, which is a partial
answer to the question of whether every derivation of a Fréchet GB∗-algebra is
continuous.

Corollary 4.4. Every derivation of a smooth Fréchet nuclear GB*-algebra is
continuous.

If A[τ] is a commutative Fréchet GB∗-algebra, then it is a Fréchet nuclear GB∗-
algebra with no nonzero derivations [28, Corollary 3.4], implying that A[τ] has only
continuous derivations. Therefore, the assumption that A[τ] is smooth can be dropped
from the hypothesis of Corollary 4.4 if A[τ] is, in addition, commutative.

A type I C∗-algebra is a C∗-algebra A such that for every representation π of A,
the weak operator closure of π(A) is a type I von Neumann algebra. Every type I C∗-
algebra is nuclear [24, Theorem 3].

Corollary 4.5. If A[τ] is a smooth Fréchet GB∗-algebra such that A[B0] is a type I
C∗-algebra, then every derivation of A is continuous.
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