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ON THE COHOMOLOGY OP
A CLASS OF NILPOTENT LIE ALGEBRAS

GRANT F. ARMSTRONG AND STEFAN SIGG

Let g denote a finite dimensional nilpotent Lie algebra over C containing an
Abelian ideal a of codimension 1, with z £ g\a. We give a combinatorial descrip-

t

tion of the Betti numbers of 0 in terms of the Jordan decomposition 0 = (^ dj
i=i

induced by ad(z)\a. As an application we prove that the filiform-nilpotent Lie
algebras arising in the case t = 1 have unimodal Betti numbers.

INTRODUCTION

Let g denote a finite dimensional complex nilpotent Lie algebra containing an
Abelian ideal o of codimension one, with z £ g\a. We compute the Betti numbers

Mg)= dim (#'(£,, Q )

for the Lie algebra cohomology of g with coefficients in C. Choose a basis for a with
respect to which the matrix representation of ad(z)\a is in lower triangular Jordan

t
canonical form. Denote the corresponding decomposition of a by a = ® a/, where

i=i
each dim(aj) = nj. Then our main result is the following:

THEOREM 1. The ith Betti number bi(g) is given by

He) = Ki(e) + Ki-i(s)

for each 1 ^ i ^ dim(g), where /Ci(g) denotes the sum
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for each 1 ^ i ^ dim(g), and Ko(fl) = 1. Here \x] denotes the least integer not smaller
than x, and # indicates cardinality.

One may identify two extreme cases in the applications of Theorem 1. Firstly the
case of an arbitrary number of Jordan blocks t for ad{z)\a all of equal length raj = 2,
and secondly the case of a single Jordan block of arbitrary length n\ = n. In the
first case one is interested in the family {pt: t £ N} of (2< + l)-dimensional 2-step
nilpotent Lie algebras, where each pt has basis {x\,... ,xt,xt+\,... ,X2t,z} and non-
zero relations [z,Xj] = xt-\-j for each 1 ^ j ^ t. Explicit Betti numbers for this family
were determined in [2]: the ith Betti number 6;(pt) given by

for each 0 ^ i ^ It + 1 and t 6 N, where [x\ denotes the integer part of i . In

particular the sequence {&i(P*)}i™ ' *s u m m ° d a l f°r each ( £ N .

In this paper we investigate the second case in our applications of Theorem 1. Here
one is interested in the family {fra : n € N} of (n + l)-dimensional filiform-nilpotent Lie
algebras, where each fn has basis {x i , . . . ,xn,z} and non-zero relations [z,Xj] = ajj+i
for each 1 ^ j ^ n — 1. The Betti numbers for this family have previously been
computed by Bordemann [3], whose description we recover as an immediate corollary
to Theorem 1:

COROLLARY 1 . The ith Betti number 6i(fn) is given by

for each 1 ^ i ^ n + 1 and n £ N , wAere

<<»!<• • • <<*<<» and ^ a , =

for each 1 ^ i ^ n, and «o(fn) = 1 •

At the heart of Corollary 1 is the task of counting the number of partitions of
an integer d into i distinct parts, each part being no larger than n. This particular
partition problem has a long history in the theory of combinatorics. It may be solved
explicitly for small values of i, and in the special case of Corollary 1, Bordemann [3]
has shown that for each n G N, one has

= 2, HU) = [^J and
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The numbers &i(fn) get progressively more complicated as i gets bigger. One finds [1]
that for each n £ N,

According to Richard Stanley [11] it is hopeless to expect any kind of explicit formula
giving the number of such partitions for general n, i and d. In Corollary 1 we are
admittedly seeking partitions for integers of a special type, namely those of the form
\i{n + l)/2] , where 0 ^ i ^ n + 1. Nevertheless Robert Proctor [8] believes that even
in this special case one should not be very optimistic of obtaining any such formula,
and hence of obtaining general expressions for 6i(fn) of type (1). We can however prove
the following:

THEOREM 2 . For each n E N, tie sequence {&i(fn)}^(fn) is unimodal.

The proof of Theorem 1 is given in sections 1 and 2, and the proof of Theorem 2

in section 3.

1. PROOF OF THEOREM 1

We use the long exact sequence of Dixmier [5] to reduce the theorem to a compu-
tation of the dimensions of the kernels of endomorphisms defined by extending ad(z)\B

as a derivation on the exterior algebra Ao = ® A*a of a. The Jordan decomposition

t
a = (Q ai defined with respect to a«i(z)|a induces a grading in each A*a that facilitates

i=i
computation via Lemma 2, which is the key to the proof of Theorem 1. We postpone
the verification of Lemma 2 until the following section.

LEMMA 1. (Dixmier [5]) Let U{ denote the endomorphism o{ the Q-module
Hl(a,C) induced by the action of z. The ith Betti number 6j(g) is given by

b{(g) = dim(ker(iii)) + dim(ker(itj_1))

for eaci 0 ^ i < dim (g).

Clearly 27*(a,C) and A'a are isomorphic as vector spaces, indeed as algebras, since
0 is Abelian. Denote by X; the endomorphism of A'a defined by extending ad(z)\a as
a derivation on Ao. Then clearly dim(ker(Xj)) = dim(ker(ti;)).

COROLLARY 2 . For each 0 ^ i ^ dim (g), one has

bi(g) = dim(ker(X,)) + dim(ker (X<_i)).

Choose a basis {x\,..., x^ ,..., x\,..., x^t} for o with respect to which the matrix
representation of ad(z)|0 is in lower triangular Jordan canonical form. Then the bracket
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structure of g becomes explicit via the relations [z,a;j] = xj-+1 for each 1 ̂  _; ̂  n; — 1
t

and 1 ^ I ^ t. Moreover one has the decomposition o = © a;, where each at =

(x\,..., xl
ni}. This induces a grading of A*o as follows:

(2) A*o=

where (A'o)^, = A*xOi <g> • • • ® Afc'Ot- Clearly one obtains dim(ker(Xj)) from (2) via

the equation

„ . ( ( \ \

(3) dim(ker(Xi)) = 2_^ c ^ m ( ̂ e r ( - ^ ' I f A ' O ) ) ) •

fclH \-kt—i

It now remains to determine the summands in (3). To facilitate computation we intro-
duce the following decomposition of each (A'aJ, :

max (i|As)

(4) (A'a)t= 0 V£(s)

where

and min(i,fc) = | E fc'(fc'+ !) ™d max(i,fc) = ( E M n i + 1 ) ) -min(»,*). Cal-
1=1 \i=i /

culations verify that X,- ((A^a)^) C (A'O),. and X> (v[{s)\ C V^(s + 1), so in each

(Alo)fc there is the sequence

The key to establishing Theorem 1 is the following:
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LEMMA 2 .

1 *
injective, for s < — 52 ^i(nl + 1)

2 1=1

1 *
surjective, for s ^ - ^ fcj(ni + 1).

2 1=1

We postpone the proof of Lemma 2 until the next section. Meanwhile we finalise
the proof of Theorem 1. First note that for each 1 ̂  i ^ dim(g), one has

(5) dim (ker (*,•)) = d^Kil 2 2>(»i + l)

Indeed, by Lemma 2 it is clear that dim I ker I Xi\vi,-. I I is equal to

0, if s < - j ^ Wni +
2 i=i

dim (yi(s)) - dim (yi(a + 1)) , if s> | f) i,(n, + 1).

So in using (4) one has

max (»,fcj

^))-dim(vj(a + l)))

1=1

This in conjunction with (3) verifies (5). Theorem 1 follows at once from (5) and the

fact that dim f Vfc*(s) J is equal to the cardinality of the set

Iff \ ( \\<zWi
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2. PROOF OF LEMMA 2

Results similiar to Lemma 2 are well known in combinatorics. We mention in
particular Richard Stanley's school at MIT and the excellent survey papers [13] and
[14]. A standard method to prove a result of this type is to show that X,- appears as
an "z-part" of a suitable sl(2,C) action. This method has been worked out by Proctor
in [9] and [10] and rests on a simplification of the techniques used by Stanley in [12].
This "sI(2,C)-trick" can also be applied in our situation.

Recall that s((2,C) is the Lie algebra over C with basis {x,y,h} and relations
[x,y] = h, [h, x] = 2x and [h,y] = —2y. Consider the endomorphisms of a denned by

Y1 (*}) = (j - l)(n, + 1 - ;>;_!, Hx (*J) = (2j - (n, + 1))«J.

for each 1 ^ j ' ^ nj and 1 ^ I ^ t. Denote by Yi and Hi respectively the endo-

morphisms of AlO defined by extending Yi and Hi as derivations on Ao. A short

calculation verifies that Yi ((^a) A C (A*o)fc and Hi ((A'a)fc) C (A'a)fc.

LEMMA 3 . The linear map p\: s[(2, C) -> End ^(A^)^) defined by

x i—> Xi, y >—» Yi, hi—* Hi

is a Lie algebra homomorphism.

PROOF: In the case * — 1 it is a simple matter of verifying the bracket relations

[X1,Y1]=H1,[H1,X1] = 2X1 and [HUY1\ = -ZY1.

This induces a representation for (Alo)t in the standard manner, see for instance page

159 of [6]. D

We can now apply standard results from the representation theory of s[(2, C). We
follow the presentation given in Humphreys [7]. To begin with, note that

Hi(a) =

for any a £ V£(s). Therefore each V£(s) C (A*a)fc is the weight space corresponding
t

to the weight 2s — J3 ^i(ni + 1) with respect to the action of h £ si(2, C). If we let
J=i
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denote the weight decomposition with respect to p\, then

and

and for the weights X £ $ , one has

As s((2,C) is semisimple it follows that (A'o)^ is a completely reducible s[(2,C)-

module, meaning there is a decomposition

m=l

with each Ul(m) irreducible, and dim f E7jJC771)) = dm + 1. The main theorem of the

representation theory of s[(2, C) gives us the following fact: For every 1 ^ m ^ N, there

exists vm £ WJ(—dm) such that <,vm,Xi(vm),..., ^ " ( w m ) > is a basis for U\.{rn). It

follows that X?m{vm) E Wl{dm), and if -dm = 2s - Y,Hni + 1), t h e n «m £ V£(s)

and Xfm{vm) £ ^ | J ] ifc,(ni + 1) - s J . We thus obtain:

(a) 03, = {X,!(vm) | l ^ m ^ 7 V , 0 ^ I ^ dm} D V^s) is a basis for V£(s).

(b) If s < 1/2 £ Jbf(ni + 1), then ^ ( 9 5 . ) C <8.+ 1 .
i=i

(c) If ^ 1 / 2 E jb((m + 1), then FXi(<B.) 2 B . + 1 .
/=i

This finalises the proof of Lemma 2.

3. P R O O F OF THEOREM 2

Consider the general partition problem arising in connection with Corollary 1.
Given n,i,d € N, let K(n,i,cCj denote the number of partitions of d into i distinct
parts, each part being no larger than n. Clearly K(n,i,d) is equal to the cardinality
of the set

P(n,i,d) = | ( a i , . . . , a < ) € Z' \ 1 < ax < ••• < at ^ n and ^ a , = d\ .
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To prove Theorem 2 we use two symmetric unimodal sequences involving the K(n, i, d) 's
to deduce that the sequence {«i(fn)}™=0 is symmetric unimodal. The theorem is then
an immediate consequence of Corollary 1.

Recall that for each n 6 N, fn is the Lie algebra with basis {x\,... ,xn,z} and
non-zero relations [z,Xj] = Xj+i for each 1 ^ j ^ n — 1. Let a = (xi,... ,xn) and
note that ad(z)\a has one Jordan block. In this case the decomposition in (2) may be
bypassed and (4) implemented directly to obtain

max (n,»)

«=min (i)

where V^(s) = (xai A • • • A xai 6 A'o | 1 < ai < • • • < a,- < n and YLai ~ s) a n ^
min(i) = (*'̂ 1) and max(n,i) = i{n + 1) — min(i). In particular Lemma 2 translates
to the following:

{ injective, for s < i{n + l)/2

surjective, for a > i(n + l)/2.

Clearly dim(ker(X<)) = dim (V£(\i(n + l)/2])) = /Cj(fn). It is convenient to extend

K(n,i,d) to i = 0, by setting

. f 1, if d = 0
K(n,0,d) = \

V ' \ 0, if d > 0

for all n 6 N.

LEMMA 4 . For each n G N and 0 ̂  i ^ n, the sequence {K(n,i,d)}™^'^. is

symmetric unimodal.

PROOF: The symmetry comes via the bijection

P(n,i,d) -^ P{n,i,i(n + 1) - d)

The unimodahty follows from (6) since K(n,i,d) = dim (Vj[(d)) . D

LEMMA 5 . For each n £ N and d^O, the sequence {K(n,i,d + min(i))}™_0 is

symmetric unimodal.

PROOF: The symmetry follows from Lemma 4 and the obvious identity

(7) K(n,i,d)=
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Indeed, for all 0 ^ i ^ n, we see that

K(n,i, d + min(i)) = K(n,n-i,(* + *) - (d + min(t))) , by (7)

= K(n,n — z,min(n - i) +p)

where p = ( I — d — min(i) - min(n — i). Then by the symmetry in Lemma 4

one has
K (n, i, d + min (i)) = K (n, n — i, max (n,n — i) — p)

= K(n,n — i,d-\- min(n — i)).

To verify unimodality it is enough to show that

(8) K(n,i,d)^K(n,i + l,d + (i + l))

for all 1 ^ i ^ [(n — 2)/2j and min(i) ^ d ^ \i(n +1)/2] . Indeed, using Lemma 4
one can extend (8) to hold for all values of d such that min(i) ^ d ^ max(n,i). For
this, one is required to check the cases \i(n + l)/2] < d ^ \(i + l)(n + l)/2] - (i + 1)
and [(i + l)(ra + l)/2] — (i + 1) < d ^ max(n,i). Treating the first case, one has

K(n,i,d) — K(n,i,i(n + 1) — d), by symmetry in Lemma 4

< K(n,i + l,(i(n + 1) - d) + (i + 1)), by (8)

^ K (n, i + 1, d + (i + 1)), by unimodality in Lemma 4.

The remaining case follows in analogous fashion. Note that for convenience we exclude
the case i = 0 in (8), where the result is obvious. It now remains to verify (8). We
use induction on n, starting with the first non empty case n=4: unimodality is easily
verified in all cases n ^ 4. Supposing that (8) is true for n — k, we wish to prove that

(9) K(k + l,i,d) ^ ( J b + l.t + l . d + f i + l))

for all 1 ^ i ^ L(Jfe ~ 1)/2J and min(i) ^ d ^ \i(k + 2)/2]. Let A{n,i,d) denote the
set of all elements (cti,...,a{) 6 P(n,i,d) satisfying a,- ^ n, and B(n,i,d) the set of
all elements (f3\,... ,/3i) E P{n,i, d) satisfying /3i = 1. Clearly one has the bijection

A(n,i,d) -» B(n,i + l,d+(i + l))

(a i , . . . , a . ) H^ ( l ,a j + 1, . . . ,ai + 1).

Now observe that there are K(Jc,i — l,d — (A: + 1)) elements contributing to the left
hand side of (9) which do not belong to A{k + l,i, d), and K(k,i + l,d) elements
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contributing to the right hand side which do not belong to B(k + l,i + l,d + (i + 1)) .
Thus to verify (9) it is enough to show that

for all i ̂  [{k - ! ) / 2 J a n d m*11 (0 < d ^ l"*(fc + 2)/2"|. It is true that i - 1 ^ [(k - 2)/2J
and d — (k + 1) < \(i — l)(k + l ) /2] , meaning one can apply the inductive assumption
to give

(10) K(k,i-l,d-(k + l)) ^K(k,i,d-(k + l) + i).

Now we wish to apply the inductive assumption a second time to the right hand side
of (10). One has d - (k + 1) + i ^ |"i(fc + l)/2] , but the hypothesis i < [(Jfc - 2)/2j is
violated when i = [(k — 1)/2J in the case k is odd. Supposing that i < [(k — 1)/2J or
k even, we can use the inductive assumption to give

(11) K(k,i,d-(k + l) + i) ^ K(k,i + l,d- (k + 1) + 2i + 1).

Otherwise in the case i = [(k — l ) /2 j for k odd, one establishes (11) by noting that

K(k,i,d- (k + 1) + i) = K(k,i + l,d-(k + l) + 2i + 1)

by the symmetry in the sequence {K(n,i, d+ min(i))} i_0 which was verified at the
beginning of the proof. Finally since d — k + 2i ^ d ̂  \(i + 1)(A; + l) /2] , Lemma 4
implies

which completes the proof. D

Lemmas 4 and 5 combine to give the following:

COROLLARY 3 . For each n 6 N, tAe sequence {^i(^n)}i=0 is symmetric uni-
modal.

PROOF: The symmetry follows directly from identity (7), and uses the symmetry
of Lemma 4 in case i(n + l ) / 2 is a non-integer. The unimodality is an immediate
consequence of Lemmas 4 and 5. D

Theorem 2 now follows at once from Corollary 1.

REMARKS. For all nilpotent Lie algebras L of dimension ^ 7, the sequence
{^(.L)}^^ is unimodal, see for instance [4]. However unimodality is not a property
shared by nilpotent Lie algebras in general, see for instance [2]. Nevertheless one may
ask whether it is a property shared by all nilpotent Lie algebras containing an Abelian
ideal of codimension one. Our computer experiments have verified that this is true for
all such algebras of dimension ^ 100.
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