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A NOTE ON HARDY'S INEQUALITY 

IVO KLEMES 

ABSTRACT. We prove a two-sided version of Hardy's inequality by methods arising 
from the proof of the Littlewood conjecture. 

An inequality of G. H. Hardy states that for some c > 0, 

(*) 2-<—- ^ c l l / 1 l i ' 
n=\ n 

for al l / G L1 ([0,27r)) having one-sided Fourier series, 

oo 

n=0 

If we allow/ to be an arbitrary L1 function, the inequality (*) fails. This can be seen by 
letting/ = Fejér kernel of order N for large N. However, it has been asked (for instance 
in [4]) whether (*) generalizes as follows: 

,.., f ^<difl|1+cf Ubsi. / e l i . 
n=\ n n=\ n 

This remains an open problem. 
The purpose of this paper is to record the following alternative generalization of (*). 

Its proof follows from a construction of L. Pigno and B. Smith [3], and from the methods 
for estimating such constructions [1], [2], [4]. 

THEOREM 1. There is a constant c > 0 such that for any function f G L1 ([0,2ir)\ 

oo / \ 1/2 oo / \ 1/2 

(i) E(4-' E IA«)I2) <4f||1 + cE(4-; E lft-«)l2) • 

This is a generalization of (*) because the left-hand side of (*) is majorized by a 
constant times the left-hand side of (1), by the Cauchy-Schwarz inequality. The latter 
remark also means that (1) is stronger than (*) already for the case of one-sided/. This 
was already "well-known", although I know of no precise reference: Roughly speaking, 
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if one carries out a proof of the Littlewood conjecture starting with the "data" given by 
(2) below, one obtains (1) (when/ is one-sided) without any additional work. In this 
paper, we are going to do some "additional work", and so obtain (1) for a l l / . Thus, 
Theorem 1 should be viewed as one more result from the "aftermath" of the proof of 
the Littlewood conjecture as given in [2]. We have however found it easier to use a 
version of a construction given by J. Fournier in [1]. This construction is also the one 
in [3], but there it had not been noticed that it gives the Littlewood conjecture. It has 
the specific advantage of producing trigonometric polynomials at every step. There are 
3 other constructions given in [1], and we believe that with some modifications (such as 
convolving with a Fejér kernel at each step), each of them would also work here. 

For completeness, we have repeated most of the known estimates. As the specialists 
will note, the main new observation is the estimate (4), which accounts for the right-hand 
side of (1). This observation was in a sense hinted at by B. Smith in [4], where it was 
remarked that one can show for [i G M(T) that 

«>0 Vn n>0 n 

using essentially the present construction; see [4, page 144, problem 1]. Smith's remark 
is equivalent to replacing our estimate (4) by the weaker statement 

(40 \P(-n)\<cly/n, n>0. 

PROOF OF THEOREM 1. It suffices to consider the case when/ is a trigonometric 
polynomial. Let us change notation to an = f(n), «GZ. Thus an = 0 for \n\ sufficiently 
large. 

Define trigonometric polynomials/, j — 1,2,..., by either/ = 0, if an = 0 for all n 
in the interval [47-1,4/), or otherwise by: 

(2) fjif) = 4-J/2( £ k l 2 ) " ' 7 2 £ a„einl, te[0,2ir). 

The theorem will be derived from the following lemma by a standard duality argu
ment. 

LEMMA 1. There exist absolute constants c\,C2 > 0 and a trigonometric polynomial 
F satisfying: 

(3) W U < c i 

(4) ( £ \F(-n)\2)l/2<c24-^2, j>\ 

(5) ( E \F{n)-fj{n)\2)il2 <U~H\ j>\. 
V4/'-1<n<4/' 7 L 
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Assuming Lemma 1, we have 

ciii/iii> 1^/7(0^)* 

= a0F(0) + E anHn) + E anF{n) 
1 n<0 n>0 

Therefore, by the triangle inequality, 

(6) 

E anF(n)\ < c, \\f || ! + |ao/XO)| + £ a„F(n) 
n>0 ' 'n<0 

<2c1|[/||1 + £|an||F(n)| 
n<0 

= 2c,|lf||,+E E |a-n||A-«)| 
j= l 4/-i</i<4/ 

<2ci\\f\\l+c2 E(4"' E l«-«l2 
1/2 

where we have used (4) and the Cauchy-Schwarz inequality on the last line. 
On the left-hand side of (6), 

n>0 

00 / \ 
>£Re E anF(n)). j=\ v4/- l<n<4/ 

Let7 > 1. If an = 0 for all w G [4/_1,4>), then 

Re 
1/2 

( £ flnF(n)) = 0 = (4-'" E kl2) • 
4/'-1<n<4^' ' v 4/-i<n<4/-

If the an, 4
7-1 < AZ < 4/ are not all zero, (2) gives 

(7) |ltf||2= 4 - ^ . 

This means that (5) may be re-stated in the form 

| | A - S | | 2 < ^ | | B | | 2 

where the vectors A and B are given by 

An = F(n), Bn = fan), Af~l <n< 4j. 

Letting ( , ) denote the usual complex inner product, we have 

1, 

whence 

||A||^-2Re(A,B) + | |B | | ^<- | |B | | i 

2Re<A,B)>-| |B| | i + ||A||l 

>3HBll2 
->-4\\B\\2 

= U~K 
4 
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It follows that 
1 try 

Re( £ anF(n))=4/2( £ \an\
2) Re( £ / / « ) # « ) ) 

5 V 4/-!<n<4/- y 

Combining the two sides of (6), we obtain (1) with c = | max(2ci, C2). 

PROOF OF LEMMA 1. Let 0 < e < 1 be a parameter to be specified later, and define 
trigonometric polynomials FjJ = 0,1,2,. . . (depending on e) by Fo = 0 and 

(8) Fj+l = ^ + 1 + (1 - e2[fj+l \
2)Fj - yj+1F

2. 

Then define 

F=-Fk, 
e 

where k is chosen so large that Fk = Fk+Ï — Fk+2 = • • •. This happens because^ = 0 
eventually,/ being a trigonometric polynomial. 

We will prove that F satisfies (3), (4) and (5), for appropriate absolute constants 
e ,c i ,c 2 ,>0. 

First observe that 

(9) lUÇ-Hoo < £ |ft»)|<4/'/2|i/5||2<i. 
4/'-,<n<4/ 

It follows [3], [4] (by a clever application of the maximum modulus principle, and in
duction on j) that 

(10) Halloo < i , y>o , 

so that we have (3) with c\ = 2/e. 
Next, we prove that 

(12) ( £ \Fk(n)\2)l/2<16e4-i/2 

for ally, k > 0. This implies (4) with c2 = 32, and it will be used again for the proof of 
(5). We first show that 

(13) spec(F,) C ( - 2 • 4/+1,4/) = {neZ:-2- 4j+l <n< 4}. 

Clearly spec(Fo) = 0 C (—2 • 4,1). Suppose (13) is true for a fixed y > 0. We have 

spec(£+1)C[4;>'+1), 

spec([^+1|
2F7) C (-(4>'+1 - 4/'),4/+1 - 4j) + ( -2 • 4̂ '+1,4̂ *) 

spec(fj+iF]) C (-4 /+1, -4^'] + ( -4 • 4/+1,2 • 40 

C (-5 • 4/+1,4/), and therefore 

spec(Fy+i) C (-5 • 4/+1,4/+1) C ( -2 • 4>+2,4/+1). 
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So ( 13) is true for ally > 0 by induction. To begin the proof of ( 12), note that for k < j — 3 
we have 

spec(F^) C ( -2 • 4k+l Ak) 

C (-2 • 4j- 2 ,4 / _ 3), 

so that the left-hand side of (12) is 0, and there is nothing to prove. Next suppose k >j—3 
and kj > 0. For convenience define /> == 0 = F^+\ for indices I < 0, and write 

Fk ~ Fj-3 + E (F^+i — Fi) 
£=7-3 

(i4) = Fj-3 + § f ^ i - e2i/i+ii
2^ - y ^ 2 

7 - 1 Again note that F/_3(M) = 0 for |n| > 4/ \ so 

(15) ^ = ( Ë y M - e%+i\2F, - e-fMF\ 
V=;-3 l Z 

on the set of n with |n| > 4>~1. Recalling that |F*|, \fe+l\ < 1, |i/£+1||2 < 4~(£+1)/2, we 
also get 

Hl /w | 2 ^ | | 2 <![ f w | | 2<4- < £ + 1 > / 2 , and 

Taking t1 norms on both sides of ( 15), for \n\ > 4/~l, and substituting the latter estimates 
(via Plancherel's theorem and the triangle inequality) we get 

1/2 k-\ 

V |n|>4/- ' 7 £ = 7 - 3 V Z Z / 

< 16e4^/2 

(since e < 1), which is (12). 
To obtain (5), fix y > 1 and recall that F = \Fk for some k >j. Write 

(16) Fk -
 C-fj = (Fj-X + £ ^ + i ) + ( T, -e2\fM\2Fi ~ ^fMFt). 

Note that 

(17) (Fy_! + £ J/i+OV) = 0, 4^1 < n < 4, 
v £=/' z y 

by (13) and (2). Observe [1] also that 

spec(fMFt) C (-4M, -4f] + ( -2 • 4£+1,4f) 

C(-oo ,0) . 
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Therefore, on the interval 4l~l <n< 4/, we can write 

(fe+iFz) = (fe+iFiFt) 

(18) = (fMFtFl4)\ 

where Fp, is the "truncation": 

447 

^ ( 0 = £ Ft(n)eint. 

Combining (16), (17), and (18), we get that 

(19) (F* - C-fi)\n) = ( £ -e2\ft+i\2Fi - ^MFtFt^{n) 

for 47-1 <n < 4*. This time we will use the 1-norm estimates, 

| | ^ + i | 2 ^ | | 1 <| l / ' , + 1 | | 2<4- ( < + 1 )
) and 

I I Â + I ^ F / J i ^ l l ^ l - I F ^ - I l l , 

<ll/i+l||2||FW||2 

< 4- (£+1)/2 • 1664^2 

where we have used (12) on the last line. Therefore, for each n e [47-1,4/) we have 

k-\ e _ ,, 
—e [//>+i| F/ — -fp+]FpFfA Fk(n) - -fj(n)\ < £ -e%+l\

2Ft - jMFtFtJ\\ 

< g (e24~(M)+
e_4-(M)/2.l6e4-j/2\ 

< 18e24~A 

Hence, 

2x 1/2 
( E I ^ W - y - w l ) <4;"/2-18e24-;' 

4^-1<«<4/' 

(36e)-4--//2. 
2 

Since F = 2F^, we get (5) by choosing e = ^ . 

This completes the proof of Lemma 1. 
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