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Abstract

Objective: To support the selection of food items for FFQs in such a way that the
amount of information on all relevant nutrients is maximised while the food list is
as short as possible.
Design: Selection of the most informative food items to be included in FFQs was
modelled as a Mixed Integer Linear Programming (MILP) model. The metho-
dology was demonstrated for an FFQ with interest in energy, total protein, total
fat, saturated fat, monounsaturated fat, polyunsaturated fat, total carbohydrates,
mono- and disaccharides, dietary fibre and potassium.
Results: The food lists generated by the MILP model have good performance in
terms of length, coverage and R 2 (explained variance) of all nutrients. MILP-
generated food lists were 32–40 % shorter than a benchmark food list, whereas
their quality in terms of R 2 was similar to that of the benchmark.
Conclusions: The results suggest that the MILP model makes the selection process
faster, more standardised and transparent, and is especially helpful in coping with
multiple nutrients. The complexity of the method does not increase with
increasing number of nutrients. The generated food lists appear either shorter or
provide more information than a food list generated without the MILP model.
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FFQs are often used to assess the usual long-term dietary

intake of individuals in nutritional epidemiological

studies because they are easy to administer with relatively

low costs(1). However, it is widely acknowledged that

they cannot estimate the true usual intake of individuals

without errors and that these errors affect the estimated

diet–disease relationship. Nevertheless, FFQs may provide

a more realistic instrument to assess long-term intake

because they also capture infrequently consumed foods,

whereas short-term instruments like 24h recalls have

presumably less bias but require many repeats. Indeed, a

combination of FFQ with 24h recalls was shown to pro-

vide a superior assessment compared with either method

alone for some foods and nutrients(2). However, practical

and financial constraints still often favour the use of FFQs.

The basis of any FFQ is a food list enumerating all food

items on which respondents are questioned. The aim in

developing an FFQ is to select items for the food list such

that as much information as possible is obtained for all

nutrients of interest. However, the food list should not be

too long in order to minimise the burden for respondents

and the research costs. In the selection process decisions

have to be taken on the level of aggregation of food items.

Highly aggregated food items (such as ‘fresh fruit’) can

capture a high coverage (i.e. the fraction of population

intake that is covered by the items in the food list) in rela-

tively few items, but they often are not suitable to capture

the between-person variance in intake(3). Non-aggregated

food items (single foods such as ‘apples’ or ‘oranges’) per-

form better with respect to capturing the between-person

variance in intake. However, it takes many of these items to

obtain sufficient coverage on all nutrients of interest.

To develop an FFQ, experts use standardised proce-

dures. However, the process is time-consuming and the

selection of food items depends strongly on the personal

expertise of the expert. Molag et al.(4) describe an

automated procedure for selecting food items. In their

selection procedure, one nutrient at a time is taken into

account. For that nutrient, all food items are ranked based

on their contribution to the variance in the population.

Then the highest ranked food items are added to the food

list. Selection stops as soon as the selected items suffice to

obtain a predefined level of explained variance (R 2); for

example, 80 %. Then the same procedure is followed for

the next nutrient, until all nutrients have been taken into

account. The drawback of this procedure is that it only

adds food items to the food list and never removes

items. As most food items contribute to R 2 of several

nutrients, it can be expected that food items added for

one nutrient will also contribute to R 2 of another nutrient.
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Thus the final food list will be unnecessarily long and the

selection of food items will depend on the order in which

nutrients are taken into account. Therefore this procedure

does not suffice to minimise the number of questions in

cases where the food list is targeted for multiple nutrients.

Furthermore, the issue of choosing aggregation levels is not

addressed. These drawbacks expose the need for a selection

procedure that optimises the food list for multiple nutrients

simultaneously, by taking into account the contribution of

food items to both the level of intake and the variance

of multiple nutrients. The procedure should also include

the selection of food items at the best aggregation level.

Selecting the subset of food items that maximises R 2

resembles the variable selection problem in statistics. How-

ever, the FFQ problem distinguishes itself from the common

variable selection problem by the large number of available

food items, the issue of selecting aggregation levels and the

aim to optimise the food list for multiple nutrients simulta-

neously. The present paper describes how selection of food

items for the food list of an FFQ can be modelled and

supported by Mixed Integer Linear Programming (MILP)

models. It also compares MILP-generated food lists with a

food list developed with the procedure described in Molag

et al.(4) in terms of length, coverage and R 2.

Methods

Data

To select food items to be included in the FFQ, food con-

sumption data of the Dutch National Food Consumption

Survey of 1997/1998 of the 3524 individuals in the age group

of 25–64 years(5) were used. The food consumption was

assessed using a 2d food record, and converted into energy

(index n 51), total protein (n 52), total fat (n 53), saturated

fat (n 54), monounsaturated fat (n 5 5), polyunsaturated fat

(n 5 6), total carbohydrates (n 57), mono- and disaccharides

(n 5 8), dietary fibre (n 59) and potassium (n 510) with the

Dutch food composition database of 1996(6).

Aggregation level of food items: food tree

The food items are organised in a food tree with five levels,

see Fig. 1. Level 5 contains all items that can be found as

‘food codes’ (single foods) in the NEVO food composition

table(6). Based on similarities in eating occasions, portion

sizes and nutrient content, these detailed food items are

aggregated into more aggregated food items and food

groups(7). The food groups at the highest aggregation level

are the food groups as specified by NEVO(6). The food tree

contains 1697 items.

Measuring the quality of a food list: defining

performance indicators

In the present paper we use three quantitative performance

indicators to measure the quality of a food list: (i) length of

the food list; (ii) coverage of the level of nutrient intake;

and (iii) explained variance (R 2). The performance

indicator length counts the number of food items in the

food list (i.e. the number of selected ‘boxes’ in the tree of

Fig. 1). Coverage describes the fraction of population

intake covered by the items in the food list. The R 2 of a
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TANGERINE
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APPLE
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BANANA

STRAWBERRY

CHERRY

RASPBERRY
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LEMON

Level 2 Level 5Level 3 Level 4

Fig. 1 Simplified and illustrative part of the tree structure that comprises FRESH FRUIT. Item FRESH FRUIT (level 2) can be further
aggregated into item FRUIT (level 1), which also contains items such as canned fruits and dried fruits
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nutrient is obtained from linear regression of total nutrient

intake v. nutrient intakes of all food items in the food list;

see online supplementary material A1.

FFQs that are targeted for multiple nutrients have a

coverage and an R 2 for each nutrient n (n ¼ 1; . . . ;N ),

denoted as coveragen and R2
n , respectively.

Optimising the performance indicators

of a food list

There is a crucial difference between length and coveragen

of a food list, on the one hand, and R2
n , on the other hand:

the contribution of each individual food item to length and

coveragen of a food list can be uniquely quantified, whereas

the contribution of an item to R2
n depends on the set of

other items in the list. This makes it impossible to calculate

in a straightforward way which combination of items pro-

vides maximal R2
n on all nutrients. Therefore, a three-step

procedure was employed to select a set of items (i.e. a food

list) with high R2
n .

1. A parameter pj,n is defined, which is a proxy for the

contribution of item j to R2
n of a food list. Pn is defined

as the sum of the pj,n of all selected items. It is

therefore a proxy of the R2
n of the whole food list.

2. An MILP model is used to select the optimal set of

items with respect to length, coveragen and Pn.

3. For the resulting set of items (i.e. food list), all R2
n are

calculated.

The challenge is to find an effective proxy pj,n, i.e. a proxy

pj,n that demonstrates to be able to generate food lists with

high R2
n . As it is expected that items with high intake and

high variance in a population might be good candidates for

a food list(3), the following two implementations for proxy

pj,n were tested.

1. Based on intake: MOM1j,n is the percentage that food

item j contributes to the coverage of nutrient n intake

of the population(8). For items in level 5 we define pj,n

as MOM1j,n. For the aggregated items in the other

levels we define pj,n as 90 % of the sum of the pj,n in

their constituent items. We refer to the intake-based

proxy as MOM1n
j ;n . The 90 % was chosen after

experiments with several values (and calculating the

R2
n of the resulting food lists), which showed that in

general the value of 90 % led to good results.

2. Based on variance: MOM2j,n is defined as the

percentage that food item j contributes to sum of

the variances of nutrient n within a specific level of the

food tree(8):

MOM2j ;n ¼

PI
i¼1
ðF ij � �F ij Þ

2

PJ
j¼1

PI
i¼1
ðF ij � �F ij Þ

2
;

where j ¼ 1; . . . ; J refers to all food items at a specific

level in the food tree. We define pj,n as MOM2j,n.

Mixed Integer Linear Programming model

The basis for the MILP model is the tree structure pre-

sented in Fig. 1. For every food item j in the tree we

define a binary decision variable Xj, where:

X j ¼ 1 denotes that we decide to include item j in the

food list

and

X j ¼ 0 denotes that we decide not to include item j in

the food list:

We can express performance indicators length, coveragen

and proxy Pn as linear functions of Xj :

length ¼
XJ

j ¼ 1

X j ;

coveragen ¼
XJ

j ¼ 1

MOM1j ;n
.X j ;

for all nutrients n ¼ 1; . . . ;N

and

Pn ¼
XJ

j ¼ 1

P j ;n
.X j ;

for all nutrients n ¼ 1; . . . ;N :

Now we can formulate an MILP model that optimises one of

these performance indicators while keeping the others at

user-specified levels and ensuring that only feasible food

lists are generated(9,10). For example, if we want to optimise

Pn while the length of the food list is no more than a pre-

defined level (here: fifty items) and the coveragen of each

nutrient is at least 75%, then an appropriate MILP model is:

Maximise

ð1Þ
XN
n¼ 1

Pn ¼
XJ

j ¼ 1

XN
n¼ 1

pj ;n
.X j

( )
;

subject to the restrictions

ð2Þ length ¼
XJ

j ¼ 1

X j � 50;

ð3Þ coveragen ¼
XJ

j ¼ 1

MOM1j ;nX j � 0.75;

for all nutrients n ¼ 1; . . . ;N

and

ð4Þ the food list should not contain overlapping items:

Restriction (4) is added in order to assure the model will

generate only feasible food lists. For example, if item

ORANGE is selected then CITRUS and FRESH FRUIT cannot be

included, and if NON-CITRUS is included then FRESH FRUIT

cannot be included, and neither can all items on the
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right-hand side of NON-CITRUS. This can be modelled by

adding one restriction for every item in level 5 of the food

tree (see Fig. 1). For example, for ORANGE and CHERRY we add:

X Fresh Fruit þ X Citrus þ X Orange � 1;

X Fresh Fruit þ X Non-Citrus þ X Soft Fruit þ X Cherry � 1:

Solving the model in equations (1)–(4) generates a feasible

food list that has maximal value for average Pn among all

food lists with at most fifty items and coveragen $ 0?75,

provided that restrictions (2) and (3) are not conflicting. For

example, if the user specifies that length # 10 and covera-

gen $ 0?95 then no food list is generated, because no such

list exists.

An MILP-generated solution for the part of the food

tree shown in Fig. 1 might be XCITRUS 5 XAPPLE 5 XCHERRY 5 1,

and Xj 5 0 for all other food items. This should be inter-

preted as follows: three food items are included in the food

list, namely CITRUS, APPLE and CHERRY. This implies that the

model has chosen to aggregate ORANGE, GRAPEFRUIT, TANGERINE

and LEMON into one aggregated item at level 3.

By interchanging the performance indicators in equa-

tions (1), (2) and (3), various models can be obtained.

Several examples are provided in the online supple-

mentary material A2.

Experiments

With the MILP model food lists have been generated of

various lengths: 10; 20; . . . ; 150 items. Two different

proxies pj,n were tested: MOM1n
j ;n and MOM2j,n. The

quality of the resulting food lists was measured in terms

of their performance indicators length, coveragen and R2
n .

Standard MILP-software (Xpress-Mosel 7?0?1) was used to

solve the models (i.e. generate the food lists). Runtime of

the MILP model was very small: for all instances a global

optimal solution was found in less than 5 s.

Comparison with the ValNed

We compared length, coveragen and R2
n of MILP-generated

food lists with those of an actual FFQ, the so-called ValNed

questionnaire(7). This questionnaire was developed for the

same nutrient set and with use of the same data source as

the MILP-generated food lists. For constructing the food

list of ValNed, the procedure of Molag et al.(4) was used.

The ValNed food list consisted of 117 items.

Results

Trade-off between length and R2
n

For food lists of length ¼ 10; 20; . . . ; 150 items, all R2
n

(n ¼ 1; . . . ;N ) were calculated. Figure 2 shows the trade-

off between length and R2
n . Figure 2 helps to weigh the
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Fig. 2 Trade-off between the number of items in the food list (length) and R2
n (explained variance) for a coverage-based

implementation and a variance-based implementation of proxy pj,n (food item j 5 1,y, J ; nutrient n 5 1,y, N ). For each food list
the R2

n for all nutrients were calculated. The range of these R2
n is represented with a vertical bar. The lowest among the R2

n of a food
list is represented by > for pj ;n ¼ MOM1n

j ;n and by ’ for pj ;n ¼ MOM2j ;n . As a point of reference, also the length and R2
n of ValNed

(m) are shown
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amount of added information against the number of ques-

tions needed. For example, it took forty items to obtain a

food list in which all nutrients have R2
n � 70%, fifty items

to have all R2
n � 80%, and eighty items to have all

R2
n � 85%.

The choice for proxy pj,n (i.e. MOM1n
j ;n or MOM2j,n)

had impact on the R2
n of the resulting food list. For food lists

of up to seventy items, pj ;n ¼ MOM2j ;n was the best proxy.

For food lists of more than ninety items, pj ;n ¼ MOM1n
j ;n

was the best proxy.

Figure 3 shows the impact of length on the number of

single food items selected for the FFQ. (All other selected

items are aggregated items.) Both absolute and relative

number of single food items grows with growing length,

because a longer food list allows selection of more

detailed food items and thus selection of relatively many

single foods. ValNed uses fewer single foods than the

MILP-generated food lists.

Comparison with ValNed

Length, coveragen and R2
n of the MILP food lists were

compared with those of the food list of ValNed. Figure 2

shows that the MILP model obtained the same R2
n as

ValNed in substantially fewer items, or vice versa

obtained higher values for R2
n with the same number

of items. This is further illustrated in Table 1, which shows the

performance indicators of ValNed and of three food lists

generated with the MILP model (with proxy pj ;n ¼ MOM1n
j ;n

and the iterative improvement procedure as described in

online supplementary material A2).

Food list MILP117 was generated with an MILP model

that maximises Pn while putting an upper bound of

117 on the length of the generated food list. MILP117 has

substantially higher values for coveragen and R2
n than

ValNed, while length is the same. For generating MILP80

and MILP70, an upper bound of 80 and 70 respectively

was put on the length of the food list. MILP80 has slightly

Table 1 Performance indicators of the food list of ValNed and three MILP-generated lists

Food list Length Coveragen (range, in %) R2
n (range, in %)

ValNed 117 79?2–89?1 85?7–91?3
MILP117 117 96?0–97?3 90?5–95?2
MILP80 80 93?9–97?3 86?4–94?4
MILP70 70 91?4–97?2 84?3–93?4

MILP, Mixed Integer Linear Programming.
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Fig. 3 Impact of the length of the food list on the absolute and relative number of single foods selected for the food list;
E represents the number of single foods in MILP food lists, B the percentage of single foods in MILP food lists, m the number of
single foods in the ValNed food list and n represents the percentage of single foods in the ValNed food list. For example, the MILP-
generated food list of length twenty items contained three single foods (15 %) and seventeen aggregated food items. The ValNed
food list of length 117 items contained nineteen single foods (16 %) and ninety-eight aggregated food items (MILP, Mixed Integer
Linear Programming)
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higher values for R2
n than ValNed, and MILP70 has

slightly lower values for R2
n than ValNed. Both lists have

substantially higher coveragen. In other words, the MILP

model generated lists that obtained the same R2
n as

ValNed in substantially fewer (i.e. 32–40 % less) items.

Discussion

The current paper presents a methodology for optimising

food lists when developing FFQs. The decision problem of

selecting food items for food lists was formulated as an MILP

model with three performance indicators: length, coverage

and R 2. The MILP model generated food lists with good

performance in terms of length, coverage and R 2 for all

nutrients of interest. It supported the selection of the most

informative aggregation level for food items and optimised

multiple nutrients at the same time. The generated food lists

were either shorter or provided more information than a

food list generated without the MILP model.

The MILP model chooses the most informative com-

bination of food items from different aggregation levels

fast and objectively. Also, food lists of various lengths may

be generated and the increase of coverage and R 2 obtained

by adding more or other items to the food list may be

investigated. The model provides objective information that

can help to judge whether the extra information obtained

by adding more food items justifies the additional burden

for respondents and the additional research cost. With the

MILP model multiple nutrients can be optimised simulta-

neously. In contrast with a manual selection procedure the

number of nutrients has no impact on the complexity of

the model. The results of the MILP-based selection proce-

dure are highly reproducible. In addition, the MILP model

can be included in a computer system.

In a typical MILP-supported selection procedure the

MILP model is used to generate an initial food list, which

is scrutinised by the nutritionist. The nutritionist indicates

which constraints must be added to the model; for

example, by specifying that some items should or should

not be included in the food list to improve face validity.

Then the MILP model is re-run in order to generate a

food list that takes into account this expert knowledge.

This loop is repeated until the nutritionist is satisfied. The

nutritionist then decides how the items are ordered in the

actual FFQ. In this iterative procedure the nutritionist is

supported by the MILP model. It combines the strong

points of human insight and experience on the one

hand and the efficiency and accuracy of quantitative

optimisation techniques on the other hand(11). It is com-

plementary to the current practice of post hoc validation

studies and it can help to guide efficient design of future

web-based and personal monitoring tools.

Some considerations have to be taken into account.

It is important to realise that the food tree used here is

constructed based on expert knowledge and that different

choices in the structure of the food tree would have led to

different food lists.

Figure 2 shows the trade-off between length of the food

list and R2
n for lists of ten to 150 items. The shortest of these

lists were included for illustrative purposes; in practice

they would not be used for covering the set of nutrients.

The data used to calculate the MOM1 and MOM2

values that are used as input are based on intake data of a

Dutch adult population. Other populations will require

other intake data, resulting in different food lists. The

major advantage of the MILP model is that it generates

new food lists fast and objectively when the user changes

the input data, which facilitates easy adaptation to the

characteristics and dietary habits of a population.

A limitation of the current data set is that only two

subsequent food record days were available for each

person. As result the between-person variance was

artificially high since it contains part of the day-to-day

variation within persons(12). Also, the data set included

multiple persons from the same household, lowering

between-person variance in food intake and increasing

correlations between foods. In general, the data used to

generate the food list will have to be able to estimate the

intake and variance of the foods and food groups

adequately for the target population. Therefore, especially

for infrequently consumed foods and when only one or a

few days of recall per person are available, the sample size

of the used survey will have to be large enough.

Table 1 indicates that for the used set of nutrients there

is relatively little gain in either coverage or R 2 for food

lists longer than seventy items. This might have been

different for a different set of nutrients. If more (disperse)

nutrients, e.g. vitamin C and carotenoids, were to be

added the food list would probably need to be longer.

The optimal length of the food list in general depends on

the (number of) nutrients and on the dispersion of the

nutrients through the available foods.

Even though these aspects may affect the resulting food

lists, they have no effect on the methodology described

here in terms of speed, transparency and reproducibility.

This makes the MILP methodology useful for a large num-

ber of nutritionists worldwide who develop FFQs for a large

variety of studies and different target populations(13–15).

It may help them to devise shorter questionnaires of which

the performance is as good as that of FFQs with more

food items, which generally provide the better results(16).

Validation with for instance biomarkers will have to

answer the question on how well FFQs generated with

this methodology perform in different populations.

Conclusion

MILP models can support development of food lists for

FFQs. The results suggest that the MILP model makes the

selection process faster, more standardised and transparent,
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and is especially helpful in coping with multiple nutrients.

The generated food lists appear either shorter or provide

more information than a food list generated without the

MILP model.
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