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A Variant of Lehmer’s Conjecture,
II: The CM-case

Sanoli Gun and V. Kumar Murty

Abstract. Let f be a normalized Hecke eigenform with rational integer Fourier coefficients. It is an

interesting question to know how often an integer n has a factor common with the n-th Fourier co-

efficient of f . It has been shown in previous papers that this happens very often. In this paper, we

give an asymptotic formula for the number of integers n for which (n, a(n)) = 1, where a(n) is the

n-th Fourier coefficient of a normalized Hecke eigenform f of weight 2 with rational integer Fourier

coefficients and having complex multiplication.

1 Introduction

The arithmetic of the Fourier coefficients of modular forms is intriguing and myste-

rious. For instance, consider the cusp form of Ramanujan:

∆(z) =

∞
∑

n=1

τ (n)e2πinz.

The coefficients τ (n) have received extensive arithmetic scrutiny following the

ground-breaking investigations of Ramanujan himself [11]. Here, we have one of

the oft-quoted conjectures in number theory attributed to Lehmer [3, 4], which as-

serts that τ (p) 6= 0, where p is a prime. Equivalently, for any n ≥ 1, τ (n) 6= 0. In

general, proving such non-vanishing of all Fourier coefficients of a modular form is

delicate and difficult. A more accessible problem is to study the arithmetic density of

the non-zero coefficients. We refer to [7, 16] for results of this type.

In a recent work [10], a variant of Lehmer’s conjecture was considered. More

precisely, let

f (z) =

∞
∑

n=1

a(n)e2πinz

be the Fourier expansion of a normalized eigenform and suppose that the a(n)’s are

rational integers for all n. Then it is natural to ask whether

#
{

p ≤ x | a(p) ≡ 0 (mod p)
}

= o(π(x)).

Heuristically, if the weight is > 2, the number of such primes up to x may grow like

log log x though we do not even know if these are of density zero. In general, denoting

(a, b) to be the greatest common divisor of a and b, one can ask whether

#
{

n ≤ x | (n, a(n)) 6= 1
}

= o(x),
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an assertion that turns out to be false. As mentioned in [10], the correct question in

this context is the opposite assertion, namely whether it is true that

#
{

n ≤ x | (n, a(n)) = 1
}

= o(x).

This variant of Lehmer’s conjecture appears to be amenable to study. In contrast to

the prime case, a(n) almost always has a factor in common with n. In particular, the

following result was proved in [10].

Let us set L2(x) = log log x and for each i ≥ 3, define Li(x) = log Li−1(x). In

any occurence of an Li(x), we always assume that x is sufficiently large so that Li(x) is

defined and positive.

Theorem 1.1 ([10]) For a normalized eigenform f as above with rational integer

Fourier coefficients {a(n)}, one has

#
{

n ≤ x | (n, a(n)) = 1
}

≪ x

L3(x)
.

In the same paper, it was anticipated that if f has complex multiplication (CM),

a stronger result should hold. The ethos of our present work is to vindicate this

anticipation, at least in the case that f has weight 2. A modular form f is said to

have CM if there is an imaginary quadratic field K and a Hecke character Ψ of K with

conductor m so that

f (z) =

∑

a
(a,m)=1

Ψ(a)e2πiN(a)z.

Here, the sum is over integral ideals a of the ring of integers of K that are coprime to

m, and N(a) denotes the norm of a. Thus

a(n) =

∑

N(a)=n,
(a,m)=1

Ψ(a).

In particular for a prime p, a(p) = 0 if p does not split in K and a(n) = 0 if p||n (i.e.,

p | n but p2 ∤ n) for some prime p for which a(p) = 0. It is well known that if we

are given a set S of primes of positive density, the set of integers n with the property

that p||n for some p ∈ S has density one. Thus a(n) = 0 for a set of n of density one.

More precisely, let us set

M f ,1(x) = #
{

n ≤ x | a(n) 6= 0
}

.

Then we show that there is a constant u f so that

M f ,1(x) = (1 + o(1))
u f x

√
π(log x)

1
2

.

We also show that there is a constant ω f > 0 so that

∏

p<x
a(p) 6=0

(

1 − 1

p

)

∼ ω f

(log x)
1
2

,
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where ω f = µ f µ2µ3,

µ2 =

{

1
2

if a(2) 6= 0,

1 otherwise
µ3 =

{

2
3

if a(3) 6= 0,

1 otherwise,

and µ f is given in Proposition 3.3. Finally, the main result of our paper is the follow-

ing theorem.

Theorem 1.2 Let f be a normalized eigenform of weight 2 with rational integer

Fourier coefficients {a(n)}. If f is of CM-type, then there is a constant U f > 0 so

that

#{n ≤ x | (n, a(n)) = 1} = (1 + o(1))
U f x

√
π(L3(x) log x)

1
2

.

The constant is given explicitly in terms of f during the course of the proof.

Our methods are based on the techniques of Erdös [1], Serre [14,15] and those of

Ram Murty and the second author [5, 6, 8–10]. Throughout this article, p and q will

denote primes.

2 Divisibility of Fourier Coefficients

Let f be a normalized Hecke eigenform of weight 2 for Γ0(N) with CM and let K

be the imaginary quadratic field associated with f . The Fourier expansion of f at

infinity is given by

f (z) =

∞
∑

n=1

a(n)e2πinz,

where we are assuming that the a(n)’s are rational integers.

For any prime p, let Zp denote the ring of p-adic integers. By Eichler–Shimura–

Deligne and since the Fourier coefficients of f are in Z, there is a continuous repre-

sentation

ρp, f : Gal(Q̄/Q) → GL2(Zp).

This representation is unramified outside the primes dividing N p. This means that

for any prime q that does not divide N p and for any prime q of Q̄ over q, ρp, f (Frobq)

makes sense. We note that while ρp, f (Frobq) does depend on the choice of q over q, its

characteristic polynomial depends only on the conjugacy class of ρp, f (Frobq)(hence

only on q) and is given by

T2 − a(q)T + q.(2.1)

We consider the reduction of the above representation modulo p

ρ̄p, f : Gal(Q̄/Q) → GL2(Fp).

The fixed field of the kernel of this representation determines a number field L that is

a Galois extension of Q with group the image of ρ̄p, f .

We need to enumerate primes q as above for which a(q) ≡ 0 (mod p). For this

purpose, the following version of a theorem of Schaal [13] is useful.
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Theorem 2.1 Let f be an integral ideal of a number field K of degree n = r1+2r2, where

r1, r2 denote the number of real and complex embeddings, respectively. Also let β ∈ K

denote an integer with (β, f) = 1. Let M1, . . . , Mr1
be nonnegative and P1, . . . , Pn be

positive real numbers with Pl = Pl+r2
, l = r1 + 1, . . . , r1 + r2 and P = P1 . . . , Pn.

Consider the number B of integers ω ∈ K subject to the conditions

ω ≡ β (mod f), (ω) a prime ideal

Ml ≤ ω(l) ≤ Ml + Pl, l = 1, . . . , r1

for real conjugates of ω and for complex conjugates

|ω(l)| ≤ Pl, l = r1 + 1, . . . , n.

If P ≥ 2 and the norm Nf satisfies

Nf ≤ P

(log P)(2r1+2r2−2+2/n)
,

then one has

B ≪ P

φ(f) log P
Nf

{

1 + O

(

log
P

Nf

)−1/n
}

,

where the implied constants depend only on K and not on f.

Define

π∗(x, p) := #
{

q ≤ x | a(q) ≡ 0 (mod p), a(q) 6= 0
}

.

Now suppose that q is a prime that splits in K, say qOK = q1q2 and that πq, π̄q are

roots of the characteristic polynomial (2.1). Then

a(q) = πq + π̄q and q = πqπ̄q.

Also if a(q) 6= 0, then πq ∈ OK and |πq| = q1/2. If a(q) ≡ 0 (mod p), then

π2
q ≡ −q (mod p). Thus, if in addition q ≡ a (mod p), then πq (mod p) has a

bounded number of possibilities (at most 4 in fact). Also, the ideal (πq) is prime

as (πq)(π̄q) = (q). Thus,

∑

q≤x
πq≡α (mod p)
q≡a (mod p)

qOK=q1q2

1 ≤
∑

ω∈OK

(ω) is prime

|ω|≤√
x

ω≡α (mod p)

1.

Applying Theorem 2.1 with f = (p), the right-hand side is seen to be

≪ x

p2 log x
p2

for p2 ≤ x/ log x.

Now, summing over all a (mod p) yields the following proposition.
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Proposition 2.2 Let f be a modular form as above. Then for p2 ≤ x/ log x, we have

π∗(x, p) ≪ x

p log x
p2

.

Now using Proposition 2.2 and partial summation, we see that for primes

p ≤
√

x/ log x,

∑∗

p2 log p≤q≤x
a(q)≡0 (mod p)

1

q
≪ 1

p

∫ x

p2 log p

dt

t log t
p2

≪ 1

p
log log

x

p2
,

where
∑∗

y≤q≤x means that the summation is over all primes y ≤ q ≤ x for which

a(q) 6= 0. Thus, we have the following result.

Proposition 2.3 Let f be a modular form as above and also let p2 ≤ x/log x be a

fixed prime. Then one has

∑∗

p2 log p≤q≤x
a(q)≡0 (mod p)

1

q
≪ 1

p
L2

(

x

p

)

,

where
∑∗

y≤q≤x means that the summation is over all primes y ≤ q ≤ x for which

a(q) 6= 0.

Remark 2.4 We note that the contribution from the remaining primes q ≤ p2 log p

is

∑∗

q≤p2 log p
a(q)≡0 (mod p)

1

q
≪ L2(p)

log p
.

However, we shall not make use of this estimate.

3 Vanishing of a(p)

Let E be the elliptic curve defined over Q corresponding to the modular form f of

level N = NE. As f is of CM-type corresponding to the imaginary quadratic field

K, we know that E has CM by an order in K. A prime p is supersingular for E if

E has good reduction at p and its reduction Ep has multiplication by an order in a

quaternion division algebra. It is well known that a prime p of good reduction is

supersingular if and only if

(3.1) |E(Fp)| ≡ 1 (mod p).

In particular, the set of primes supersingular for E only depends on the isogeny class

of E. For p ≥ 5, (3.1) is equivalent to the condition a(p) = 0.

Let πE(x) denote the number of primes p ≤ x such that p is a supersingular prime

for E. We know that πE(x) ≥ π−
K (x), where π−

K (x) denotes the number of primes

p ≤ x that remain prime in K. In fact, the following more precise result is due to

Deuring (see [2, Ch. 13, Thm. 12]).
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Proposition 3.1 Let E be an elliptic curve defined over Q with multiplication by an

order in an imaginary quadratic field K. Let p be a prime of good reduction for E. Then

p is supersingular for E if and only if p ramifies or remains prime in K.

In particular, this implies the following result.

Proposition 3.2 Suppose that p ≥ 5. With E as in the previous proposition, we have

a(p) = 0 if and only if p is a prime of bad reduction or p does not split in K.

As E has complex multiplication, it has additive reduction at primes of bad reduc-

tion and thus a(p) = 0. The rest follows from Deuring’s result.

Finally, we record a result that will be useful in establishing the main result.

Proposition 3.3 There is a constant µ f > 0 so that

∏

5≤p<z
a(p) 6=0

(

1 − 1

p

)

=
µ f

(log z)
1
2

+ O f

( 1

(log z)3/2

)

.

Proof Using Rosen [12, Thm. 2], we have

∏

Np≤z

(

1 − 1

Np

)−1

= eγαK log z + OK (1).

Here, the product is over primes p of K and αK is the residue at s = 1 of the Dedekind

zeta function ζK (s). Note that αK = L(1, χK), where χK is the quadratic character

defining K and L(s, χK ) is the associated L-function. It follows that

∏

Np≤z

(

1 − 1

Np

)

=
e−γL(1, χK)−1

log z
+ OK

(

1

(log z)2

)

.

Thus,
∏

p≤z
p splits in K

(

1 − 1

p

)

=
βK

(log z)
1
2

+ OK

(

1

(log z)3/2

)

,

where

βK = e−γ/2L(1, χK)−1/2
∏

p inert

(

1 − 1

p2

)− 1
2 ∏

p|dK

(

1 − 1

p

)− 1
2

.

By Proposition 3.2, for p ≥ 5, we have a(p) 6= 0 if and only if p is a prime of good

reduction and splits in K. This proves the result with

µ f = βK

∏

p splits
p|6N

(

1 − 1

p

)−1

.
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4 The Number of Non-Zero Fourier Coefficients

We begin by considering a slightly more general setting as in Serre [15, §6], which

parts of this section follow closely. Let n 7→ a(n) be a multiplicative function and

define the multiplicative function

a0(n) =

{

1 if a(n) 6= 0,

0 if a(n) = 0.

We want the asymptotic behaviour of

Ma,d(x) := # {n ≤ x | a(n) 6= 0, d|n} =

∑

dn≤x

ao(dn),

for any positive integer d.

4.1 The Case d = 1

Consider the Dirichlet series

φ(s) =

∑

n

a0(n)

ns
=

∏

p

φp(s),

where

φp(s) =

∞
∑

m=0

a0(pm)p−ms.

Let Pa(x) = #{p ≤ x | a(p) = 0}. Suppose we know that

(4.1) Pa(x) = λ
x

log x
+ O

( x

(log x)1+δ

)

for some δ > 0 and λ < 1. Then

∑

p≤x

a0(p) = (1 − λ)
x

log x
+ O

( x

(log x)1+δ

)

and
∑

p

a0(p)

ps
= (1 − λ) log

(

1

s − 1

)

+ ǫ1(s),

where ǫ1(s) is analytic in a neighbourhood of s = 1. Moreover,

log(φ(s)) =

∑

p

log(φp(s)) =

∑

p

a0(p)

ps
+ ǫ2(s),
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where ǫ2(s) is also analytic in a neighbourhood of s = 1. Thus,

log(φ(s)) = (1 − λ) log
( 1

s − 1

)

+ ǫ3(s)

and

φ(s) =
eǫ3(s)

(s − 1)1−λ
.

A set of primes P is called frobenien (in the sense of Serre [14, Thm. 3.4]) if there is

a finite Galois extension K/Q and a conjugacy-stable subset H ⊆ G = Gal(K/Q)

such that for p sufficiently large, p ∈ P if and only if σp(K/Q) ⊆ H. Here σp(K/Q)

denotes the conjugacy class of Frobenius automorphisms associated to p. If the set of

primes enumerated by Pa is frobenien, we have

(4.2) Ma,1(x) =
ua x

Γ(1 − λ)(log x)λ
+ O

( x

(log x)λ+1

)

,

where ua = eǫ3(1). Moreover, in the case that λ = 0, if one has the additional hypoth-

esis that

(4.3)
∑

a(p)=0

1

p
< ∞,

then [15, p. 167] states that

(4.4) ua =
∏

a(p)=0

(

1 − 1

p

)

.

Remark 4.1 If we do not assume that Pa enumerates a frobenien set of primes, we

can still invoke a Tauberian theorem to get an asymptotic formula

Ma,1(x) ∼ uax

Γ(1 − λ)(log x)λ
.

In the next two subsections, we consider those arithmetic functions for which Pa

is frobenien.

4.2 Convolution with a Secondary Function

Now consider another function n 7→ b(n) with the following properties:

(i) There is an integer d so that b(n) 6= 0 implies that all prime divisors of n are

prime divisors of d.

(ii) We have |b(n)| ≤ 4ν(n), where ν(n) is the number of distinct prime divisors

of n.
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Let us set

ξd(s) =

∞
∑

n=1

b(n)

ns
.

We see that

∑

m≤x

|b(m)| ≤
∑

p|m⇒p|d
4ν(m)(x/m)1/4

= x1/4
∏

p|d

(

1 +
4

p1/4 − 1

)

.

We observe that
∏

p|d

(

1 +
4

p1/4 − 1

)

≪ 2ν(d),

and so

(4.5)
∑

m≤x

|b(m)| ≪ x1/42ν(d).

Moreover, using (4.5), we have

(4.6)
∑

z<m<2z

|b(m)|
m

≪ z−3/42ν(d).

Let c = a0 ∗ b be the Dirichlet convolution and consider the function

ψ(s) =

∑

n

c(n)

ns
= φ(s)ξd(s).

Then, we have
∑

n≤x

c(n) =

∑

m≤x

b(m)
∑

r≤x/m

a0(r).

The contribution from terms with
√

x ≤ m ≤ x is

≤ x
∑

√
x≤m≤x

|b(m)|
m

.

Decomposing the sum into dyadic intervals U < m ≤ 2U and using (4.6) show

that the summation is O(x−3/82ν(d)) and hence the whole expression is O(x5/82ν(d)).

Assuming that (4.2) holds (that is, that Pa enumerates a frobenien set of primes), we

have

(4.7)
∑

n≤x

c(n) =

∑

m≤√
x

b(m)
{( ua

Γ(1 − λ)
+ O

( 1

log x

)) x

m(log x/m)λ

}

+ O
(

x5/82ν(d)
)

.
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Note that
(

log
x

m

)−λ

= (log x)−λ + O((log m)(log x)−λ−1).

Using this and (4.6), the right-hand side of (4.7) is equal to
(

ua

Γ(1 − λ)
+O

( 1

log x

)

)

x

(log x)λ

(

ξd(1)+O
(

x−3/8(log x)−12ν(d)
)

)

+O
(

x5/82ν(d)
)

.

Summarizing this discussion, we have proved the following.

Proposition 4.2 We have

∑

n≤x

c(n) =
uaξd(1)

Γ(1 − λ)

x

(log x)λ
+ O

(

x2ν(d)

(log x)λ+1

)

uniformly in d.

4.3 The Case of General d

Consider the Dirichlet series

ψd(s) =

∑

n

a0(dn)

ns
.

We may write it as
( ∞

∑

n1=1
p|n1⇒p|d

a0(dn1)

ns
1

)( ∞
∑

n2=1
(n2,d)=1

a0(n2)

ns
2

)

.

Thus, we see that ψd(s) = φ(s)ξd(s), where

φ(s) =

∞
∑

n3=1

a0(n3)

ns
3

as in Section 4.1 and

ξd(s) =

( ∞
∑

n1=1
p|n1⇒p|d

a0(dn1)

ns
1

)( ∞
∑

n2=1
p|n2⇒p|d

a0(n2)

ns
2

)−1

.

We have a factorization

ξd(s) =
∏

p|d
ξp,d(s),

where

ξp,d(s) =

( ∞
∑

m=0

a0(pm+ordpd)p−ms

) ( ∞
∑

m=0

a0(pm)p−ms

)−1

.

We record the following estimate for later use.
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Lemma 4.3 ξp,d(1) = a0(pordpd) + O
(

1
p

)

.

We write

ξd(s) =

∞
∑

n=1

b(n)

ns

and suppose that ξd(s) (that is, the coefficients {b(n)}) satisfies the conditions of

Section 4.2. Recall that

Ma,d(x) := #{n ≤ x | a(n) 6= 0, d|n}.

We have

Ma,d(x) =

∑

dn≤x

a0(dn)

and by Proposition 4.2, we deduce the following.

Proposition 4.4 If ξd satisfies the hypotheses of Section 4.2, then we have

Ma,d(x) =
uaξd(1)

Γ(1 − λ)

x/d

(log x/d)λ
+ O

(

x2ν(d)

d(log x/d)λ+1

)

uniformly in d.

4.4 Application to Modular Forms

Now let f be a normalized Hecke eigenform of weight k ≥ 2 and let a(n) = a f (n)

denote the n-th Fourier coefficient of f . In this case, let us denote the constant ua of

the previous paragraph by u f , and the function Ma,d by M f ,d.

In some cases, u f can be made explicit. If f does not have CM and d = 1, then

condition (4.3) holds (see [8]) and so u f is given by (4.4). We shall discuss the case

that f has CM.

In this case the assumption (4.1) made on Pa(x) is true with λ =
1
2

and so

M f ,1(x) ∼ u f x
√

π(log x)
1
2

.

(Here, we have used the fact that Γ( 1
2
) =

√
π.) If we assume that f is of weight 2 and

has integer Fourier coefficients, then by Proposition 3.2, the “frobenien” condition

is satisfied apart from a finite set of primes. If we can show that the conditions of

Section 4.2 are satisfied, then specializing Proposition 4.4 to this case, we can deduce

the following.

Proposition 4.5 We have

M f ,d(x) = #{n ≤ x | a f (n) 6= 0, d|n} =
u f xξd(1)

√
πd (log x/d)

1
2

+ O

(

x2ν(d)

d(log x/d)3/2

)

where u f is a constant depending on f .
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We begin with some preliminary results. Let us set i f (p) to be the least integer

i ≥ 1 for which a f (pi) = 0. If for a given p, there is no such i, then let us set

i f (p) = 0. In particular, if p divides the level N of f , then i f (p) = 1.

Lemma 4.6 For p ∤ N, we have

(i) i f (p) ∈ {0, 1, 2, 3, 5}.

(ii) If i f (p) > 0, then a f (pi) = 0 for every i > 0 with

i + 1 ≡ 0 (mod i f (p) + 1).

(iii) If a f (pi) = 0 for some i > 0, then i + 1 ≡ 0 (mod i f (p) + 1).

(iv) For p sufficiently large (depending on f ), we have i f (p) ∈ {0, 1}.

Proof Let us suppose that i f (p) > 0. Thus, a f (pi) = 0 for some i ≥ 1. Let us write

αp and βp for the roots of X2 − a f (p)X + p. Then, we have

(4.8) a f (pi) =
αi+1

p − βi+1
p

αp − βp

.

Thus, αp = ζβp where ζ i+1
= 1. Since ζ ∈ Q(αp, βp) = Q(αp) and

[Q(αp) : Q] = 2, we must have ζ2
= 1 or ζ4

= 1 or ζ6
= 1. This means that

one of {ζ + 1, ζ2 + 1, ζ2 + ζ + 1, ζ2 − ζ + 1} is zero. This in turn means that one

of {a f (p), a f (p3), a f (p2), a f (p5)} is zero. This proves the first assertion. The second

follows from (4.8). For the third assertion, we note that αp = ζβp where ζ i+1
= 1.

We also have ζ i f (p)+1
= 1. Hence, ζ j

= 1 where i + 1 ≡ j (mod i f (p) + 1). If j > 0,

then a f (p j−1) = 0. But 0 ≤ j − 1 < i f (p), a contradiction unless j = 1. But then

a f (1) = 0 which is also a contradiction. Hence, we must have j = 0, proving the

third assertion. The fourth assertion follows from [6, Lemma 2.5].

As before, let us set

φp(s) =

∞
∑

m=0

a0(pm)p−ms.

From the above lemma, we deduce the following.

Lemma 4.7 We have for p ∤ N,

φp(s) =











(

1 − 1
ps

)−1

if i f (p) = 0,

ps
(

1
ps−1

− 1

p
(i f (p)+1)s−1

)

if i f (p) > 0.

Note φp(s) = 1 for p | N.

Next, we evaluate ξd(1). We have the following.

Proposition 4.8 Writing

ξd(s) =

∞
∑

n=1

b(n)

ns

we have that
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(i) b(n) = 0 if n is divisible by a prime that does not divide d, and

(ii) if p|d, we have |b(pm)| ≤ 4 for all m.

In particular, the function n 7→ b(n) satisfies the conditions of Section 4.2. Moreover,

we have for p ∤ N,

ξp,d(1) =















1 if i f (p) = 0,

1 + p−1 − pv−2k0+1 if i f (p) = 1,
1+p+···+p

i f (p)−p
v−(k0−1)(i f (p)+1)

p+···+p
i f (p) if i f (p) > 1.

Here v = ordpd and k0 is the smallest integer ≥ v+1
i f (p)+1

.

Proof By a calculation similar to that of Lemma 4.7, we see that

∞
∑

m=0

a0(pm+v)p−ms
=











(

1 − 1
ps

)−1

if i f (p) = 0,

ps
(

1
ps−1

− p
{v−(k0−1)(i f (p)+1)}s

p
(i f (p)+1)s−1

)

if i f (p) > 0.

Hence, writing i = i f (p), we have

ξp,d(s) =
p(i+1)s − 1 − p{v+1−(k0−1)(i+1)}s + p{v−(k0−1)(i+1)}s

p(i+1)s − ps

which is equal to

(

1 − 1

p{k0(i+1)−v−1}s
+

1

p{k0(i+1)−v}s
− 1

p(i+1)s

)(

1 − 1

pis

)−1

from which it follows that |b(pm)| ≤ 4. Moreover, as

ξd(s) =
∏

p|d
ξp,d(s),

it follows also that b(n) = 0 unless every prime divisor of n also divides d. The last

assertion of the lemma follows from the above formulas.

Remark 4.9 Note that the dependence of ξp,d on d is only through ordpd. Thus,

where the meaning is clear, for p|d and d squarefree, we shall write ξp.

In the remainder of this section, we will elaborate on the constant u f and, in par-

ticular, relate it to L-function values. From Lemma 4.7, we have

log φ(s) = −
∑

i f (p)=0

log
(

1 − 1

ps

)

−
∑

i f (p)=1

log
(

1 − 1

p2s

)

+
∑

i f (p)>1

log φp(s).

Note that by Lemma 4.6(iv) the third sum on the right-hand side ranges over a finite

set of primes p.
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Denote by χK the quadratic Dirichlet character that defines K and L(s, χK) the

associated Dirichlet series. Let us denote by S, I, R the set of primes that split, stay

inert, or ramify in K (respectively). Then we have

−
∑

p∈S

log
(

1 − 1

ps

)

=
1

2
log ζ(s) +

1

2
log L(s, χK) +

1

2

∑

p∈I

log
(

1 − 1

p2s

)

+
1

2

∑

p∈R

log
(

1 − 1

ps

)

Moreover, if i f (p) = 0, then a(p) 6= 0 and for p ∤ 6N, this means that p is a prime of

good reduction and splits in K. Therefore,

−
∑

i f (p)=0

p∤6N

log
(

1 − 1

ps

)

= −
∑

p∈S
p∤6N

log
(

1 − 1

ps

)

+
∑

i f (p)>1

p∤6N

log
(

1 − 1

ps

)

.

Since i f (p) = 1 ⇔ a(p) = 0, we can write

−
∑

i f (p)=1

p∤6N

log
(

1 − 1

p2s

)

= −
∑

a(p)=0
p∤6N

log
(

1 − 1

p2s

)

.

After a straightforward (but tedious) computation, one sees that

log φ(s) =
1

2
log

1

s − 1
+

1

2
log

(

ζ(s)(s − 1)
)

+
1

2
log L(s, χK )

+
1

2

∑

p∈I

log
(

1 − 1

p2s

)

+ log C(s),

where

C(s) =
∏

a(p)=0
p∤6N

(

1 − 1

p2s

)−1
∏

p∈R

(

1 − 1

ps

)
1
2 ∏

p∈S
p|6N

(

1 − 1

ps

)

∏

i f (p)>1

p∤6N

{(

1 − 1

ps

)

φp(s)
}

∏

p|6N

φp(s).

Putting the above discussion together, we see that

φ(s) =
ǫ(s)

(s − 1)1/2
,

where

u f = ǫ(1) = L(1, χK)1/2
∏

p∈I

(

1 − 1

p2

) 1/2

C(1).
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5 A Sieve Lemma

We record a simple consequence of Proposition 4.5 that will be used in Section 8.

Lemma 5.1 Let f be as in the previous section, that is, a normalized Hecke eigenform

of weight ≥ 2 with complex multiplication. Let y1 = L2(x)1+ǫ and set

(5.1) Ny1
(x) = {n ≤ x : q|n ⇒ q ≥ y1, a f (n) 6= 0}.

Then

Ny1
(x) =

U f x
√

π(L3(x) log x)
1
2

+ O
( xL3(x)2

(log x)3/2

)

,

where

U f =
u f µ f c f√

π

∏

p<y1

i f (p)>1

(

1 − ξp,d(1)

p

)

∏

p∈{2,3}
i f (p)=0

(

1 − 1

p

)

.

Note that the last two products are over a finite number of primes and

c f =
∏

5≤p<y1

i f (p)≥2

(

1 − 1

p

)−1
∏

p<y1

i f (p)=1

(

1 − 1

p2

)

.

Proof Set Py1
=

∏

p<y1

p. By the principle of inclusion-exclusion, we have

Ny1
(x) =

∑

d|Py1

µ(d)M f ,d(x).

Since Py1
≪ ey1 , we see that for any d|Py1

, we have log x ≪ log x/d ≪ log x. Now

using Proposition 4.5, the right hand side is

=
u f x

√
π(log x)

1
2

∑

d|Py1

µ(d)

d

(

ξd(1) + O
( 2ν(d)

(log x)

))

.

The main term is

=
u f x

√
π(log x)

1
2

∏

p<y1

(

1 − ξp,d(1)

p

)

=
u f x

√
π(log x)

1
2

∏

5≤p<y1

i f (p)=0

(

1 − 1

p

)

∏

p<y1

i f (p)≥1

(

1 − ξp,d(1)

p

)

∏

p∈{2,3}
i f (p)=0

(

1 − 1

p

)

=
u f x

√
π(log x)

1
2

∏

5≤p<y1

i f (p)=0

(

1 − 1

p

)

∏

p<y1

i f (p)=1

(

1 − 1

p2

)

∏

p<y1

i f (p)>1

(

1 − ξp,d(1)

p

)

∏

p∈{2,3}
i f (p)=0

(

1 − 1

p

)

.
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Note that if i f (p) = 1 and d is squarefree, we have ξp,d(1) =
1
p

by Proposition 4.8.

Also note that by Lemma 4.6, there are only finitely many primes p for which i f (p) >
1, ensuring the convergence of

∏

i f (p)>1

(

1 − ξp,d(1)

p

)

.

Now using Proposition 3.3, we see that the above sum is

U f x
√

π(L3(x) log x)
1
2

.

The error term is

≪ x

(log x)3/2

∑

d|Py1

|µ(d)|
d

2ν(d).

The sum over d is

≪ ∏

ℓ<y1

(

1 +
2

ℓ

)

≪ ∏

ℓ<y1

(

1 − 1

ℓ

)−2

≪ L3(x)2.

This proves the result.

We record here a variant of the above result.

Lemma 5.2 Suppose that p ≤ y1. We have

#{n ≤ x | p|n, a f (n) 6= 0, q|n ⇒ q ≥ p} ≪
x

p(log x)
1
2

∏

ℓ≤p
ℓ prime

(

1 − 1

l

)

+
x

(log x)3/2
e4

√
p log p

p
.

6 Siegel Zeros

Let L/Q be a Galois extension of number fields with group G and nL, dL be the degree

and the absolute value of the discriminant of L/Q , respectively. Suppose that Artin’s

conjecture on the holomorphy of Artin L-functions is known for L/Q . Set

log M = 2

(

∑

p|dL

log p + log nL

)

.

Also, denote by d the maximum degree and by A the maximum Artin conductor of

an irreducible character of G.

Let C be the set of elements in G that map to the Cartan subgroup and also have

trace zero. Then C is stable under conjugation and thus C is a union of conjugacy

classes. Denote by π(x,C) the number of primes p ≤ x with Frobp ∈ C . Then,
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[8, Thm. 4.1] asserts that for log x ≫ d4(log M), there is an absolute and effective

constant c > 0 so that

π(x,C) =

|C|
|G|Li x − |C|

|G|Li xβ + O
(

|C| 1
2 x (log xM)2 exp

{ −c log x

d3/2
√

d3(log A)2 + log x

})

.

The term involving β is present only if the Dedekind zeta function ζL(s) of L has a

real zero β (the Siegel zero), in the interval

1 − 1

4 log dL

≤ ℜ(s) < 1.

Let L be the fixed field of the kernel of ρ̄p, f . (Recall that ρ̄p, f was introduced in

Section 2.) Now, let G = Gal(L/Q) (viewed as a subgroup of GL2(Z/p)) and let

C be the subset of elements of G of trace zero. It is known that the subgroup H =

Gal(L/K) is Abelian and maps to a Cartan subgroup of GL2(Z/p). The image of G

maps to the normalizer of this subgroup. As G has an Abelian normal subgroup of

index 2, it is well known that all irreducible characters of G are monomial, and so

Artin’s holomorphy conjecture holds for it.

Thus, we can appeal to the above version of the Chebotarev density theorem. The

extension L/K is unramified outside of primes dividing pN, where N is the level of

f . We have d = 2, and log M ≪ log pN as well as log A ≪ log pN. For p sufficiently

large, it is known that G maps onto the normalizer of a Cartan subgroup, and hence

p2 ≪ |G| ≪ p2. Moreover, the size of |C| satisfies p ≪ |C| ≪ p. Thus, if we set

δ(p) =
|C|
|G| , we have 1

p
≪ δ(p) ≪ 1

p
for p sufficiently large. Thus, we have the

following result.

Theorem 6.1 Let f be a CM form of level N as before. Then for log x ≫ (log pN)2,

we have

π∗(x, p) = δ(p)Li x − δ(p)Li xβ + O(xe−c
√

log x),

where 1
p
≪ δ(p) ≪ 1

p
and the implied constant is absolute and effective.

From the discussion above, we know that the stated bounds on δ(p) hold for p

sufficiently large. To deduce that they hold for all p, it suffices to show that δ(p) > 0

holds for all p. This inequality follows from the fact that the image of complex con-

jugation is an element of trace zero in the Galois group.

If the Dedekind zeta function ζL(s) = 0 has a Siegel zero β with 1 − 1
4 log dL

≤
ℜ(s) < 1, then by a result of Stark [17, p. 145] we know that there is a quadratic field

M contained in L such that ζM(β) = 0. Further [17, p. 147], for such M

β < 1 − 1√
dM

.

Let [L : M] = n. Since dL ≥ dn
M , we have

β < 1 − 1

d
1/2n
L

.

https://doi.org/10.4153/CJM-2011-002-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-002-4


A Variant of Lehmer’s Conjecture, II: The CM-case 315

Now by an inequality of Hensel [15, p. 129], log dL ≤ 2n log pnL and so 1
2n

log dL ≤
log pnL. Hence

β < 1 − 1

pnL

.(6.1)

7 Intermediate Results

As before

π∗(x, p) = #{q ≤ x | a(q) ≡ 0 (mod p), a(q) 6= 0}.
Proving Theorem 1.2 requires the following lemmas. Let 0 < ǫ < 1/2 and set

y = L1−ǫ
2 (x).

Lemma 7.1 Let p < y be a fixed prime. Then we have

∑∗

q≤x
a(q)≡0 (mod p)

1

q
= δ(p)L2(x) + O(L3(x)),

where
∑∗

q≤x means that the summation is over all primes q ≤ x for which a(q) 6= 0.

Proof By partial summation, the sum is

∑∗

q≤x
a(q)≡0 (mod p)

1

q
=

π∗(x, p)

x
+

∫ x

2

π∗(t, p)

t2
dt.

But
∫ x

2
π∗(t,p)

t2 dt can be written as

∫ (log x)γ

2

π∗(t, p)

t2
dt +

∫ x

(log x)γ

π∗(t, p)

t2
dt,

where γ is chosen in such a way that for (log x)γ ≤ t ≤ x, we have log t ≫ (log pN)2.

The first integral is

≤
∫ (log x)γ

2

π(t)

t2
dt ≪ L3(x), where π(t) = #{p ≤ t | p prime},

and the second integral is

∫ x

(log x)γ

1

t2

(

δ(p)Li(t) − δ(p)Li(tβ) + O(te−c
√

log t )
)

dt, by Theorem 6.1.

The first term is equal to

δ(p)

∫ x

(log x)γ

dt

t log t
+ O(L3(x)) = δ(p)L2(x) + O(L3(x)).
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Next, consider the term with the Siegel zero. Since by (6.1), β < 1 − 1
pnL

, therefore

the second term is

δ(p)

∫ x

(log x)γ

1

t2
Li(tβ) dt = δ(p)

∫ x

(log x)γ

dt

t2

∫ tβ

2

du

log u

= δ(p)

∫ xβ

2

du

log u

∫ x

max
(

(log x)γ ,u
1
β

)

dt

t2
.

We split the range of integration of u into two integrals:

(I) 2 ≤ u ≤ (log x)γβ ,
(II) (log x)γβ ≤ u ≤ xβ .

The first range gives rise to the integral

δ(p)

∫ (log x)γβ

2

du

log u

{ 1

(log x)γ
− 1

x

}

≪ δ(p)(log x)γ(β−1) ≪ 1.

The second range gives rise to the integral

δ(p)

∫ xβ

(log x)γβ

du

log u

{ 1

u
1
β

− 1

x

}

.

Set v = u
1
β . Then vβ

= u and β log v = log u. Moreover, du = βvβ−1dv. Hence the

integral is

δ(p)

∫ x

(log x)γ

βvβ−1dv

β log v

( 1

v
− 1

x

)

≪ δ(p)

(log x)γ(1−β)

∫ x

(log x)γ

dv

v log v

≪ δ(p)L2(x)

(log x)
γ

pnL

≪ δ(p)L2(x)

e
γ

nL
L2(x)ǫ ≪ 1.

Finally, using the elementary estimate ec
√

u ≫ u2, we deduce that the O-term is

≪
∫ log x

L2(x)

du

u2
≪ 1.

The term π∗(x, p)/x is of smaller order. This proves the lemma.

Define ν(p, n) = #{qm||n | a(qm) ≡ 0 (mod p)}.

Lemma 7.2 Assume that p < y. Then we have

∑∗

n≤x

ν(p, n) = (1 + o(1))
u f δ(p)xL2(x)

√

π log x
+ O

(

xL3(x)
√

log x

)

,

where
∑∗

n≤x means that the summation is over all natural numbers n ≤ x such that

a(n) 6= 0.
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Proof Interchanging summation, we see that

∑∗

n≤x

ν(p, n) =

∑∗

qm≤x
a(qm)≡0 (mod p)

∑∗

n≤x
qm||n

1

=

∑∗

q≤x
a(q)≡0 (mod p)

∑∗

n≤x
q||n

1 +
∑∗

qm≤x,m≥2
a(qm)≡0 (mod p)

∑∗

n≤x
qm||n

1.

The contribution of terms qm with m ≥ 2 is

∑∗

qm≤x,
m≥2

a(qm)≡0 (mod p)

∑∗

n≤x
qm||n

1 =

∑∗

qm≤xǫ

m≥2
a(qm)≡0 (mod p)

∑∗

n≤x
qm||n

1 +
∑∗

xǫ≤qm≤x
m≥2

a(qm)≡0 (mod p)

∑∗

n≤x
qm||n

1

≪
∑∗

qm≤xǫ

m≥2
a(qm)≡0 (mod p)

∑∗

n≤x/qm

1 + x
∑∗

xǫ≤qm≤x
m≥2

1

qm

≪ x

(log x)
1
2

∑∗

qm≤xǫ

m≥2

1

qm
+ x

∫ x

xǫ

dt

t2
, by Proposition 4.5

≪ x
√

log x
+

x

xǫ
≪ x

√

log x
.

Also, we have

(7.1)
∑∗

q≤x
a(q)≡0 (mod p)

∑∗

n≤x
q||n

1 =

∑∗

q≤x1/ log log x

a(q)≡0 (mod p)

∑∗

n≤x
q||n

1 +
∑∗

x1/ log log x≤q≤x
a(q)≡0 (mod p)

∑∗

n≤x
q||n

1.

We show that the second double sum on the right of (7.1) contributes a negligible

amount. Indeed, consider first the quantity

(7.2)
∑∗

xǫ≤q≤x
a(q)≡0 (mod p)

∑∗

n≤x
q||n

1.

This is majorized by

∑∗

n≤x

∑∗

xǫ≤q≤x
q||n

1.

The inner sum is bounded and so by Proposition 4.5, we see that (7.2) is

(7.3) ≪ x/
√

log x.
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Now, consider the quantity

(7.4)
∑∗

x1/ log log x≤q≤xǫ

a(q)≡0 (mod p)

∑∗

n≤x
q||n

1.

By Proposition 4.5, the inner sum is ≪ x/q
√

log x. Since

∑

x1/ log log x≤q≤xǫ

1

q
= log log log x + O(1),

it follows that (7.4) is

(7.5) ≪ xL3(x)/
√

log x.

Putting (7.3) and (7.5) together, we deduce that

∑∗

q≤x
a(q)≡0 (mod p)

∑∗

n≤x
q||n

1 =

∑∗

q≤x1/ log log x

a(q)≡0 (mod p)

∑∗

n≤x
q||n

1 + O(xL3(x)/
√

log x).

Now by Proposition 4.5, Lemma 4.3 (and the fact that in the sum a0(q) = 1), the

sum on the right is equal to

(1 + o(1))
u f x√

π

∑∗

q≤x1/ log log x

a(q)≡0 (mod p)

1

q
√

log x/q

(

1 + O

(

1

q

)

+ O

(

1

log x/q

))

=

(1 + o(1))
u f x√

π

∑∗

q≤x1/ log log x

a(q)≡0 (mod p)

1

q
√

log x/q
+ O

(

x

(log x)
1
2

)

.

Now applying Lemma 7.1, we see that this is

= (1 + o(1))
u f δ(p)xL2(x)
√

π(log x)
1
2

+ O
( xL3(x)

(log x)
1
2

)

.

This proves the lemma.

Lemma 7.3 Assume p < y. Then

∑∗

n≤x

ν(p, n)2
= (1 + o(1))

u f δ
2(p)xL2

2(x)
√

π(log x)
1
2

+ O
( δ(p)xL2(x)L3(x)

(log x)
1
2

)

.
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Proof The sum in question is equal to

∑∗

q
m1
1 ≤x

a(q
m1
1 )≡0 (mod p)

∑∗

q
m2
2 ≤x

a(q
m2
2 )≡0 (mod p)

∑∗

n≤x

q
m1
1 ||n, q

m2
2 ||n

1.

By a small modification to the argument given in the proof of Lemma 7.2, we find

that the contribution of terms with q1 = q2 is

≪ xL2(x)

(log x)1/2
.

Next, we consider the contribution S (say) of terms with qm1

1 qm2

2 > xǫ. For estimating

this, we may suppose that qm1

1 > qm2

2 . Since q2 ≥ 2, we may suppose that x/2 ≥
qm1

1 ≥ xǫ/2
= z (say).

Denote by S1 the contribution of terms for which z ≤ qm1

1 ≤
√

x/2 and by S2 the

contribution of all remaining terms in S. Then by Proposition 4.5, we have

S1 ≪ x
∑∗

z≤q
m1
1 ≤

√
x/2

1

qm1

1

∑

q
m2
2 ≤q

m1
1

1

qm2

2

√

log x
q

m1
1 q

m2
2

≪ x
∑

z≤q
m1
1 ≤

√
x/2

1

qm1

1

√

log x

q
2m1
1

log log(qm1

1 )

≪ xL2(x)

∫

√
x/2

z

dt

t(log t)
√

log x/t2
≪ xL2(x)

√

log x
.

Next, we observe that

S2 ≪
∑

√
x/2 <q

m1
1 ≤x/2

∑∗

n≤x/q
m1
1

ν(p, n)

and by Lemma 7.2, this is

≪ xL2(x)
∑

√
x/2<q

m1
1 ≤x/2

1

qm1

1

1
√

log x/qm1

1

≪ xL2(x)
√

log x
.

It remains to estimate

∑∗

q
m1
1 q

m2
2 ≤xǫ

a(q
m1
1 )≡0 (mod p)

a(q
m2
2 )≡0 (mod p)

∑∗

n≤x

q
m1
1 ‖n, q

m2
2 ‖n

1 = I + J, say,
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where in I we have the terms with m1 > 1 or m2 > 1, and in J we have the terms

with m1 = m2 = 1. In order to estimate I, suppose without loss of generality that

m1 ≥ 2. Then by Proposition 4.5, we have

I ≪ x
∑∗

q
m1
1

m1≥2

1

qm1

1

∑∗

q
m2
2

q
m1
1 q

m2
2 ≤xǫ

1

qm2

2

√

log x
q

m1
1 q

m2
2

≪ x
√

log x

∑∗

q
m1
1

m1≥2

1

qm1

1

(

∑

q2≤xǫ

1

q2
+

∑

q2

m2≥2

1

qm2

2

)

≪ xL2(x)
√

log x
.

Next, we consider

J =

∑∗

q1q2≤xǫ

a(q1)≡0 (mod p)
a(q2)≡0 (mod p)

∑∗

n≤x
q1‖n, q2‖n

1

By Propositions 4.5 and 4.8, we have

J = (1 + o(1))
u f x

√

π log x

∑∗

q1q2≤xǫ

a(q1)≡0 (mod p)
a(q2)≡0 (mod p)

q1 6=q2

1

q1q2
+ O

( xL2(x)
√

log x

)

= (1 + o(1))
u f x

√

π log x

(

∑∗

q≤x
a(q)≡0 (mod p)

1

q

) 2

+ O
( xL2(x)

√

log x

)

= (1 + o(1))
u f x

√

π log x

(

δ(p)L2(x) + O(L3(x))
) 2

+ O
( xL2(x)

√

log x

)

= (1 + o(1))
u f δ

2(p)xL2
2(x)

√
π(log x)

1
2

+ O
(

δ(p)
xL2(x)L3(x)

√

log x

)

.

This proves the lemma.

Lemma 7.4 Suppose p < y, then

∑∗

n≤x

(

ν(p, n) − δ(p)L2(x)
) 2 ≪ δ(p)x

(log x)
1
2

L2(x)L3(x).

Proof This follows from Lemmas 7.2 and 7.3.

Lemma 7.5 Assume p < y, then

#{n ≤ x | ν(p, n) = 0} ≪ xL3(x)

δ(p)(log x)
1
2 L2(x)

.
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Proof By Lemma 7.4, this is

≪ 1

δ2(p)L2
2(x)

{

δ(p)
x

(log x)
1
2

L2(x)L3(x)
}

=
xL3(x)

δ(p)(log x)
1
2 L2(x)

.

8 Proof of Theorem 1.2

For a prime p, let

Gp(x) = #{n ≤ x | p|n, (n, a(n)) = 1, q|n ⇒ q ≥ p}

and G(x) =
∑

p≤x Gp(x) = A1 + A2 + A3, where

A1 =

∑

p≤L
1
2
−ǫ

2 (x)

Gp(x), A2 =

∑

L
1
2
−ǫ

2 (x)<p<L1+ǫ
2 (x)

Gp(x), A3 =

∑

p≥L1+ǫ
2 (x)

Gp(x).

Now, using Lemma 7.5, we have

A1 ≤
∑

p≤L
1
2
−ǫ

2 (x)

#{n ≤ x | p|n, (n, a(n)) = 1}

≪ xL3(x)

(log x)
1
2 L2(x)

∑

p≤L
1
2
−ǫ

2 (x)

1

δ(p)

≪ xL3(x)

(log x)
1
2 L2(x)

∑

1≪p≤L
1
2
−ǫ

2 (x)

p, as δ(p) ≫ 1

p

≪ x

(log x)
1
2 Lǫ

2(x)
= o

( x

(L3(x) log x)
1
2

)

.

Moreover, by Lemma 5.2, we have

A2 ≤
∑

L
1
2
−ǫ

2 (x)<p<L1+ǫ
2 (x)

#{n ≤ x | p|n, a(n) 6= 0, q|n ⇒ q ≥ p}

≪ x

(log x)
1
2

∑

L
1
2
−ǫ

2 (x)<p<L1+ǫ
2 (x)

1

p

∏

l≤p
l

prime

(

1 − 1

l

)

≪ x

(log x)
1
2

∑

L
1
2
−ǫ

2 (x)<p<L1+ǫ
2 (x)

1

p log p

≪ x

L3(x)(log x)
1
2

= o
( x

(L3(x) log x)
1
2

)

.
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Let y1 = L2(x)1+ǫ and as in (5.1), Ny1
(x) = # {n ≤ x | q|n ⇒ q ≥ y1, a(n) 6= 0}.

Then

Ny1
(x) −

∑∗

y1≤qm
1 ,q2≤x

a(qm
1 )≡0 (mod q2)

∑∗∗

n≤x
qm

1 ||n, q2|n

1 ≤ A3 ≤ Ny1
(x),

where
∑∗∗

n≤x
means that the summation is over all natural numbers n ≤ x such

that a(n) 6= 0 and q|n implies that q > y1.

By Lemma 5.1, to prove the theorem, it suffices to show that

∑∗

y1≤qm
1 , q2≤x

a(qm
1 )≡0 (mod q2)

∑∗∗

n≤x
qm

1 ||n, q2|n

1 = o
( x

(L3(x) log x)
1
2

)

.(8.1)

In order to prove (8.1), let us write

∑∗

y1≤qm
1 , q2≤x

a(qm
1 )≡0 (mod q2)

∑∗∗

n≤x
qm

1 ||n, q2|n

1 =

∑∗

y1≤qm
1 , q2≤x, m≥2

a(qm
1 )≡0 (mod q2)

∑∗∗

n≤x,
qm

1 ||n, q2|n

1

+
∑∗

y1≤q1, q2≤x
a(q1)≡0 (mod q2)

∑∗∗

n≤x
q1||n, q2|n

1

= B1 + B2.

Let us consider B1 first. The terms for which qm
1 q2 ≥ (log x)x1/2 y2

1 contribute an

amount that is

≪
√

x

log x

∑

q2≤x

1

q2

∑

qm
1 ≥y1

m≥2

1

qm
1

≪
√

x

y1 log x
L2(x) ≪ x

Lǫ
2(x) log x

.

For the remaining terms, qm
1 q2 ≤ (log x)x1/2 y2

1. We use Proposition 4.5 to see that

the remaining terms in B1 are

≪ x

(log x)
1
2

∑

y1≤q2≤x

1

q2

∑

y1≤qm
1

m≥2

1

qm
1

≪ x

y1(log x)
1
2

∑

y1≤q2≤x

1

q2

≪ xL2(x)

y1(log x)
1
2

=
x

(log x)
1
2 Lǫ

2(x)
.
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For B2, we observe that if a(q1) 6= 0 and a(q1) ≡ 0 (mod q2), then q2 ≤ |a(q1)| ≤
2
√

q1. Hence q1 ≥ q2
2/4 and so q1q2 ≥ q3

2/4. Hence for the inner sum in B2 to be

nonempty, we need q2 ≤ (4x)1/3. Thus

B2 =

∑∗

y1≤q1≤x

y1≤q2≤(4x)1/3

a(q1)≡0 (mod q2)

∑∗∗

n≤x
q1||n, q2|n

1

=

∑∗

y1≤q1≤
√

x
y1≤q2≤2

√
q1

a(q1)≡0 (mod q2)

∑∗∗

n≤x
q1||n, q2|n

1 +
∑∗

√
x≤q1≤x

y1≤q2≤2
√

q1

a(q1)≡0 (mod q2)

∑∗∗

n≤x
q1||n, q2|n

1

= D1 + D2.

Then by Proposition 4.5 and the fact that q1q2 ≪ x3/4, we have

D1 ≪
x

(log x)
1
2

∑∗

y1≤q1≤
√

x
y1≤q2≤2

√
q1

a(q1)≡0 (mod q2)

1

q1q2

=
x

(log x)
1
2

{

∑∗

y1≤q2≤2x1/4

1
4

q2
2≤q1≤q2

2 log q2

a(q1)≡0 (mod q2)

1

q1q2
+

∑∗

y1≤q2≤2x1/4

q2
2 log q2≤q1≤

√
x

a(q1)≡0 (mod q2)

1

q1q2

}

.

By Proposition 2.3, the second sum is

≪ xL2(x)

(log x)
1
2

∑

y1≤q2≤2x1/4

1

q2
2

≪ xL2(x)

y1(log x)
1
2

=
x

(log x)
1
2 Lǫ

2(x)
.

The first sum is

≪ x

(log x)
1
2

∑

1
4

y2
1≤q1≤x

1

q1

∑∗

q

q1
log q1

≤q2≤2
√

q1

a(q1)≡0 (mod q2)

1

q2
.

We note that the inner sum over q2 is bounded. In fact with 0 < |a(q1)| ≤ 2
√

q1,

there exists at most one q2 ≥
√

q1/log q1 that divides a(q1). Thus, the right-hand

side is

≪ x

(log x)
1
2

∑

y1≤q1≤x

√

log q1

q
3/2
1

≪ x

(L2(x) log x)
1
2

.
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In order to estimate D2, we write

D2 =

∑∗

y1≤q2≤e
√

log x

√
x≤q1≤ x

2q2
a(q1)≡0 (mod q2)

∑∗∗

n≤x
q1||n, q2|n

1 +
∑∗

y1≤q2≤e
√

log x

x
2q2

≤q1≤ x
q2

a(q1)≡0 (mod q2)

∑∗∗

n≤x
q1||n,q2|n

1

+
∑∗

e
√

log x≤q2≤
(

x
log x

) 1/3

√
x≤q1≤ x

q2
a(q1)≡0 (mod q2)

∑∗∗

n≤x
q1||n, q2|n

1 +
∑∗

“

x
log x

”1/3
≤q2≤x

√
x≤q1≤ x

q2
a(q1)≡0 (mod q2)

∑∗∗

n≤x
q1||n, q2|n

1

= J1 + J2 + J3 + J4.

Here

J4 ≪ x
∑∗

√
x≤q1≤x

1

q1

∑∗

“

x
log x

”1/3
≤q2≤22/3x1/3

1

q2

≪ x2/3(log x)1/3π((4x)1/3)
∑∗

√
x≤q1≤x

1

q1
,

where π(t) denotes the number of primes ≤ t . Thus

J4 ≪
x

(log x)2/3

∑∗

√
x≤q1≤x

1

q1
≪ xL2(x)

(log x)2/3

and

J3 ≪ x
∑∗

√
x≤q1≤x

1

q1

∑∗

q2|a(q1)

q2≥e
√

log x

1

q2

≪ x

e
√

log x

∑∗

√
x≤q1≤x

1

q1
#
{

q2 | q2 ≥ e
√

log x, q2|a(q1), 0 6= a(q1) ≤ 2
√

x
}

≪ x
√

log x

e
√

log x

∑

q1≤x

1

q1
≪ x

√

log x L2(x)

e
√

log x
.

In order to estimate J1 and J2, we write

J1 =

∑∗

y1≤q2≤e
√

log x

√
x≤q1≤ x

2q2
a(q1)≡0 (mod q2)

∑∗∗

n≤x
q1||n, q2||n

1 +
∑∗

y1≤q2≤e
√

log x

√
x≤q1≤ x

2q2
a(q1)≡0 (mod q2)

∑∗∗

n≤x
q1||n

qm
2 ||n,m≥2

1 = J11 + J12,
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J2 =

∑∗

y1≤q2≤e
√

log x

x
2q2

≤q1≤ x
q2

a(q1)≡0 (mod q2)

∑∗∗

n≤x
q1||n,q2||n

1 +
∑∗

y1≤q2≤e
√

log x

x
2q2

≤q1≤ x
q2

a(q1)≡0 (mod q2)

∑∗∗

n≤x
q1||n

qm
2 ||n,m≥2

1 = J21 + J22.

We show that J11 and J21 are o(x/L3(x)(log x)1/2). Similarly, one can show that J12

and J22 are o(x/L3(x)(log x)1/2). We can write

J11 ≪ x
∑∗

y1≤q2≤e
√

log x

1

q2

∑∗

√
x≤q1≤ x

2q2
a(q1)≡0 (mod q2)

1

q1

(

log x
q1q2

) 1/2

≪ x
∑∗

y1≤q2≤e
√

log x

1

q2

∫ x/2q2

√
x

dπ∗(t, q2)

t
(

log x
q2t

) 1/2

≪ x
∑∗

y1≤q2≤e
√

log x

1

q2

[

{

π∗(t, q2)

t
(

log x
q2t

) 1/2

} t=x/2q2

t=
√

x

+

∫ x/2q2

√
x

π∗(t, q2) dt

t2
(

log x
q2t

) 1/2

]

.

Then by using Theorem 6.1, we have

J11 ≪ x
∑∗

y1≤q2≤e
√

log x

1

q2
2

[

{

1

log t
(

log x
q2t

) 1/2

} t=x/2q2

t=
√

x

+

∫ x/2q2

√
x

dt

t log t
(

log x
q2t

) 1/2

]

≪ x

log x

∑∗

y1≤q2≤e
√

log x

1

q2
2

[

1 +

∫ x/2q2

√
x

dt

t
(

log x
q2t

) 1/2

]

≪ x

(log x)1/2

∑∗

y1≤q2≤e
√

log x

1

q2
2

≪ x

y1(log x)1/2
.

Since for each pair of primes q1, q2 with y1 ≤ q2 ≤ e
√

log x, x/2q2 ≤ q1 ≤ x/q2, there

are at most two n ≤ x with q1q2 | n, we have

J21 ≪
∑∗

y1≤q2≤e
√

log x

∑∗

x
2q2

≤q1≤ x
q2

a(q1)≡0 (mod q2)

1

≪
∑∗

y1≤q2≤e
√

log x

π∗(x/q2, q2) ≪ x

log x

∑∗

y1≤q2≤e
√

log x

1

q2
2

, by Theorem 6.1

≪ x

y1 log x
.

Hence

B1 + B2 = o

(

x

(log x)
1
2 L3(x)

)

.

This completes the proof.
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