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Abstract

In this paper we study the asymptotic behavior of cylindrical ends in compact foliated 3-manifolds and
give a sufficient condition for these ends to spiral onto a toral leaf.

1991 Mathematics subject classification (Amer. Math. Soc): primary 57R3O; secondary 53C12.

1. Introduction and preliminaries

In this paper we shall be concerned with orientable foliations & of dimension two of
compact three dimensional orientable manifolds. If the boundary of a manifold M is
not empty, we always assume the components of 3 M are leaves of the foliation, and
all foliations and maps we consider are assumed to be at least of class C2.

The study of the limit set of an end and the comprehension of the asymptotic
behavior of a leaf following this end, is a difficult problem in its full generality. Many
authors have studied the limit set of ends under certain conditions (see for example the
introduction in [C-C1 ]). In particular J. Cantwell and L. Conlon have proven a theorem
similar to Theorem 4 below for totally proper ends in a codimension one foliation
[C-Cl] as well as for isolated planar ends of proper leaves with non-exponential
growth (see [C-C2, Cor. 3.4]). More precisely, they proved that totally proper leaves
spiral on leaves at lower level (see in [C-Cl, section 6]). Nishimori [Ni] has studied
the asymptotic behavior of isolated ends whose limit set is a compact leaf. Hector [H]
has classified foliations for which all leaves are cylinders, furnishing us with models
where cylindrical ends appear. In the present work, for the first time, we get results
without the hypothesis that L is proper and without any assumptions on the growth
type of the leaves. Instead of these assumptions we use the compressibility of the
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[2] Ends of leaves in foliated 3-manifolds 209

cylindrical end and the hypothesis that the end is of trivial linking type (see definitions
1 and 3 below). Roughly speaking, the idea of the proof is to consider and study the
foliation &D induced by & on a disc D associated to a compressible cylindrical end
e.

Finally, it is not known if there are cylindrical compressible ends of non-trivial
linking type. Contrarily, it seems plausible that the following must have an affirmative
answer:

QUESTION. IS each cylindrical compressible end in M of trivial linking type?

We will need the concept of the end of an open leaf of &. For details concerning
this concept see [C-Cl, C-C2]. Let L be an open leaf of &. An end e of L is defined
by a decreasing sequence • • • D Kn D Kn+i D • • • such that:

(a) Each Kn is a closed 2-dimensional submanifold of L with boundary.
(b) The boundary 3 Kn is diffeomorphic to the unit sphere § ' .
(c) nnKn = 0.

Such a sequence (Kn)n=i2,... defining an end e is called a fundamentalneighborhood
system of e and we write e = {Kn)n={2,...-

The e-limit set of L is defined by e-lim(L) = n, A",; as usual, Kt denotes the closure
of Kj in M. It is elementary that e-lim(L) is compact and ^"-satured.

An end e = (Kn)n=h2_ is called cylindrical if Kx (and hence each Kt) is diffeo-
morphic to §' x R.

The ends of a leaf L often become apparent in terms of simpler leaves on which
they wind around. These results are a kind of Poincare-Bendixson theory for foliations
of codimension one. In the following we prove a theorem of this type for cylindrical
compressible ends of trivial linking type. We need the following definitions.

DEFINITION 1. Let e = (Kn)n=l2... be a cylindrical end of a leaf L. The end e will
be called compressible if there exists a 2-dimensional disc D embedded in M such
that: 3D c K\, 3D is a non-contractible curve in L and D is transverse to L along
3D. Such a disc D, will be called a disc associated to e.

A simple closed curve of K\ which is non-contractible in K\ will be called a
generator of ^ i . Obviously any two generators of K\ are freely homotopic in ^ .

DEFINITION 2. We will say that two disjoint generators yx, y2 of Kx form a trivial
link in M if for any two embedded discs Dx, D2 in M with 3D, = yu 8D2 = y2 there
is an isotopie hs : Dt —> M, 0 < t < 1 such that:

(1) /io(D,) = D,, hx{Dx) = D\ and D\ n D2 = 0;
(2) h,(yi) = yy for each t € [0, 1].

DEFINITION 3. We will say that a compressible end e — (Kn)n=i2^ is of trivial
linking type if any two disjoint generators of Ki form a trivial link in M.
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REMARK 1. It is not difficult to prove that if two generators of K\ form a trivial
link then any two generators of K\ form a trivial link in M

We may use a weaker (and more standard) definition for the trivial link between
two generators of K\ (see for example [Ro]). If we do so, the hypothesis n2(M) = 0
must be added in the theorem below. In any case we will not discuss this alternative
as it is beyond the scope of this work.

The aim of this paper is to prove:

THEOREM 4. Let &bea 2-dimensional orientable foliation on a compact orientable
3-manifold M. Assume that each embedded 2-sphere in M separates M (that is, the
complement of the embedded sphere in M, consists of exactly two components). Let
e = (Kn)n=X2. be a cylindrical compressible end of trivial linking type of a leaf
L e ^ , where L ^ IR2. Then there exists a smooth embedding f : § ' x [0, e) —• M
and a decreasing sequence (tn), 0 < tn < e, converging to zero such that

(i) For all p e §' , f([p} x [0, e)) is an arc transverse to &'.
(ii) For all n e M, / ( § ' x {?„}) = cn C K\ and cn is non-contractible in L.
(iii) The curve / ( § ' x {0}) = c0 belongs to a toral leaf LQ and c0 is non-

contractible in LQ. Moreover, e-lim(L) = Lo.

2. Proof of the theorem

Choose a point v0 e e-lim(L) such that y0 £ L. Such a point exists since, by
compactness of e-lim(L), one has L ^ e-lim(L). Therefore there exists a sequence
of points (v«)n=i,2,... such that:

(i) yn € Kn,n = 1,2, . . .
(ii) yn converges to v0 along an arc 5 transverse to &.

For each n — 1 ,2 , . . . we consider a simple closed curve fin in Kn which contains
yn and is not contractible in L. Moreover we choose the curves fin to be pairwise
disjoint.

Since h : O2 —> M is a C-map we may assume that h is in general position with
respect to &. That is to say, h is transverse to & in a neighborhood of 3D2 and the
foliation h*^, induced on D2 from & by the map h, contains singularities of saddle
or central type. Fix a transverse orientation on & and let r\ (respectively r\h.&) be
the unit vector field normal to J2" (respectively h*&). Let [v,, )>o] = J C S be the
segment between the points y\ and y0. Then we have

LEMMA 5. There exists an embedding h : O2 —> M in general position with respect
to & such that h(dB2) = fa and J C /i(D2). Moreover, ifl'k is the leafofh*& passing
through h~l (y*), then h(l'k) cannot be a closed curve contractible in Lfor any k e N.
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PROOF. Since the end e is compressible, there exists an embedding ft0 : D2 -» M
in general position with respect to & such that fto(3D>2) = fix. If 7 c ho(D

2), set
ft = ft0. If not, then we may assume that 7 intersects fto(D2) transversely in a finite
number of points. Therefore, by a deformation of ho(D

2) in M, we may assume that
h0 : O2 —>• M is an embedding such that:

(i) ho(d\D>2) = $ where £J c AT,;
(ii) /}( fl /?, = 0 and /?J is freely homotopic to /3, in AT,;

(iii) 7 fl fto(B
2) = 0.

In the following we consider an embedding ft, : § ' x [0, 1] -> M which satisfies:

(i) ft,(§' x{0}) = £, and 7 e f t , (S1 x [0,1/2]);
(ii) ft, is transverse to & in a neighborhood of y3, U 7;

(iii) ft,(§' x [0, l ] )nft0(O2) = 0.

The curve ft,(§' x {1}) = fi'2 is homotopic to fl'x and, obviously there exists an
embedding ft2 : S1 x [0, 1] ->• M such that: x

(i) ft2(§' x{0}) = ^ , M S ' x{l}) = /J|;
(ii) ft2(§' x (0, l))nfto(D)2) = 0;

(iii) A2(S' x (0, l ) ) n / ! , (§ ' x [0, 1]) = 0.

By gluing the maps ft2, ft, along /^ and ft,, ft0 along $\ we get a continuous injection
/ : D2 ->• M with / (3O 2 ) = 8̂, and such that:

(i) / is differentiable in a neighborhood V of yS, with 7 c V;
(ii) / is transverse to & in a neighborhood U of fal) J with [/ C V.

By rounding the corners, we can replace / by a (C—) embedding f0 : D>2 —• M
which coincides with / in a neighborhood of 3 D2 and such that:

(i) J is contained in / 0 (O2);
(ii) /o is transverse to J5" in a neighborhood of /J, U 7.

Now it is well known (see [G, Ch. IV, Lemma 1.6]) that for every e> 0 we can find
a Cr-map ft : D2 —> M, in general position with respect to &, e-near to f0, which
coincides with f0 in a neighborhood of 3D2 U /0~ '(7) . This map ft is an embedding
since £ can be chosen arbitrarily small and it satisfies the conditions of Lemma 5.

In the following, the theorem of Novikov concerning the existence of Reeb com-
ponents [N] easily implies that if some curve l'k is closed then its image h(l'k) cannot
be homotopic to zero in L. In fact: suppose that ft (l'k) is homotopic to zero in L. Then
we can find a differentiable map G : §' x [0, 1] -> M such that:

(a) G(§ ' x [0, 1]) C ft(O2) and for every t <= [0, 1], the curve g, : § ' -> M,
defined by g,(x) = G(t, x), is contained in a leaf L, of &. Moreover go(§

1) = h(l'k).
(b) For every x e S', the curve t—>G(t,x)is transverse to & and the orientation of

this curve is opposite to the transverse orientation of & induced by the normal field r\.
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(c) For every t e [0, 1), the curve g, is homotopic to a constant in L, and gx is
not homotopic to a constant in Lx.

From Novikov's theorem mentioned above, the leaf L, must be a toral leaf which
bounds a solid torus T in M and all leaves L, are diffeomorphic to planes contained
in the interior of T. Therefore, the leaf L must be a plane contained in the interior of
T. Obviously, this is impossible since there are points of L outside of T.

Next, we will prove the following:

PROPOSITION 6. There exists an embedding g : D2 —> M in general position with
respect to ^ with g(3D2) = fiy and such that:

(1) There is an arc J' transverse to g*& with g(J') = J, and a sequence y'n in
J' with g(y'n) = yn, such that all the leaves of g*& passing through y'n, n = 2, 3 , . . . ,
are simple closed curves. We denote these curves by a'n. The points y'n converge to a
point y'o e J'.

(2) If an = g(a'n) then an C L for n = 1, 2 , . . . and they are non-contractible
curves in L. For each n, there is a component Vn of L — an such that K{ D cl V, D
cl V2 D • • • D cl Vn D • • • and each cl Vn is diffeomorphic to §' x [0, oo); here by
cl Vn we denote the closure of Vn in L.

REMARK 2. We may assume that such an embedding g : D2 —> M intersects L
transversely. In fact, g*& has a finite number of singularities. So if the leaves /
induced by L on g(O2) contain saddle points we displace them to leaves next to / by
a small perturbation of g(O2) in M.

Assuming Proposition 6 is not true we obtain a contradiction with the aid of Lemmas
7, 8 and 9 which follow. In fact, suppose that Proposition 6 is not true. Then we have

LEMMA 7. If Proposition 6 is not true, there is an embedding g : O2 —> M in
general position with respect to F such that:

(1) There is an arc J' transverse to g*& with g(J') = J and a sequence of points
y'n in J' with g{y'n) — yn converging to y'o following the positive direction of J'.

(2) There is an i e {2, 3 , . . . } such that the leaves a'm of g*^ passing through
y'm for m < i> are simple closed curves and their images am = g(a'm) are simple and
non-contractible in L. Otherwise the leafl^ passing through y\ is homeomorphic to
R.

(3) There is a component Vn of L — an, n = 1, 2, . . . , / — 1 such that K\ D

cl V] D cl V2 D • • • D cl V,_j, and each cl Vn, n = 1, 2, . . . , i — 1 is diffeomorphic to

S1 x [0, oo).
(4) The natural number i posited in (2) above is the smallest natural for which

there exists an embedding g : D2 —> M in general position with respect to cP which
satisfies the conditions ( l)-(3) of the lemma.
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PROOF. If the conditions (l)-(3) of Lemma 7 were satisfied for each / e {2, 3, . . .}
then Proposition 6 would be valid. On the other hand Lemma 5 guarantees that for
i = 2 there exists a map g : D>2 —»• M in general position with respect to & which
satisfies conditions (l)-(3). Therefore if Proposition 6 is not true there exists an / > 2
for which conditions (l)-(4) are satisfied.

LEMMA 8. Let /, = g(l't) and let r(t), t e (—00, +00), be a parametrization oflj.
Set 1+ = r([0, +00)), l~ = r((-oo, 0]). Then /+, l~ intersect all curves fa of L for
n > /.

PROOF. The curve /, does not intersect fa since & is tangent to g(9O2) = fa.
Suppose now that /,+ does not intersect all the curves fa for n > i. Then there is an
annulus C in L (C « S1 x [0, 1]) such that

/,+ n C # 0 and /,+ n 3 C = 0.

In fact, there exists a natural number k > i such that /,+ n fa = 0. Note also that
the point y, of /,+ belongs to Kt D fa. Thus, if we consider the annulus C in K\ with
dC = fa U fa, we have that /+ C int C.

On the other hand, as we mentioned in Remark 2, g intersects L transversely.
Therefore g(D2) n C is a compact submanifold of C. This implies that /,+ must
intersect the boundary dC of C, which gives a contradiction; similarly if we consider

K-

LEMMA 9. There is an arc [z', w'] transverse to g* & such that the points z = g(z'),
w = g(w') belong to fa for some j > i.

PROOF. Lemma 8 asserts that /, = g(/,') intersects all curves fa for n > i. Fix
j > i. Let w e /,+ n fa, z € /," n ^ and let z', w' e I- be such that g(z') = z,
g(w') - w.

Since /,' is a non-compact and non-singular leaf of g*&', we can choose a neigh-
borhood V in D2 diffeomorphic to [0, 1] x [0, 1] and points x',y' 6 /, (see Figure 1)
such that:

(i) (g*3?)v is the product foliation [0, 1] x {t}, t e [0, 1];
(ii) if (/,')+ is the subset of /,' with g((/,')+) = /+, then (/;)+ n V has an infinite

number of connected components;
(iii) x', y' lie in different components of (/(')

+ D V;
(iv) if r'(t), t e (—00, +00) is a parametrization of/,' andr'00 = z', r'(t2) — w',

r'(t3) = x', r'(t4) = y\ then ?, < t2 < h < h.
Let l-[z', x'] (respectively /-[u;', y']) denotes the subarc of/,' with endpoints z', x'

(respectively w', / ) . It is well known that there are tubular neighborhoods Z of
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/;[z', *'] and W of l't[w', y'] in D2 such that (g*^)z (respectively (g*&)w) is the
product foliation.

Consider an arc [xr, y'] transverse to (g*J?)v. Now we can find disjoint subarcs
[x1, x"], [y", y'] of [x\ y'], as well as arcs [z\ x"] and [w1, y"] transverse to (g*&)z

and (g*&)w respectively such that if [x", y"] C [x1, y'], then the arcs [x", y"], [zr, x"]
and [u/, y"] are pairwise disjoint (see for example Figure 1). The union [z', x"] U
[x", y"] U [y", u/] is an arc in D>2 transverse to g*&.

y

!

i *
r "" "" " '

tf

— — • " " * " " " "

w

FIGURE l

Now there exists a disc D embedded in M with 3D = ft and £>ng(B2) = 0. This
follows from the fact that g(3B2) = fi\ and /?[, /3y form a trivial link. In what follows
we can choose disjoint generators /JJ, )8" of /T] sufficiently near to fa such that if Lj
is the annulus in Kx with 3L^ = fy U ^ j ' then ^ c int L; and Lj n D = Pj. We have
the following:

CLAIM. We can choose discs Dj, D'j embedded in M such that:
(i) dD] = P'j, dD'! = p".;
(ii) D'j D g(B2) = 0, D ; n g(D2) = 0;
(iii) 5 = Lj U D;' U D'' is a topological 2-sphere which bounds a 3-ball fi in M.

PROOF OF CLAIM. We consider a tubular neighbourhood V of Lj in M diffeo-

morphic t o L y X ( — 1 , + 1 ) , where Lj % Lj x {0} under this diffeomorphism. We
consider also a neighborhood W of D diffeomorphic to D x (—1, +1) such that
3D x ( - 1 , +1) c Lj and W n g(O2) = 0. Therefore, we can construct the discs
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Dj, D'J of the claim within the union V U W. In Figure 2(a) the discs D'j, D'J are
designated by thick arcs.

From the previous claim we have that 5 separates M into two connected compon-
ents. Now we examine the relative position of g([z', w']) with respect to S. All vectors
of r] on Lj are pointing either inwards or outward of the component B and g([z', w']) is
transverse to &. Therefore there exists an e > 0 such that g([z', z' + s]) is contained
in B and g((w', w' — s]) is contained in the complement of B. Since g([z', w']) is
transverse to & we may assume that g([z', u/]) n D'J ^ 0 or g([z', u/]) n Dj ^ 0.
However, by construction of the arc g([z', u/]) and of the discs D'j, D'J, g([z', w'])
intersects neither D'- nor D'J; this gives the promised contradiction.

(a) (b)
FIGURE 2

Therefore, Proposition 6 is valid. So we deduce immediately the following:

LEMMA 10. There exists an embedding f : §' x [0, 1) —> M and a sequence
tn € [0, 1) decreasing to 0 such that:

(1) / / / , = /(• , 0, t e [0, 1) then /,„(§') = an C L and /0(§') = a0 C Lo.
(2) For each p e §' the curve f,(p), t e [0, 1), is transverse to &.

PROOF. From proposition 6 we have that the sequence of closed curves an of L
converges uniformly to a closed curve a0 of a leaf Lo. Obviously a0 is non-contractible
in Lo since all the curves an are non-contractible in L. Therefore we can obtain easily
the family of embeddings /;„(§') which satisfies the properties 1, 2 of the lemma.
Note that here we are using the hypothesis that & is transversely orientable.
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Now we will prove that Lo is a torus in M. In order to prove this we work similarly
to the appendix of [R-R], where it is proved that the existence of a vanishing cycle
implies the existence of a Reeb component. For this proof we omit some details, and
we refer to [R-R] for them.

LEMMA 11. The leafL0 is homeomorphic to a torus.

PROOF. In order to prove that Lo is compact it suffices to show that there is no
closed transversal curve intersecting L$. Suppose y is a closed transversal curve
which intersects Lo at a point p. We may assume that y coincides with the segment
{ft(p), 0 < t < s} where e < 1 and we orient y in the positive sense of the foliation
^'. Choose tm, tn : 0 < tm < tn < s. Let L(m, n) C L be the annulus limited by
am, an and let D(m, n) C g(D2) be the annulus limited by the same curves. Then
T(m, n) = L(m, n) U D(m, n) is a torus and we will prove that T(m, n) separates
M in two connected components. In fact, consider a disc D embedded in M such
that D fl T(m, n) = d is a generator of L(m, n). Such a disc exists since the end e is
compressible and of trivial linking type. Let now D' be a disc parallel to D such that:

(i) D' fl L{m, n) = d' and d' is a generator of L(m, n) disjoint from d.
(ii) If A is the annulus in L{m, n) with dA = dl)d' then A U D U D' is a 2-sphere

which bounds a 3-ball in M.
If A' = L{m, n) — A then A'UDUD' is a 2-sphere which separates M by hypothesis.

Therefore T(m,n) separates M.
Denote by S(m, n) the component of M-T(m, n) such that all the positive normals

point into S(m, n) along L(m, n). This implies that y(t) e S(m, n) for t > tn and
therefore Lo is compact. Now, since the curve a0 is non-contractible in Lo it follows
that Lo is a leaf of genus greater than 0.

Finally as in [R-R, Lemma5] wedefineadiffeomorphism<t>(m, n) : Lo —
L(m,n) which proves that Lo is a torus.
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