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Abstract

We investigated the microscopic mineral characteristics of modern eolian dust particulates and
the trace-element compositions of the siliciclastic fractions of these samples, collected from the
Philippine Sea in 2014 and 2015, and conducted an air mass backwards trajectory analysis of
dust particulates in the spring andwinter of 2015, to better constrain the provenances and trans-
port dynamics of dust delivered to this region. The microscopic minerals show obvious signa-
tures of dust deposition and physical abrasion, indicating long-distance wind transport from
the Asian deserts. The trace-element compositions (Zr–Th–Sc) display a binary mixture of
eolian materials derived from the eastern Asian deserts and the central Asian deserts, which
is similar to the result of the Sr–Nd isotopic compositions of modern sediment trap sediments
collected on the Benham Rise in 2015. We demonstrate that modern dust sediments in the
Philippine Sea primarily originate from the Ordos Desert (generally > 80%), while the contri-
butions of the Taklimakan Desert and the Badain Jaran Desert are small. Eolian dust partic-
ulates raised from source regions are predominantly transported to the Philippine Sea by
the East Asian winter monsoon, but not by the westerlies. In addition, our results indicate that
increased precipitation in the source regions can result in relatively low dust fluxes in the
Philippine Sea, and there is a period of 6–7 days for eolian dust originating from source areas
to be delivered to the Philippine Sea.

1. Introduction

Eolian deposition is an important component ofmarine sediments as well as a good record of the
evolution of palaeoclimate and palaeoenvironment in geological history (Rea, 1994; Maher et al.
2010). Each year, approximately 2000 Mt of eolian dust is released into the atmosphere, 75% of
which is deposited on the continent and 25% of which is delivered to the ocean (Shao et al. 2011).
Eolian dust can significantly influence the global climate by altering the radiation budget of the
Earth system and affects biogeochemical cycles by carrying nutrients such as Fe, crucial to
the ocean–atmosphere CO2 exchange (Martin, 1990; Jickells et al. 2005; Shao et al. 2011). In
addition, the frequent occurrence of heavy sandstorms and weather extremes in recent years
has caused serious threats to social development and human life. Research on eolian dust
sediments is therefore of great significance in terms of determining the source region, revealing
the mechanism of dust generation and transportation, reconstructing palaeoclimate and atmos-
pheric circulation, and understanding climate feedback (Rea & Leinen, 1988; Porter & An, 1995;
Shao et al. 2011; Shi & Liu, 2011).

As the second-largest dust source on Earth, Asian deserts are divided into three regions
according to their geographical distribution and the Sr–Nd isotopic compositions of their
< 5 μm siliciclastic fractions: the northern Chinese deserts (NCDs; e.g. the Gurbantunggut
Desert), the central Asian deserts (CADs; e.g. the Taklimakan Desert) and the eastern Asian
deserts (EADs; e.g. the Ordos Desert) (Chen et al. 2007; Seo et al. 2014). The westerlies and
the East Asian winter monsoon (EAWM) are considered the main transport mechanisms of
Asian dust (Sun, 2004; Shi & Liu, 2011). It is generally accepted that the westerlies primarily
carry dust thousands of kilometres from the CADs to the northern Pacific (Rea, 1994;
Zhao et al. 2014). In contrast, eolian dust that originates from the EADs is mainly transported
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SE-wards by the EAWM, influencing eastern China and the
western Pacific marginal seas (Hsu et al. 2008; Zhao et al. 2014;
Xu et al. 2015).

The Philippine Sea, located downwind of the EAWM, is an ideal
area for reconstructing the evolution history of Asian dust
deposition; it is separated from the influence of dust materials
(such as loess) transported by the East Asian rivers by surrounding
volcanic arcs. Terrigenous sediments input to the Philippine
Sea have been certified to be a typical binary mixture of fluvial
sediments from local volcanic arcs and eolian dust from Asian
deserts (Wan et al. 2012; Jiang et al. 2013). Although the local
volcanic materials could be transported to the Philippine Sea,
the dust signal is easy to recognize on account of the significant
differences of mineral, elemental and isotopic compositions
between Asian dust and local volcanic materials. Due to its
geological significance, Asian dust records in the Philippine Sea
on different timescales, as well as their palaeoenvironmental impli-
cations, have received considerable attention over recent decades.
Previous studies on the provenance and flux of Asian dust input to
the Philippine Sea, as well as its palaeo-productivity and carbon
cycle effects, have obtained great achievements (Patterson et al.
1999; Mahoney, 2005; Seo et al. 2014; Xiong et al. 2015; Bagtasa
et al. 2018; Jiang et al. 2019). However, research on modern dust
is rare and the exact sources and transport agents of the eolian dust
deposition in this region are still controversial. The predominant
viewpoint is that the Asian dust sediments in the Philippine Sea
are mainly composed of materials from the EADs that are carried
by the EAWM (Wan et al. 2012; Ming et al. 2014; Jiang et al. 2016;
Yu et al. 2016; Xu et al. 2018). However, Seo et al. (2014) argued
that the long-distance transport of dust from the CADs by
the westerlies contributes more to the overall dust budget of the
northwestern Pacific. Early studies on dust records of the
Philippine Sea focused mainly on the geological past since the late
Quaternary Period, while modern observations on marine eolian
deposition processes are extremely rare. Furthermore, the reliabil-
ity of the geological records of Asian dust deposition based on
pelagic sediments still needs to be verified. Modern observations
of dust emission, transport and deposition processes will provide
considerable information to solve the problems mentioned above;
additionally, this information can improve our understanding of
the geological records of long-term eolian dust deposition.
Consequently, it is necessary to discriminate the exact sources
and transport mechanisms of dust deposition in the Philippine
Sea based on modern observations.

The mineral constituent and trace-element compositions of
sediments have been proven to be effective methods for tracing
dust sources (Honda et al. 2004; Chen & Li, 2011; Xu et al.
2014). In this study, the microscopic mineral characteristics and
trace-element compositions of the siliciclastic fractions of modern
eolian dust collected from the Philippine Sea in 2014 and 2015were
analysed and compared with those of sediments from potential
source regions. Backwards trajectory analysis was used to simulate
the dust transport processes during the sampling period. This work
aims to constrain the source regions and forcing mechanisms
of modern dust to the Philippine Sea, and to shed light on the
geological records of Asian dust deposition in this area.

2. Materials and methods

Nearly 2 years of continuous observation of the total mass fluxes
and biogenic fluxes of the time-series sediment traps in the

Shikoku Basin (29° 30 0 N, 135° 15 0 E) show the highest values
in the spring of 1999 (Li et al. 2004). Furthermore, 1-year
time-series sediment traps were deployed at water depths of
500 m and 2800 m on the Benham Rise (15° 58 0 N, 124° 41 0 E,
Fig. 1) in the western Philippine Sea from 15 January to 21
December 2015. The highest eolian dust fluxes are observed in
spring followed by winter, while the lowest mass concentration
occurred in summer and autumn (Xu et al. 2018). Spring and win-
ter are therefore appropriate periods for sampling eolian dust over
the sea. In this study, modern eolian dust samples were collected
from the air during two western Pacific cruises in the summer
(from 4 June to 10 July) of 2014 and the winter (from 27
November to 27 December) of 2015, and the sampling sites are
shown in Figure 1. The sampling periods covered both high and
low dust flux seasons, permitting us to obtain evidence to discrimi-
nate the provenances and the transport agents of modern eolian
dust input to the Philippine Sea. Samples were continuously
collected on quartz-fibre filters throughout the cruises, using a
high-volume air sampler that was placed on the highest deck of
the ship to avoid contamination from vehicle exhaust. The airflow
set point was 1.05 m3/min. In total, 33 samples were obtained at
intervals of 48 h, and one sample was lost in a gale. Among these
samples, 18 were collected in the summer of 2014 and 15 were
collected in the winter of 2015. The filter membranes with atmos-
pheric particulates were dried, weighed and then stored in clean
sealable bags for further analysis.

The microstructure of the individual mineral particulates in
the modern dust samples was analysed by scanning electron
microscopy energy-dispersive X-ray spectroscopy (SEM-EDS)
(S-3400) at the Institute of Oceanology, Chinese Academy of
Sciences. Small pieces with a size of 1 cm2 were cut from each
sampled filter membrane, attached to the conductive table
and coated with a thin layer of conductive material before the
SEM-EDS observations were taken.

The siliciclastic sediment fractions were isolated from the
sampled filter membranes for trace-element analyses. First, half
of each filter membrane was shredded into pieces and then
immersed in deionized water for 8 h to ensure the particulates
were well dispersed. Isolated sediment particles were then
extracted by ultrasonication and centrifugation. The siliciclastic
fractions of modern aerosols were isolated from the bulk samples
according to the pretreatment procedure described in detail
by Xu et al. (2015). In brief, the bulk samples were treated
with 4 mol L–1 glacial acetic acid, a mixture of 0.25 mol L–1

hydroxylammonium chloride and 25% glacial acetic acid, 30%
hydrogen peroxide solution and 0.02 mol L–1 nitric acid and
4 mol L–1 anhydrous sodium carbonate to remove calcium car-
bonate, Fe–Mn oxide, organic compounds and biogenic silica,
respectively. The contamination by local sea spray and research
vessels, which possibly introduces soluble and organic matter to
the samples, is also excluded by these treatments. The remaining
siliciclastic fractions were then dried at 50°C and ground into
powder for further processing. Trace-element compositions were
measured by inductively coupled plasma mass spectrometry
(IRIS Intrepid α XSP) at the Shandong Institute of Geophysical
and Geochemical Exploration. The analytical precision and
accuracy were determined by standard substances (GBW07314,
GBW07315, GBW07316, BHVO-2 and BCR-2), with an uncer-
tainty of better than 5%. The mass accumulation rate (MAR)
of modern dust deposited to the Philippine Sea was calculated
using the following equation:
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MARdust ¼ LSR � DBD� PD=100;

where LSR, DBD and PD indicate the liner sedimentation rate,
dry bulk density and percentage of eolian dust, respectively (Rea &
Janecek, 1981).

The wind directions during the sampling period were simulated
based on a dataset provided by the National Oceanic and
Atmospheric Administration (NOAA) National Center for
Environmental Prediction (NCEP) (https://www.esrl.noaa.gov/
psd/data/). Furthermore, the hybrid single-particle Lagrangian
integrated trajectory (HYSPLIT) model (http://ready.arl.noaa.
gov/HYSPLIT_traj.php) was used to calculate wind back trajecto-
ries of the aerosol particles during the sampling time (Draxler &
Hess, 1998). In total, 120 h of air mass back trajectories were

obtained for arrival heights of 1000 m, 3000 m and 5000 m above
the Philippine Sea.

3. Results

The microscopic mineral assemblages of the aerosols collected in
this study were mainly composed of quartz, illite and plagioclase,
followed by gypsum, K-feldspar and halite. Quartz, feldspar and
gypsum of the collected aerosols exhibited similar subangular to
sub-rounded shapes, which are typical characteristics indicating
wind transport and abrasion (Fig. 2). Illite on sampled filter
membranes tends to display flake structures and subangular to
sub-rounded characteristics, which are quite different from
the sediment samples from Lanzhou Malan loess examined by

Fig. 2. Scanning electron microscopy (SEM) images of detrital minerals on the filter membranes: (a) quartz, (b) illite and (c) gypsum.

Fig. 1. Map showing the locations of modern dust sampling sites (yellow crosses represent the sampling sites in the summer of 2014, and black crosses
represent the sampling sites in the winter of 2015), sediment trap site T1 (black diamond, Xu et al. 2018), and other sediment cores discussed in the text: MD06-3047 (Xu
et al. 2015) and PC631 (Seo et al. 2014). Possible dust provenances including the northern Chinese deserts (NCDs, e.g. G – Gurbantunggut Desert; OD – Onqin Daga Sandy
Land; HB – Hunlun Buir Sandy Land; HQ – Horqin Sandy Land), the central Asian deserts (CADs, e.g. TK – Taklimakan Desert; Q – Qaidam Desert), the eastern Asian deserts
(EADs, e.g. BJ – Badain Jaran Desert; Tg – Tengger Desert; Or – Ordos Desert) and the Chinese Loess Plateau (CLP) are also shown on the map. The white arrows show the
East Asian winter monsoon (EAWM) and the East Asian summer monsoon (EASM), and the black arrow shows the westerlies. The North Equatorial Current (NEC), Kuroshio
Current (KC), and Mindanao Current (MC) are shown with blue arrows.
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Yu et al. (2016). In addition, there was no authigenic illite charac-
terized by fine acicular structures along the edges in our study.

The mass fluxes of the total particulates, together with the
selected trace-element compositions (e.g. Th, Sc and Zr) of the sil-
iciclastic fractions obtained from the samples collected in this
study, are presented in Table 1 and Figure 3. The fluxes of the total
particulates ranged from 452.32 to 2111.66 mg/m2/day, with an
average value of 1146.51 mg/m2/day. The concentrations of trace
elements (e.g. Th, Sc and Zr) from the sampled aerosols are rather
uniform. The trace-element data of the collected aerosols were
plotted in a ternary diagram of Zr–Th–Sc (Fig. 3), which has been
confirmed to be a reliable index of provenance identification
(Bhatia & Crook, 1986; Muhs et al. 2008). The modern aerosols
were obviously different from the loess and palaeosol samples from
the Chinese Loess Plateau and Lingtai Section, showing relatively
lower Sc concentrations (Fig. 3).

4. Discussion

4.a. Potential sources of modern eolian dust: microscopic
mineralogical evidence

The micromorphology of the detrital minerals investigated by the
SEM-EDS analysis can indicate the sediment origin and transport
processes (Wang et al. 2005; Chen & Li, 2011; Yu et al. 2016).
Quartz is the most common mineral in dust, and its identifi-
cation is an effective method of determining the depositional
environment (Doornkamp & Krinsley, 1971; Vos et al. 2014).
Microscopic features of detrital quartz grains are generally influ-
enced by transport mechanisms, distance, time and by the original
shapes of the particles from sediments sources. Quartz particles
from deserts often show subangular to rounded shapes with
slightly blunt or smooth edges, as they have been suspended in
the air for long-range transport and been physically eroded by
wind (Marshall et al. 2012). However, quartz grains produced in
warm and humid environments are significantly different from

those in deserts. Solution pores and secondary siliceous precipita-
tion are generated on the surface of quartz grains during
the reconstruction by chemical interactions under hygrothermal
conditions, such as those in tropical regions. On the other hand,
quartz particles transported by rivers and currents can also be
easily identified because they usually have angular shapes related
to high-energy water environments with limited transport distan-
ces (Vos et al. 2014). In brief, certain micromorphology of quartz

Table 1. Sampling information, selected trace-element compositions (Zr, Th and Sc) andmass fluxes of modern dust samples collected in the Philippine Sea. ND – not
determined

Sample no. Sampling date Duration (h) Zr (μg g–1) Th (μg g–1) Sc (μg g–1) Mass flux (mg/m2/day)

S10 22/6/2014 40.50 284.85 11.21 4.74 ND

W01 27/11/2015 47.92 265.99 10.15 6.80 1568.79

W02 19/11/2015 47.77 ND ND ND 955.13

W03 1/12/2015 47.93 255.09 11.99 4.99 452.32

W04 3/12/2015 48.00 242.89 11.30 3.12 1259.30

W05 5/12/2015 47.93 168.87 12.65 2.36 1642.26

W06 7/12/2015 47.98 272.99 12.20 5.60 992.25

W07 9/12/2015 47.82 ND ND ND 1073.67

W08 11/12/2015 25.93 248.23 11.37 4.47 2112.66

W09 13/12/2015 48.00 242.80 8.34 4.35 1050.48

W10 15/12/2015 46.52 ND ND ND 429.33

W11 17/12/2015 48.00 ND ND ND 1170.89

W12 19/12/2015 48.00 ND ND ND 1367.75

W13 21/12/2015 46.42 206.15 11.03 2.52 938.69

W14 23/12/2015 48.00 185.09 11.76 3.50 1037.56

Fig. 3. Ternary diagram of the Zr–Th–Sc compositions of the siliciclastic fractions of
the modern dust samples from the Philippine Sea. Surface dust samples from the
Ordos Desert (Rao et al. 2011), the Badain Jaran Desert (Hu & Yang, 2016) and the
Taklimakan Desert (Yang et al. 2007), as well as loess and palaeosol samples from
the Lingtai Section and the Chinese Loess Plateau (Ding et al. 2001; Qiao et al.
2011) are shown for comparison. The pink, light green, yellow and dark blue shading
represents the central Asian deserts (CADs), the eastern Asian deserts (EADs), the
Chinese Loess Plateau (CLP) and the modern dust samples in the Philippine Sea,
respectively.
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grains can be used as an indicator of specific sediment environ-
ments and provenances. In this study, most of the analysed quartz
grains exhibit subangular to sub-rounded shapes with shallow pits
on the surface (Fig. 2a), typical characteristics related to eolian dust
movement processes. The detrital quartz grains within the aerosol
samples in this study show similar microscopic features to those
from the Asian deserts, suggesting that these aerosols are primarily
carried from central Asia by wind. This conclusion is further
supported by the fact that angular grains with solution pores
and secondary siliceous precipitation, which are common chemical
weathering products of local volcanic materials, are not detected in
our samples. It is therefore proposed that the provenance of detrital
quartz in the aerosols collected in the Philippine Sea is likely the
arid and semi-arid regions in central Asia.

Illite is a representative mineral formed by the physical erosion
of terrigenous materials under cold and dry conditions (Chamley,
1989). The microscopic morphological characteristics of the
sampled illite (Fig. 2b) suggest that they have been physically
abraded and may therefore have undergone long-range wind
transport (Yu et al. 2016). In addition, illite tended to be the most
abundant clay mineral in this research, clearly distinguished from
the sediments delivered from nearby rivers on Luzon. Previous
studies have demonstrated that the rivers on Luzon discharge
clay-sized sediment that is mainly composed of smectite (average,
86%), with very little illite (< 2%) (Liu et al. 2009); Luzon is there-
fore excluded as a potential source of illite in this study. Kolla et al.
(1980) proposed that the illite- and chlorite-rich materials in the
surface sediments of the Philippine Sea probably originated from
East China or Taiwan or even from the Chinese Loess Plateau.
Detrital sediments containing high illite content from Asian rivers
and islands are transported to sea via two main pathways: one is
oceanic surface currents and the other is turbidity currents along
the slopes. The Kuroshio Current, which originates from the North
Equator Current, is the most important surface current in the
Philippine Sea. However, the study area and the location ofmodern
sediment traps are on the main path of the northwards-flowing
Kuroshio Current, preventing illite-rich sediments sourced from
East China or Taiwan or the Chinese Loess Plateau being trans-
ported southwards to the study area. The Luzon Undercurrent
is considered to be another potential pathway to transport Asian
dust materials southwards to the West Philippine Sea. However,
this process is also excluded as the illite crystallinity and chemical
index together with the Sr–Nd isotopic compositions of the detrital
sediment fractions from Taiwan and the Chinese Loess Plateau are
distinctly different from those of the terrigenous sediments in the
Philippine Sea (Wan et al. 2012; Jiang et al. 2013; Yu et al. 2016).
We therefore argue that oceanic currents could not be the potential
pathway for transporting illite to the study area, whereas the illite
in modern dust samples was deduced to be dominantly derived
from mainland Asia by eolian transport.

In the study region, most gypsum particles display subangular
to sub-rounded shapes with slightly blunt edges related to wind
abrasion (Fig. 2c). The western tropical Pacific cannot be the
source of gypsum because gypsum is considered to be a mineral
representative of arid environments, such as inland China
(Qin et al. 1995; Shi et al. 1995). Various studies have suggested
that SO2 can dissolve in the water films formed on the surfaces
of the mineral particles under humid environments, which
can be oxidized or catalysed by Fe (III) or Mn (II) to form
SO4

2–. Secondary gypsum will be generated after SO4
2– combined

with Ca2þ in the samples (Falkovich et al. 2001); the appearance of
these gypsum grains observed by SEM tends to be as idiomorphic

crystals, readily distinguished from those detrital crystals that been
mechanically abraded. Although the concentrations of Ca2þ and
SO4

2– are high in seawater, our sampling records suggest that
the air mass was dry in most cases and did not spend much time
over the marine boundary layer of the Philippine Sea; gypsum
produced from seawater is therefore very rare. This conclusion
is further confirmed by the extremely low NaCl content in the
sampling aerosols. Considering the low secondary gypsum content
and the SEM morphology characteristics in our samples, we
suggest that detrital gypsum grains within the aerosols also come
from dry and cold regions of high latitude by eolian transport,
whereas the small amounts of secondary gypsum were most likely
sourced from local ocean–atmosphere processes.

Because the small amount of sampled dust was insufficient
for X-ray diffraction, the mineral compositions were difficult to
quantitatively measure. Consequently, Asian dust input into the
Philippine Sea is interpreted based on qualitative analysis of the
phase composition and microstructure of mineral particulates.
Additional data are essential to discriminate the sources and
potential transport mechanisms of eolian dust in the study area.

4.b. Potential sources of modern eolian dust: geochemical
evidence

Geochemical characteristics are confirmed to be reliable indices of
sediment provenance (Taylor & McLennan, 1985; McManus et al.
1998), especially for high-field-strength elements such as Th and
Sc. These are relatively stable and can be quantitatively incorpo-
rated into clastic sediments during sedimentary processes, bearing
the chemical characteristics of the parent rocks. These elements are
therefore often used as suitable indicators of provenance discrimi-
nation (Taylor & McLennan, 1985; Bhatia & Crook, 1986; Hao
et al. 2010). Th and Sc are mainly concentrated in felsic and mafic
rocks, respectively, and the Th/Sc ratio varies according to the
chemical compositions of source areas. In addition, the Zr/Sc
ratio tends to show a remarkable elevation because Zr is usually
enriched in zircon during weathering, erosion and transport, while
the Th/Sc ratio generally remains unchanged. The Th/Sc versus
Zr/Sc plot is therefore commonly used as a reliable index to evalu-
ate heavy mineral enrichment and sedimentary recycling proc-
esses. Th/Sc ratios of initial sediments are positively correlated
with Zr/Sc ratios, while Zr/Sc ratios of those sediments with a
higher degree of recycling increase considerably, contrasting with
the small variation in Th/Sc ratios (McLennan et al. 1993). In this
study, the Th/Sc (1.49–5.36) and Zr/Sc ratios of the aerosol samples
in the Philippine Sea show an obvious positive correlation (Fig. 4).
The small variation of the Zr/Sc ratios indicates an insignificant
influence of sedimentary recycling processes, and the trace-
element components of these aerosols are primarily controlled
by the chemical compositions of source regions. Furthermore,
according to Xu et al. (2014), there are no apparent correlations
(R= –0.42, α= 0.05) between median grain size and Zr composition
in the sediments from core MD06-3047 in the west Philippine Sea
(Fig. 1), suggesting dynamic sorting is not an important factor affect-
ing Zr composition in the core. Consequently, variations in Zr, Th
and Sc compositions of the study aerosol samples should be consid-
ered as representing changes in sediment provenances.

The Sc compositions of surface sediments from possible
provenances are relatively homogeneous, ranging from 7 to
16 μg g–1. However, the Th and Zr contents of the fine fractions
of surface sediments show significant differences among the
Taklimakan Desert, the Ordos Desert, the Badain Jaran Desert
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and the Chinese Loess Plateau. The Taklimakan Desert is charac-
terized by relatively higher Th content (10.4–65.8 μg g–1) and lower
Zr content (70.2–1014 μg g–1) (Yang et al. 2007). The Badain
Jaran Desert is characterized by relatively lower Th content
(5.15–27.4 μg g–1) and moderate Zr content (114–1529 μg g–1)
(Hu&Yang, 2016). The Ordos Desert is characterized bymoderate
Th content (9–30.2 μg g–1) and higher Zr content (512–1780 μg g–1)
(Rao et al. 2011). Compared with the Asian deserts, the Chinese
Loess Plateau has relatively lower Th content (15.56–18.72 μg g–1)
and lower Zr content (25.43–40.14 μg g–1; Ding et al. 2001; Qiao
et al. 2011). The geochemical data of our modern aerosol samples,
together with data on the surface dust samples collected from the
Taklimakan Desert (Yang et al. 2007), the Badain Jaran Desert
(Hu & Yang, 2016), the Ordos Desert (Rao et al. 2011), and loess
and palaeosol samples from the Lingtai Section and the Chinese
Loess Plateau (Ding et al. 2001; Qiao et al. 2011), are plotted in
Figure 3. Both the study samples collected in the summer of 2014
and in the winter of 2015 are offset from the loess and palaeosol sam-
ples, being located much closer to the Th apex. We can therefore
exclude the Chinese Loess Plateau as a potential source region of dust
to the Philippine Sea (Seo et al. 2014; Xu et al. 2018). The modern
aerosols collected in this study were virtually distributed between
the field of the Taklimakan Desert and the EADs (Fig. 3), suggesting
that these two regions are probable sources of eolian dust to the
Philippine Sea. Compared with sediments from the Badain Jaran
Desert, the studied samples tended to show a binary mixture of
the TaklimakanDesertmaterials and theOrdosDesert dust, but their
relative contributions were still unclear.

Sr–Nd isotopes have been confirmed to be a credible proxy for
characterizing and quantifying sediments from different source
regions input to the Pacific (Grousset & Biscay, 2005; Seo et al.
2014; Jiang et al. 2016). The Sr–Nd isotopic compositions of ter-
rigenous sediments collected on the Benham Rise are consistent
with a binary mixture of eolian dust from mainland Asia and vol-
canic materials from Luzon Island (Jiang et al. 2013; Xu et al. 2015,
2018; Yu et al. 2016). Luzon Island bedrocks show relatively less

radiogenic Sr and highly Nd isotope characteristics (87Sr/86Sr
ratios, 0.70366–0.70524; ϵNd values, from þ5.8 to þ7.1, respec-
tively; Defant et al. 1990). However, the Sr and Nd isotopic com-
positions of the < 5 μm eolian dust from Asian deserts, including
the Taklimakan Desert (87Sr/86Sr ratios, 0.72682–0.73018; ϵNd
values, from –10.7 to –10.3), the Tengger/Badain Jaran Deserts
(87Sr/86Sr ratios, 0.72919–0.73218; ϵNd values, from –11.9 to –8.3)
and the Ordos Desert (87Sr/86Sr ratios range, 0.72114–0.72419;
ϵNd values, from –17.7 to –11.5) are more evolved (Chen et al.
2007; Seo et al. 2014). Xu et al. (2018) reported new Sr–Nd isotopic
data of the siliciclastic fractions of modern sediment trap samples
collected from site T1 (15° 58 0 N, 124° 41 0 E) on the Benham
Rise (Fig. 1) at water depths of 500 m and 2800 m in 2015; these
results provide robust evidence for discriminating specific prov-
enance of dust inputs to the western Philippine Sea.

The Sr–Nd isotopic compositions of sediment trap samples are
plotted close to the mixing curve between the Luzon volcanic sedi-
ments and the Ordos Desert materials (Fig. 5), indicating a binary
mixture of volcanic materials from Luzon and eolian dust from the
Ordos Desert. Figure 5b shows a more detailed Sr–Nd isotopic plot
with several mixing lines between the Luzon and different values of
dust from the Taklimakan Desert (20%, 40% and 60%) and the
Ordos Desert (80%, 60% and 40%) for comparison. This compari-
son permits us to quantify the respective contributions of eolian
dust from the Taklimakan Desert and the Ordos Desert. From this
figure, we can clearly see that almost all modern sediment trap
samples fall into the region where the Ordos Desert materials
account for more than 80% of the eolian deposition at site T1.
This result suggests that the eolian dust originated from the
Ordos Desert (> 80%) dominates the dust budget of the study site.
Combined with our results regarding the trace-element composi-
tions, we conclude that modern dust deposition in the Philippine
Sea is predominantly derived from the Ordos Desert (> 80%), and
the contributions of the Taklimakan Desert and the Badain Jaran
Desert are relatively small. This conclusion is consistent with the
prevailing view that eolian dust from the CADs is primarily trans-
ported to the northern Pacific (Shao et al. 2011; Zhao et al. 2014).
Furthermore, previous research on the backwards trajectories of
the eolian dust particulates during the dust event that occurred
in the spring of 2006 definitely revealed that the air masses above
the Benham Rise and the Philippine Sea can be tracked to the same
provenance on the eastern Asian continent, which confirms a sig-
nificant flux of eolian dust from the Ordos Desert to the Philippine
Sea (Jiang et al. 2013).

Possible impacts of detrital sediments from rivers draining the
Asian continent (e.g. the Yangtze River) and islands (e.g. Taiwan)
carried by oceanic currents have been excluded by previous
clay mineral and Sr–Nd isotope studies on the core sediments
and surface sediments of the Philippine Sea (Wan et al. 2012;
Seo et al. 2014; Jiang et al. 2016). Taking into consideration the
Sr and Nd isotopic compositions of the sediment trap samples
as well as the barrier effect of the northwards-travelling
Kuroshio Current, detrital sediments derived from the Asian
continent and transported by marine currents are negligible.
Previous research on the terrigenous sediments in the Philippine
Sea demonstrated that volcanic materials from Luzon are likely
transported by rivers and currents (Wan et al. 2012; Jiang et al.
2013; Yu et al. 2016). We therefore make the preliminarily deduc-
tion that the volcanic materials from Luzon Island are dominantly
transported by the ocean currents to the study area, while eolian
dust originated from the Ordos Desert is unlikely to be carried
by ocean currents to the Philippine Sea.

Fig. 4. Th/Sc versus Zr/Sc diagram showing the provenance nature of the modern
eolian samples in the Philippine Sea and possible effects of the sedimentary recycling
(after McLennan et al. 1993).
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4.c. Potential transport mechanisms of modern eolian dust

Sedimentary dynamic investigations of eolian particulates and
atmospheric circulation observations indicate that eolian dust
particles in the Asian deserts are mainly transported over long
distances by the EAWM and westerlies to the Pacific (Sun,
2004; Shi & Liu, 2011; Zhao et al. 2014). It is generally accepted
that dust originating from the Taklimakan Desert is principally
transported by the high-altitude westerlies for long-range delivery
to the northern Pacific (Sun, 2002; Shi & Liu, 2011; Zhao et al.
2014), and dust derived from the EADs is mainly transported
by the surface circulation of the EAWM (Shi & Liu, 2011; Zhao
et al. 2014; Yu et al. 2016; Xu et al. 2018). Spring and winter are
the most appropriate seasons for modern marine dust analyses.
To further discriminate the dust sources and the potential trans-
port mechanisms, we investigated the backwards trajectories of
the modern eolian particulates at arrival heights of 1000 m,
3000m and 5000m above the sampling sites in the spring and win-
ter of 2015. The air mass trajectories show that the sampled
modern dust in the Philippine Sea can be tracked back to mainland
Asia, including the Taklimakan Desert and the Ordos Desert.
Furthermore, two typical pathways of dust transport trajectories
also revealed that both eolian materials from the Taklimakan
Desert and the Ordos Desert were carried SE-wards by the
EAWM and influenced by the northeasterly Trade Winds
(Fig. 6). Our results show that a small fraction of Taklimakan
Desert matter was delivered to the study region by the EAWM,
which was consistent with the previous conclusion thatmost eolian
dust from the Taklimakan Desert is predominantly transported by
westerlies to the northern Pacific (Shi & Liu, 2011; Zhao et al.
2014). In addition, the highest dust fluxes at Site T1 are observed
in the spring of 2015, followed by the winter, and the lowest dust
fluxes occur during summer and autumn (Xu et al. 2018). In the
winter of 2015 NW winds prevailed over the Philippine Sea, and

the wind back trajectories showed that air parcels originated from
Asian deserts were transported southwards to the study area in
both spring and winter. These results indicate that the increased
dust fluxes in the spring and winter are associated with an inten-
sified EAWMother than the westerlies, suggesting that the EAWM
is the dominant transport mechanism of eolian dust input to the
Philippine Sea. Consequently, we conclude that modern dust dep-
osition in the Philippine Sea is dominated by eolian materials
transported by the EAWM. This result suggests that the EAWM
intensity strengthened in winter due to the combined effects of
the Siberian high and the Aleutian low, thus intensifying the physi-
cal erosion and increasing the entrainment of dust from the Asian
continent. This result is similar to those obtained from geological
records during glacial periods, indicating enhanced aridity in
mainland Asia and strengthened EAWM intensity when the palae-
oclimate was colder (Sun & An, 2005; Wan et al. 2012; Jiang
et al. 2016).

The mass fluxes of the modern dust particulates collected in the
winter of 2015 display great fluctuations during the sampling
period (Table 1). Meteorological analyses indicate that the
wind speed, atmospheric relative humidity, precipitation and
temperature critically influence the dust fluxes (Zhang et al.
2006; Li & Dong, 2010). There is usually a positive correlation
between the dust flux and the relative humidity as well as the wind
speed, while the precipitation shows a negative correlation with
the dust emission. The wet deposition process is considered the
dominant reason for dust removal (Andronache, 2003), especially
for fine particulates that are difficult to deposit and may remain
suspended in the atmosphere for a long time. Meteorological
observations show that no strong sandstorm occurred on
the Asian continent during our sampling period in the winter of
2015; however, the weather map showed rainfall in central
China on 25–26 November 2015 and on 7 December 2015

Fig. 5. Discrimination plots showing (a) the variations in the Sr–Nd isotopic compositions of the siliciclastic fractions in sediments collected from site T1 and cores MD06-3047
and PC631, together with data of potential dust provenances. (b) Enlargement of key part of (a) (modified from Xu et al. 2018).
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(http://www.nmic.cn/). Subsequently, the lowest fluxes occurred
on 1 December 2015 and 15 December 2015, respectively.
Considering that the transport time of dust raised from the
Asian deserts is approximately 6–7 days before it is deposited in
our study region, the decreases of the modern dust fluxes in the
Philippine Sea that appeared on 1 December 2015 and 15
December 2015 should be related to the greater precipitation
and relatively wet conditions on the Asian continent on 25–26
November 2015 and on 7 December 2015. Consequently, we infer
that the relatively lower dust fluxes in the Philippine Sea should be
influenced by the wet weather conditions in the dust source
regions, and there is a time lag of 6–7 days.

5. Conclusions

Microscopic mineralogical and geochemical analyses of modern
dust samples collected over the Philippine Sea in the summer of
2014 and the winter of 2015 were investigated to discriminate
the provenances and the transport mechanisms of the eolian dep-
osition in the Philippine Sea. The major conclusions are summa-
rized as follows.

The microscopic mineral assemblage of modern dust is gener-
ally dominated by quartz, illite, plagioclase and gypsum, followed
by K-feldspar. These detrital minerals showed similar characteris-
tics of wind erosion, indicating that they were probably derived

Fig. 6. Wind back trajectories of air masses at sites T1 (15° 58 0 N, 124° 41 0 E), W04 (16° 38.496 0 N, 130° 03.404 0 E), W08 (12° 32.987 0 N, 134° 34.161 0 E), W12(17° 26.218 0 N,
129° 03.987 0 E) and W13 (18° 27.884 0 N, 125° 36.248 0 E) in (a) spring and (b, c) winter. Surface wind directions on the Asian continent and the Philippine Sea in December
2015 are also shown in part (c). Abbreviations as defined in Figure 1.
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frommainland Asia and were transported by wind. In addition, the
selected trace-element compositions (Zr, Th and Sc) of the silici-
clastic fractions of modern aerosol particulates, together with the
published Sr–Nd isotopic compositions of the siliciclastic fractions
frommodern sediment trap samples, demonstrate that themodern
eolian dust deposited in the Philippine Sea mainly originated from
the Ordos Desert (> 80%), while the Taklimakan Desert and the
Badain Jaran Desert made limited contributions (< 20%). Eolian
dust from the eastern Asian deserts is predominantly transported
to the Philippine Sea by the EAWM. Furthermore, the precipita-
tion in the dust source regions can significantly influence the mass
fluxes of eolian aerosol particulates deposited in the study area,
with a delay period of 6–7 days. Such results concerning the
modern eolian dust source-to-sink processes may improve both
reconstructions of the Asian dust input to the Philippine Sea
and the identification of the underlying mechanisms during the
geological past.
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