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PERFECT MAPS AND EPI-REFLECTIVE HULLS 

ANTHONY W. HAGER 

T h e main theorems concern the relation between the ^ - c o m p a c t spaces and 
the ja/-regular spaces, and their analogues in uniform spaces. In either of the 
categories of Tychonoff spaces or uniform spaces, let S$ be a class of spaces, 
let 3% (s$) be the epi-reflective hull of se (closed subspaces of products of 
members of se), let Ô\s#) be the "onto-reflective" hull of s/ (all subspaces 
of products of members of s/), and let r and o be the associated functors. Let 
pxstf be the class of spaces which admi t a perfect map into a member of s/. 
Then , p#3%(£#) is epi-reflective (and in Tych , = 3% (p#£&)'•, bu t in Unif, the 
equali ty fails) ; call the functor p. 

T h e main theorems assert t ha t (a) û(j/) Pi px0t(p£) = 3Z(&/), and (b) 
op = r. Theorem (b) applies, of course, to factor an arbi t rary epi-reflector r, 
as the product of one (0) for which all reflection maps are onto and one (p) for 
which all reflection maps are homeomorphisms; this factorization includes as 
a special case one of Banaschewski 's constructions of the maximal O-dimensional 
compactification of a space with a basis of clopen sets. 

Additionally, in order to handle perfect maps in Unif (on which there is no 
explicit l i terature of which I am aware) , and to unders tand the role of com­
pactness, the notion of perfect map is generalized. In terms of the generaliza­
tion, Theorem (a) has a (stronger) analogue using complete uniform spaces; 
(b) does not. 

Some generalizations of known theorems appear as by-products . 

1. Epi -ref lect ions . We take note of the following somewhat non-s tandard 
usages which shall prevail in the sequel, (a) Homeomorphisms are not under­
stood to be onto, (b) If 3? is a subcategory of fê, then the notat ion "f : X —> 
Y £ 3i" means t h a t X is an object of ^ , / is a morphism of ^ , and the 
range-carrier (only) is an object of 3$. 

Let 3ft be a full subcategory of the category ^ . An ^- ref lec t ion of the 
object X G *$ is a pair (rX, rx), where rx : X —» rX G 3& (the reflection map) 
and to each / : X —» R G 31 corresponds unique fr : rX —> R with f = fr o rx. 
I t is easily seen t h a t a reflection is essentially unique, and t h a t if X and Y 
have reflections, and / : X —» F, then there is unique fr : rX —> rY with 
fr o rx = ry of. If every object has a reflection, then 3% is said to be reflective; 
then r is a covar iant functor. We shall suppose t h a t each rx is epic; then 3$ is 
called epi-reflective. 
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12 ANTHONY W. HAGER 

When the category is not st ipulated in the sequel, it is understood to be 
either T y c h : Tychonoff spaces (i.e., completely regular and Hausdorff) with 
continuous maps ; or Unif : separated uniform spaces with uniformly cont inuous 
maps . Maps are understood to be morphisms of the category. In these 
ca tegor ies , / : X —-> F is epic if and only \if(X) is dense in F . We suppose t h a t 
every class of spaces is neither 0 nor {0}, and t h a t every subcategory is full 
and replete. 

Let j / be a class of spaces. T h e space X is called s/-weak (or ^ - r e g u l a r ) if 
there is a set J ^ of maps to members ois/ such t h a t X's s t ruc ture is the weak 
one generated by J r . By means of the usual technique: X is s/-weak if and 
only if X can be embedded as a subspace of a product of members of se. 

T h e following is the basic result on epi-reflections. 

1.1 T H E O R E M . The following conditions on the subcategory 3% are equivalent. 
(a) S% is epi-reflective. 

(b) If X is Sft-weak, then X has S%-reflection (rX, rx), with rx an embedding. 
(c) & is productive and closed-hereditary. 

T h e essentials of this are due to Isbell [11] and Kennison [13]. Herrlich and 
van der Slot [10] added condition (b) and formulated the result for the 
category of Hausdorff spaces exactly as above; one sees readily t h a t their proof 
is valid in Tych or Unif. 

Let J ^ be the subcategory (of either Tych or Unif) of compact spaces, and 
r the subcategory of Unif of complete spaces. These are most familiar as 
epi-reflective. In Tych , the Jf-reflect ion is (3X, the Stone-Cech compactifica-
tion, and in Unif it is the Samuel compactification; say sX. T h e complete 
reflection yX is, of course, the completion of X. 

I t sometimes happens t h a t all reflection maps have a certain proper ty . In 
t h e above examples: each reflection m a p X —> fiX is a homeomorphism ( into) , 
hence an embedding; each reflection m a p X —> sX is a homeomorphism (but 
no t an embedding) ; each reflection m a p X —> yX is a uniform isomorphism 
( in to) , hence an embedding. Other examples are t h e s / - w e a k spaces for any 

se \ these satisfy 1.1(c), clearly. W i t h s / = {{0, 1}}, we get in Tych , the spaces 
with basis of clopen sets; w i t h ^ = J ^ , we get in Tych all spaces, and in Unif, 
precompact spaces. As we shall see below, for all these the reflection maps are 
onto . 

T h e following classifies epi-reflections by propert ies of the reflection maps . 
T h e proofs are no t difficult; some are easy from 1.1, and the rest will be given 
in application of the results of §4. 

1.2 T H E O R E M . Let S% be epi-reflective. 

(a) [10] rx is embedding if and only if X is Si-weak. Hence, all reflection maps 
are embeddings if and only if all spaces are 3%-weak. 

(b) [10; 15] All reflection maps are homeomorphisms if and only if S% D J f . 
(c) [15] In Unif, all reflection maps are embeddings if and only if S% J ) r . 
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PERFECT MAPS 13 

(d) [13; 10] These are equivalent, (i) 3% is hereditary, (ii) M contains all 
3%-weak spaces, (iii) All reflection maps are onto. 

Fur the r examples in Tych : Of 1.2(b), S% = realcompact spaces, S% = 
topologically complete spaces. In Unif: Of 1.2(c), S% = all spaces whose 
underlying topology is topologically complete; here, the rationals with the 
usual uniformity is in S% — T. Of 1.2(d), & = s/-weak, where s/ = the real 
line with the usual uniformity, or all separable metric uniform spaces; the 
functors here are called c and e, and have received considerable a t tent ion [12]. 

I t is evident t h a t a class s/ determines a t least two epi-reflective subcate­
gories as follows: &($/) = all closed subspaces of products of members of s/; 
this is the least epi-reflective subcategory containing s/, and is called the 
epi-reflective hull of s/. 0{$$) = the se-weak spaces; this is the least epi-
reflective subcategory containing s/ for which all reflection maps are onto, 
and we call it the onto-reflective hull. (There are also the least epi-reflective 
subcategory c o n t a i n i n g ^ / for which all reflection maps are homeomorphisms, 
or embeddings. With 1.2, these are ^ ( ^ U J f ) , and &l{pt\JX) or 
3t(s/\J T) . See 4.5.) 

Two of our main theorems relate û(&/) and &(&/) (§5). The following will 
be useful. 

1.3 PROPOSITION. Given S/, let r and r' denote the functors for £%($/) and 
û(ç/). For any X, rx : X —> rx(X)(CrX) is the Û (^f)-reflection; so rf

x is the 
"range-restriction" of rXJ and r'X = rx(X). 

Proof. L e t / : X —» F £ ©ifé). There is unique g : rX —> rY with g o rx = 
ry of. Now Y is S? (&/)-weak, so ry is an embedding, by 1.1. Let i : rx(X) —» rX 
be inclusion. Define h : rx{X) —» Y by i : h = ry~

1 o g o i. Clearly, h o rx = f; 
uniqueness is obvious. 

See [7] and [8] for further results on epi-reflections in Tych. 

2. j ^ - p e r f e c t m a p s . Let Sf be an epi-reflective subcategory. 

2.1 Definition. T h e m a p / : X -> Y is ^ - p e r f e c t if f'(sX - sx(X)) C sY -

In Tych , with ff = Ctif and sX = /3X, the condition of 2.1 is known to be 
equivalent to : / is closed and point-inverses are compact . (This follows from 
[6, 1.5].) This is the usual definition of "perfect m a p " . I t also follows from 
[6, 1.5] t ha t for uniform spaces X and F, and a function / : X —» F, / is 

JT-perfect in Unif if and only i f / is J^-perfect in Tych , and uniformly con­
tinuous. 

Additionally, there are characterizations of 5^-perfectness in terms of filters 
(which we shall not use). For example, 

(a) In Tych , / : X —» F is J^-perfect if and only if whenever ^/ is an ul t ra-
filter in X (or ultrafilter in the zero-sets of X), then °U converges if f(?%) does; 

(b) In Tych , if ff is realcompact spaces, then / : X —» F is j ^ -pe r fec t if 
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14 ANTHONY W. HAGER 

and only if whenever fy is a zero-set ultrafilter with the countable intersection 
proper ty , in X, then °tt converges if f{%) does; 

(c) In Unif, / : X —> F is T-perfect if and only if whenever °U is a Cauchy 
filter in X, then tyl converges if f(%) does. 

Definition 2.1 is quite uninterest ing if, for example, all ^ - re f l ec t ion maps 
are onto, for then every m a p is y-perfect. Th roughou t the paper, we restrict 
attention to subcategories y for which each reflection map is a homeomorphism 
(i.e., y ~D<3^, by 1.2, though we do not use th is) . In Tych , this results in 
* ' substant ial remainders" sX — sx(X), though not necessarily in Unif (e.g., 
y = precompact spaces; here all reflection maps are on to ) . In succeeding 
sections we restrict further. 

Several other au thors independent ly have considered var ia t ions and 
generalizations of the idea of a perfect m a p : For example, [2] considers 
(in Hausdorff spaces) maps which preserve remainder in the Ka t ë tov / /-closed 
extension; [9] gives a categorical generalization and shows t h a t in Tych , when 
y D ^ , the definition agrees with 2 .1 ; [16] uses 2.1 (in Hausdorff spaces) 
and gives some applications. T h e only apparen t overlap with [9] and [16] is 
in a few of the propositions of this section (which for perfect maps in Tych 
are all known) . (The referee was kind enough to call [2] and [16] to my a t ten­
tion.) 

2.2 PROPOSITION. If f : X -+ Y and g : Y —> Z are y-perfect, so is g of. 

Proof. Since (g of)s = gs ofs, this is trivial. 

2.3 LEMMA. If sx(X) C A C sX, then s A = sX (or, more exactly, the 
inclusion i : A —> sX is the j^-ref lect ion of A). 

Proof. Let / : A —» S (E J^ . Then there is g : sX —> S with g o sx = f\sx(X). 
Using densi ty, and the Hausdorff proper ty , this readily implies t ha t g o i = / , 
and t ha t g is unique. 

2.4 PROPOSITION. If f : X-> Y, then fs\fs~l(Y) :fs~l(Y) -> Y is y-perfect. 

Proof. Using 2.3, sf*~l(Y) = sX, and therefore (Plf'-^Y))8 = p. T h e result 
is now clear. 

2.5 L E M M A . If h : X —» S £ y is a homeomorphism, then hs(sX — 
s,(X)) CS-h(X). 

Proof. This is a special case of [5, 6.11]. 

2.6 P R O P O S I T I O N . A homeomorphism with closed range is y-perfect. 

Proof. Le t h'• : X —» F be a homeomorphism with h(X) closed. By cont inui ty , 

hs(sX) C hs(sx(X)) ( the closure in sY). Now hs o sx = sy o / u s a homeomor­

phism, and hs(sx(X)) = sy(h(X)) is closed in sY. Using 2.5 and the last fact, 

we have hs(sX - sx(X)) C h*(sx(xT) - hs(sx(X))C sY - sy(Y). 

2.7 P R O P O S I T I O N . IfSeJf, then the projection T : S X X - » X is y-perfect. 
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Proof. Let TT* : 5 X sX -> sX be projection. Clearly, TT*(5 X sX - S X 
s*PO) C sX - ^ ( X ) . Let g : 5 X X - > S X sX be g(5, x) = (5, **(*)). By 
2.5, gs "preserves remainder". Since TS = 7r* O gs, the result follows. 

We consider two kinds of maps into products. First, suppose given f\ : X\ —» 
Fx for each X G A; the product Ufx : IIXx -> I I Fx is defined by (lift) ((xx)) = 
(fx(x\)). Next, suppose given a set&~ of maps of a fixed space X; say , / : X —» 
X/, for f G ^~; the evaluation e : X —» I I X / is defined by 717 o g = / , for each 

2.8 LEMMA. Le/ / : X —» I I Fx £# a wap iw/0 a product, let hi = Tlsy : I I Y\ —-» 
IIsFx aŵ Z Ze/ /̂  5e //te "range-restriction" of hi. These are equivalent: 

(a) / is y-perfect. 
(b) /& 0 / is £f-perfect. 
(c) (/u o/) ' |>X - sx(X)] C n^Fx - n ^ ( F x ) . 

Proof. Consider the commuting diagram 

X f- • l i n • m,x(rx)>. 

^ • .riFx • ^n^ x ( r ) l • iiA-rx 

where i is the inclusion, so that hi = i o h, and (hiof)s = is o hs o fs. 
Because &, i, and the reflection maps are homeomorphisms, 2.5 applies to show-
that hs and is (and hence is o hs) ''preserve remainders". Since (a) says that 
fs preserves remainder, the equivalence of the three conditions follows. 

W h e n / is a product or an evaluation, the conditions in 2.8(c) become the 
following. 

2.9 PROPOSITION. A product II/x is y-perfect if and only if each f\ is Sf-
perfect. 

2.10 PROPOSITION. The evaluation 

e:X-*ll Xf 

is S^-perfect if and only if each x Ç sX — sx(X) there is f £ J^ with fs(x) £ 
sXf - sxf(Xf); that is, sx(X) = O t&f8 '1 (sx/(Xf)). 

3. ^-perfect and epi-reflective hulls, 1. Again, y is an epi-reflective 
subcategory for which all reflection maps are homeomorphisms. 

3.1 Definition, lis/ is a class of spaces, p$sé consists of all X for wThich there 
is an y -perfect map X —> A g j / . We call ps%? the ^-perfect hull of s/ 
(because of 3.2(a), below). 
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16 ANTHONY W. HAGER 

In Tych, pksé has been called the left-fitting hull of se [8]. For this case, 
3.2 is known; see [10; 4; 8]. 

3.2 PROPOSITION. 

(a) ps(pss/) = pss/. 
(b) pss/ is closed-hereditary. 
(c) y c pr*/. 
(d) X e Ps^ and S ^ imply S X X 6 £ s j / . 

Proof, (a) by 2.2. (b) by 2.6 and 2.2. For (c), if S £ y , then 55 - ss(S) = 0, 
and any map of S is j^-perfect; so map 5 —> {̂ } C -4 £ J^/. (d) follows from 
2.8 and 2.2. 

3.3 PROPOSITION. If s/ is productive, then so is pss/; hence p8s$ is epi-
reflective. In general, ps&(s#) and ps{YYs/r \S$' is a set contained in sé\ 
coincide. 

Proof. 2.8 shows the first, and the second follows from this, 3.2(b), and 1.1. 
Clearly, pjftipt) D ps{Hstf' : s/' C.s/}. The latter is epi-reflective and 

c o n t a i n s ^ , hence contains &(&/), and with 3.2(a), contains pj%(p&). 

3.4 PROPOSITION. For any srf, &(y\Js/) C Sft(p8sé) C pMW). 

Proof. Clearly, j / C pssf, and y C pM by 3.2(c). Thus, 

m{y\jsé) c^(pss^). 
Evidently, p8sé C pM(sé). The latter is epi-reflective by 3.3, so 

As we shall see in §4, the inclusions in 3.4 become equalities if all 5^-reflection 
maps are embeddings. The principal example not of this sort is y = J f in 
Unif, and here the inclusions can be proper. We give examples after further 
examination of psS%{ftf) and some related classes. 

Consider as before an evaluation e : X —» IT /€JF Xf, and related maps as 
follows: The homeomorphism (onto) h = Hsx/ : HXf—>TLsXf(Xf); the pro­
duct F EE n ( / ' l / * - 1 (s*,(-XV)); the diagonal embedding A : sx(X) -> 
nf-i(Sxf(xf)). 

Evidently, hoe = F o A o s'x, where s'x denotes the "range-restriction" of 
sx. 

We need the following standard lemma about Hausdorff spaces. 

3.6 LEMMA. Let Q be a family of subspaces of F, each containing Z. The 
diagonal embedding of Z into Tl& has closed range if and only if Z = D 2). 

3.7 PROPOSITION. These conditions on Ĵ ~ are equivalent: 
(a) e is y-perfect. 

(b) sx(x) = rw/'-W*/))-
(c) A(sx(X)) is closed. 
(d) A is y-perfect. 
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Proof, (a) => (b) by 2.10. (b) =» (c) by 3.6. (c) =» (d) by 2.6. (d) => (a): 
The following are ^-perfect: s'^, obviously; F, by 2.9; with (d), F o A o s'^, 
by 2.2; hence hoe; finally, e, by 2.8. 

3.8. COROLLARY. X Ç ps^(^) if and only if there is a set ^ of maps 
f:X->A,e s/for which sx(X) = O W " 1 ^ , ^ , ) ) . 

Proof. This follows by 3.7 (a) and (b), and 3.3. 

From 1.3, we know that the "range-restrictions" s'x are the reflection maps 
for û(5f); as there, we let s' denote the functor, s'(s/) stands for the class 
of spaces s'A {A £ s/)y and (s')~lS^ stands for the class of spaces X for which 
srX 6 s/. Consideration of 3.7(c) yields the following. 

3.9 COROLLARY. If X £ ps&(%?), then s'X £ &(pss'(o/)). 

Proof. By 3.8 and 3.7(c), there is a set&" of maps to A/s £ se such that 
A : s'X —> Wfs~x{s'A^) is an embedding with closed range. Each fs~Y (s'A f) Ç 
pss'(<$/), by 2.4. 

The following, with the examples below, summarizes the relationships among 
the classes under consideration. 

3.10 PROPOSITION. ë%(y \Js/) C ̂ (P^) W (s')-^(p^) C P&Hpt) 
C (s')-^(pss'{^)) Cps@(pss'(^)) = pM(s'(^)). 

Proof. There are two general facts: (a) {s')~l3l C pj% > and (b) 
ps^(ps^) = P&(08), for any 3$. The proofs are trivial. 

8%{y \Js/) C 9t{pjf) C P&&), by 3.4; (s')-^(p^) C pM{tf) by 
(a) and (b). This shows the first two inclusions. The third is 3.9, the fourth 
follows from (a), and the equality from (b). 

I do not know at present if 3%{p*$/) C (s')-1^! (p <?$/), or if the fourth 
inclusion is equality (i.e., if pM(s'{pt)) C (s')-l3$(p8s'($/))). We present 
examples to dispose of the other questions. 

3.11 LEMMA. In Unif, each Jf-perfect map is Y-perfect. Hence pkT = T. 

Proof. If kx : X —» kX is Samuel compactification of X, then sinceJ^ C I\ 
we have kx

y : yX —» kX, and this is Samuel compactification of yX. The results 
follow. 

3.12 Examples. In Unif, let y =Sf. 
(a) &t(tfKJé>)7> @(P*&) U (k'y^ip^), where <f is the class of all 

spaces which have no uncountable uniformly discrete set: Here, S is epi-
reflective and S 3 C^. The reflection eX is the set X with the uniformity 
generated from all countable uniform covers of the uniform space X, and the 
map X —» eX is lx (so S* = û(é>)f in fact). The ^-reflections (Samuel 
compactifications) of X and eX coincide, so each reflection map X —> eX is 
jf-perfect. (See [12, p. 52].) 
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Thus, 0t{$\JS) = <f, while @(pj) = (k'yi@(pJ) = Unif. 
(b) &{pkJ£) ~jb pkS%(J£), where oSf is the class of all spaces whose under­

lying topology has the Lindelôf property: Clearly, JT C ^ C < \̂ and 
&(?£) C <̂  (in fact, they are equal). Now, uniformly J^-perfect maps are 
topologically J^-perfect, and in Tych, ph (Lindelôf spaces) = Lindelôf spaces 
[6, 2.2]. So, 9l(pk<£) = ^ ( i f ) . 

Let D be a set of power Ki (or any nonmeasurable power) with the discrete 
uniformity: D g S* so D (? &(pkJ£). But it is not hard to see that eD Ç 
£%(££)', in fact, eD £ M{{N\), where TV is the countable discrete uniform 
space. Since the <?-reflection map D -+eD isJ^-perfect, D G pkS%{££). 

(c) (k')-1^!(pkT) 7) Pk&(T): Here, T is complete uniform spaces; so 
@(T) = T, and by e3.ll, pkT = T. But (k')-lT = J f . 

(d) ^ ( / ^ / ) U (kf)-^(p^) 7> pt&H^), for J / = (? H T: It is not 
hard to see that Sftip^) = (f, (k')-lS%(pksé) = Jf , and pk@(<^) = T; so 
the space D in (b) works. 

(e) ^ ? ( T ) 7) ( f c ' ^ ^ W W ) : Let F 6 T - Jf , and let X = jfe'F. 

4. ^ -perfec t and epi-reflective hulls, 2. In this section, y is an epi-
reflective subcategory for which all reflection maps are embeddings. Thus, the 
Û (Sf) reflector sr is the identity functor. We shall simplify notation by viewing 
X as a subspace of sX, and sx as the inclusion X C sX, which will sometimes 
go unlabeled. 

In this case, 3.7 becomes: 

4.1 PROPOSITION. Let all Sf-reflection maps be embeddings. These conditions 
on the set Ĵ ~ of maps of X are equivalent. 

(a) e is S^-perfect. 
(b) X = Hf^f-HX,). 
(c) A embeds X as a closed subspace of W^ fs~l(Xf). 

Now as 3.7 yielded 3.8 and 3.9, 4.1 implies that X Ç pj%(ftf) if and only if 
X £ fflipgStf) (from 4.1 (a) and (c)). This improves part of 3.4 (and 3.10; 
but 3.10 reduces to 3.4 when s' = 1). An alternative argument gives further 
improvement: 

4.2 THEOREM. Let allS^-reflection maps be embeddings. Then, S% (Sf \Jstf) = 

4.3 LEMMA. / / / : X —» F, and B C F, then f~l{B) embeds as a closed subset 
ofX X B. 

Proof. Define h : f~l(B) -> X X B by h(x) = (x, / ( * ) ) ; then & is an 
embedding. Define g:XXB—>YXB by g(x,b) = (f(x), b); then g is a 
morphism. The set D = {(b, b) : b Ç B) is closed in F X ^ (since the topo­
logical spaces are Hausdorff). One checks that g~~l(D) — h(f~1(B)), so the 
latter is closed. 
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4.4 PROPOSITION. X G p8sé if and only if X embeds as a closed subset of a 
space S X A, for S £ y and A G s/. 

Proof. Suppose X closed-embeds in S X A. By 3.2(d), S X A £ p ^ ; by 
3.2(b), X G p8sé. 

If f:X-*A G ^ is ^ - p e r f e c t , then we have sx(X) = / S - 1 ( ^ A ( - 4 ) ) . 
Applying 4.3, sx(X) closed-embeds in sX X sA(A). Since sx and sA are em-
beddings, X closed-embeds in sX X A. 

Remark. 4.3 slightly generalizes [10, Lemma 3]. 4.4 generalizes [10, Proposi­
tion 2] and [8, 3.3 and 3.5]. 

Proof of 4.2. Wi th 3.4, it suffices t ha t pMi^) C £%(¥ U J / ) . If 
X G psS%(£#), then by 4.4, X closed-embeds in an S X F, with F G $%($/). 
Evident ly , 5 X Y G < ^ ( ^ U ^ ) , and so X G ^ ( y 7 U J / ) (both by 1.1). 

4.2 has the following interpretat ion. Let J (of) denote the least epi-reflective 
subcategory c o n t a i n i n g ^ / and for which all reflection maps are embeddings. 
Because of 1.2, J (ç/) = & (s/ VJjf) in Tych, and = 9t{pt VJ T) in Unif. 
4.2 yields: 

4.5 COROLLARY. In Tych, J(of) = pkâ?Çs/). In Unif, J ($/) = py& («$/). 

4.6 COROLLARY. Let all y-reflection maps be embeddings. 
(a) X G pffiis^) if and only if there is a family of subsets of sX, each in 

ps&f, with intersection X. 

(b) Let e be the functor for ps0e(<&). Then, eX = n{P : X C P C sX, 

P G p*sf\. 

Proof, (a) follows from 2.4 and 3.8. 
(b) : Let i : X —» eX be the reflection map . If / : X —> 5 G ¥, then there 

is g : eX —* S with g o i = f (since 5 C ps&(^))> Then there is h : seX —» S 
extending g. This shows t ha t seX = sX, and we wrrite eX C sX. 

Now, let aX s tand for P\{P's}. Applying (a) to eX C seX = sX shows 
t h a t eX D aX. I t follows t ha t each / : X -> F G pM($&) extends over a X 
(since / extends over eX). Then eX = aX will follow if a X G psS%(s$). T o 
see this note t h a t the diagonal map embeds aX into L t j P ' s } , and the image is 
closed because the spaces are Hausdorff; since pssé C Ps&{?^), L I shows 
t h a t a X G p&(érf). 

Frankl in 's theorem [4] is obtained from 4.6 by specializing to Tych, taking 
y = J f , and supposing s/ = pk<%?; then ^ ( j / ) = pkSi{tf) by 4.2. When 
Frankl in presented his paper a t the Pi t tsburgh conference of June 1970, he 
remarked t ha t the role of compactness was not clear. The present development 
does not use compactness explicitly, for the sole hypothesis is t ha t 5^-reflection 
maps are embeddings; bu t the implicit role of compactness is crucial (by 1.2). 

4.7 COROLLARY (part of 1.2). Let 0% be epi-reflective in Tych (respectively, 
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Unif). Then, all &-reflection maps are embeddings if and only if S% D j f 
(respectively, I D T ) . 

Proof. Now, a dense embedding of a compact (respectively, complete) 
space is onto; if all reflection maps are embeddings, then X —> rX is an iso­
morphism, for X Ç JT (respectively, F). Thus, g% D J f (respectively, V). 

If gft D j f (respectively, T), then use 4.6 with y = J f (respectively, T); 
so sX = 0X (respectively, yX). Since by 4.2 psS% = 2%{y\J S%) = &, e in 
4.6 is r. 4.6 shows that rX C i#X (respectively, 7X), so X —» rX is an embed­
ding. 

5. Splitting epi-reflections with y \ We return to assuming only that 
5^-reflection maps are homeomorphisms. We shall prove the main results, 
mentioned in the introduction. In 2.7, we noted that a closed embedding is 
^-perfect . The first result requires for 5^, roughly, that the converse hold. 

5.1 PROPOSITION. If each y-perfect embedding into a product of members of 
se has closed range, then Û (#/) C\ psS%(^) = 39 (rf). 

Proof. Clearly, g%(sé) C Û (pf) C\ p&(p/). 
If X Ç © (fé), then there is a set J S of maps of X to members of s/ for 

which the evaluation e\ is an embedding. If X G psS%(£#), then by 3.8 there 
is a set J S of maps of X to members of s/ satisfying 3.7(b). For cF = 
J S W J S , we still have 3.7(b), hence 3.7(a), and the evaluation e is ^-perfect . 
SinceJ^ D ^ i , ^ is an embedding. By hypothesis, ^(X) is closed; so X 6 Si {9/). 

5.2 PROPOSITION. Each y-perfect map (respectively, embedding) has closed 
range if y = X (respectively,^ = F in Unif). 

Proof.Letf : X -> Y be^-perfect and let y G Y - f(X). Then y (2 fs(sX). 
If y = J^ , then fs(sX) is compact, hence closed; if y = Y, and / is an 
embedding, then/*(sX) is complete, hence closed. In either case, there is a 
neighborhood U of y with Ur\fs(sX) = 0. Then (U C\ Y) C\f{X) = 0, 
showing y (£ / ( X ) F . 

5.1 and 5.2 immediately yield the first main theorem. 

5.3 THEOREM. If y = X, or if y = r in Unif, then for any s/, 
€ipt)C\pM&) =&&). 

5.4 Remarks, (a) In uniform spaces, 5.3 for T is clearly a better result than 
5.3 for X. 

(b) Concerning the sharpness of 5.3, the following can be shown easily. 
Let y be epi-reflective, with all reflection maps homeomorphisms; so y D J f 
by 1.2. (1) In Tych, if Û(tf) C\pX = Jf , then y = X. (2) In uniform 
spaces, if û(T) H psT = Y, then y C r . Thus (generalizing 3.11) each 
j^-perfect map is F-perfect, and p£0 C pySé follows; so any equality 
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©isé) C\ pj&lipt) = &{&/) is a weaker s ta tement than û{&/) C\ pyÛS(Qf) = 

(c) An interesting failure of the conclusion of 5.3 is this: In Tych , t ake 
$f = realcompact spaces (i.e., £%{{R))y R = the real line), and s/ = {N}, 
N = the countable discrete space. Then (as can be shown) Û ($/) consists of 
all spaces with a basis of clopen sets, psS%(sé) = j ^ 7 , &(&/) is the iV-compact 
spaces of Engelking and Mrôwka [3]. ©isé) C\ p&(^) = <%&) would say 
t h a t every realcompact space "wi th a clopen base" is iV-compact. This was 
shown to be false (after ten years or so) by Nyikos [14], with the horrible 
metric space of P. Roy. 

(d) 5.3 is closely related to a lemma of Zenor [17]. Zenor's result restricted 
to Tychonoff spaces reads: Let X 6 û(œf). Then X e 3%(&?) if and only if 
whenever &~ is a free ultrafilter of closed sets, there is / : X —» A Ç j / and 
an open cover °U of A w i t h / _ 1 ( ^ ) refining the family of ^""-complements. I t 
can be shown t h a t : 

(1) For normal X, the condition on closed ultrafilters is equivalent to the 
same condition for zero-set ultrafilters; 

(2) Let 2? be a free zero-set ultrafilter, p the unique point of fiX — X 
associated with 2? [5], and / : X —> Y a continuous function. Then , there is 
an open cover °tt of Y w i t h / - 1 ( ^ ) refining the family of ^ - c o m p l e m e n t s if 
and only if f&(p) G &Y — Y. Via 3.7, one now easily sees the connection with 5.3. 

T h e following is the main result of the paper. 

5.5 T H E O R E M . Lets/ be a class of spaces, and let o, p, r be the functors associated 
with 0(sé), pk& (&/), and &(&/), respectively. Then op = r. 

5.6 Remarks, (a) By 1.2, all Û ($/)-reflection maps are onto, and all 
pk£%{s$)-reflection maps are homeomorphisms (since J ^ C p*$(£#)). Thus , 
5.5 says t h a t an &(&/) -reflection rx : X —> rX can be factored as 

oPx o px : X —> pX —> opX, 

where px is a homeomorphism and opx is onto. 
5.5 applies, of course, to factor an arbi t rary epi-reflector: jus t take se epi-

reflective, so ffl(s/) = s/. 
(b) 5.5 is stronger than 5.3 for $f = ^ : whenever epi-reflective functors 

s, t, r satisfy both st = r and stT C ^~ , then <f C\ 3T = g% ; this is no t hard 
to show. 

(c) In uniform spaces, l e t s / = J ^ , and let q be the functor associated with 
py&ffl). Then oq = r can fail. For, ûffl) is precompact spaces, py0H (tf) = 
r , so q = 7, and S% (pf) — Jf \ so r is the Samuel compactification functor. 
With X = R with the usual uniformity, qX = X, and oqX = oX, which is 
not compact . Bu t rX is compact . 

T h e " reason" for such examples is t ha t Lemma 5.7 below fails for Y. 
Curiously, in this example we have qo = r. (This is a s tandard definition of 

Samuel compactification, in fact.) 
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(d) We consider 5.5 in Tych with s/ consisting of jus t the two-point 
(discrete) space 2. Then 0 {£#) is the class of all spaces with a basis of the 
clopen sets (by an old theorem of Alexandrofï), pk3& (&?) = ^ ( j / U j f ) = j f 
(using 4.5) so t h a t p is the Stone-Cech compactification functor. T h e equat ion 
op — r thus says t h a t to construct rX, first take (3X (i.e., apply p), then form 
the quot ient obtained by identifying each connected component to a point 
(i.e., apply o to fiX). For X G Û(£#), this reproduces one of Banaschewski 's 
construct ions of his maximal O-dimensional compactification [1]. 

Note t h a t even for X G û(&/), the applying of o to (3X need not be a 
vacuous operat ion; i.e., there is X G ©(&/) with $X G û($/) [5]. Also, such 
an X shows t h a t po = r need not obtain (as it does in 5.4(c)) ; for poX = /3X, 
while opX 5* PX. 

We turn to the proof of 5.5. Several lemmas are required. Nota t ion is as in 

5.7 L E M M A . Let f : X —> Y and g : Y —> Z. If g of is Jf-perfect, and if f is 

onto, then g is J f -perfect. 

Proof. T h e J^-reflection of X is either 13X or the Samuel compactification: 
denote it kX. Of course, (g o f)k = gk ofk. T h e crucial fact is t ha t /* is onto if / 
is onto (because fk(kX) is dense and compac t ) . So, if y G kY — ky(Y), there 
is x G kX, necessarily x G kx(X), with fk(x) — y. Then , gk{y) = gk(fk(x)) G 
&Z — kz(Z), because g o / is J^-perfect . 

5.8 COROLLARY, i / £ : F - ^ Z G &(<$/) is Jf-perfect, then so is the map 
g° : oY->Z (with g = g° o oy; note t ha t Z G 0(s/)). 

Proof. Oy : Y —» oY is onto. Apply 5.7. 

5.9 PROPOSITION. o(pkâg(s/)) C pk@(s/). 

Proof. Apply 5.8. 

5.10 Remark. Beyond Theorem 5.3, 5.9 is the crucial technical s tep in 
proving 5.5. Toward further explanation (beyond Example 5.6(c)) of why 
5.5 fails when J ^ is replaced by large £f \ (a) Suppose there is o n t o / : ,S —•> Y 
with 5 G y and Y G S^. Let 1 be the one-point space, and g : Y—» 1. Then 
the analogue of 5.7 fails, (b) Suppose there is 5 G S^ with oS (f Jf. Now 
1 G &(&/), so with g : S —» 1, the analogue of 5.8 fails; hence 5.9 fails. 

5.11 L E M M A . Let ^é and JV be epi-reflective subcategories, with functors m 
and n. Suppose that mJV <Z_^V. Then mJV = ~^éC\ J/, and this subcategory is 
epi-reflective, with functor mn. 

Proof. Let N G ^ K Then mN ^Jé C\JV. If X G ^ ' C\J/ , then X dJV 
and mX = X. Now, mn is a covariant functor, with range ^Jé C\ JV , and 
m w l - ' ^ f Y y ^ is the ident i ty functor (up to isomorphism). I t suffices t ha t mn 
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have the reflective property. Given f : X —» Y £ ^ C\JV , consider the 
commuting diagram 

X • «X > mnX 
i ' ^ 

' ^ ^ (2) 

Y * 

where the unique lift (1) exists because Y ^JV , then the unique lift (2) of 
(1) exists because Y Ç ^éé . 

5.12 COROLLARY (5.5). (a) op epi-reflects onto © {se) C\ pk&(s/). 
(b) ©(s/) C\ pk$l(st) = @(s/), so that op = r. 

Proof, (a) follows from 5.9 and 5.11. The first part of (b) is just 5.3; op = r 
follows by uniqueness of reflections. 

In view of 5.3 and 5.5, this question is of interest: When is © ( s/) all spaces? 
Clearly, if so, then in Tych (respectively, Unif) pkg%(sé) = &(s/) (respec­
tively, pyâl(J^) = ^ ( J / ) ) , by 5.3, and since 9* <Z.pssé always holds, 
J f C ^ ( ^ 0 (respectively, r c ^ ( ^ ) ) . Conversely, since ©(Sf ) (re­
spectively, ©(T)) is all spaces, it is clear t h a t - J ^ C ^ ( ^ ) (respectively, 
r c ^ ( i ) ) implies that ©{se) = ©{Sft(stf)) is all spaces. The following 
appears in [7, 19.1.1] without proof. 

5.13 THEOREM. In Tych,jf C tfl(stf) if and only if [0, 1] is a subspace of 
some A c &/. 

Proof. If [0, 1] C A £s/ then any closed subset of any Tychonoff cube 
(E ^ ( J / ) , i . e , J f C ^ ( ^ ) . 

If J ^ C &(s/), then [0, 1] closed-embeds in some say 
[0, 1] C I l 4 a . Let Pa = TT«[0, 1] C Aa. By the Hahn-Mazurkiewicz Theorem, 
Pa is arcwise-connected and hence will contain a copy of [0, 1] if Pa has two 
points. But since [0, 1] C nLPa, it is not possible that every Pa is a singleton. 

Thus, in Tychonoff spaces, ^({[0, 1]}) is all spaces. It is readily seen that 
there is no uniform space X with ©\\X\) all spaces. 
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