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In this paper, a gravity map-matching algorithm is proposed based on a triangle constraint
model. A high-accuracy triangle constraint model is constructed by using a short time and
high-accuracy-featured inertial navigation system. In this paper, the principle of the gravity
map-matching algorithm based on the triangle constraint model and a triangle matching par-
ameter-parsing method are first introduced in detail. It is verified by test that the method is
sensitive to the initial error value. By comparison to the commonly used Iterative Closest
Contour Point (ICCP) and Sandia Inertial Terrain Aided Navigation (SITAN) algorithms re-
spectively, the results show that this method is perfect in real-time performance and reliability,
and its advantages are more obvious especially with a large initial error.
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1. INTRODUCTION. Vehicle underwater passive navigation is an area of re-
search with broad commercial and military application. Recently, there has been
greater interest in using geophysical maps (for example gravity) for underwater naviga-
tion. A main aspect of underwater passive navigation is how to identify the vehicle lo-
cation on an existing gravity map, and several matching algorithms as the Sandia
inertial terrain aided navigation (SITAN) (Wang and Bian, 2008; Liu et al., 2011;
Hostetler et al., 1983) and the Iterative Closest Contour Point (ICCP) (Cheng et al.,
2009; Garner, 2002; Zhao et al., 2009) are the most prevalent methods that many scho-
lars are using.
The SITAN algorithm uses a bank of Kalman filters to search the matching position

based on recursive information from these Kalman filters. So SITAN is a real-time
matching algorithm, but it also wastes a lot of time in the searching procedure
and sometimes it misses position fixes because of the large quantity of searching
points. This algorithm requires accurate initial position information and a linear

THE JOURNAL OF NAVIGATION (2016), 69, 353–372. © The Royal Institute of Navigation 2015
doi:10.1017/S0373463315000661

https://doi.org/10.1017/S0373463315000661 Published online by Cambridge University Press

mailto:zszhu@buaa.edu.cn
https://doi.org/10.1017/S0373463315000661


change of gravity field, and it is mainly applicable for the carrier with a fixed trace.
ICCP algorithms can give a matching path to correct the indicated path of an
Inertial Navigation System (INS) only after getting enough samples, which makes
its real-time quality not very good, and it is the most commonly used method in under-
water gravity-aided INS.
The ICCP algorithm is derived from static image matching in image recognition. For

a gravity-aided inertial navigation system, the gravity reference map is only a one-
dimensional “line graph” represented by “isograms”, rather than a two-dimensional
graph acquired in the form of “video recording”. Such a line graph carries less available
information for matching than the two-dimensional graph. Moreover, in order to
improve resolution of the gravity reference map, the final “line graph” of the map is
obtained by interpolation, which will inevitably result in errors for the map. The posi-
tioning accuracy of the gravity-aided inertial navigation system is related not only to
the matching algorithm but also to the selection of gravity map matching area. The
adaptable matching area is often chosen according to the average of standard devi-
ation, local energy and roughness of gravity gradient (Cheng et al., 2007. As shown
in Figure 1, the suitable matching area of the gravity map is discontinuous due to its
discrete distribution, so that a cumulative error occurs in the carrier position and
navigation information exported by the INS in real time when the carrier enters into
the applicable gravity matching area (Point A2 in Figure 1). These factors result in
an essential difference in the gravity map matching criterion and optimum searching
method. So there is an urgent need to discuss a new matching method.
The possibility of triangle matching was first proposed by Golomb et al. (1978). Due

to geometric features such as translation, rotation and stretch invariance of the match-
ing triangle, the matching method based on the triangle constraint model has been
widely used in the field of image matching in recent years (Guo and Cao, 2012).
Zhu et al. (2007) proposed an image matching method based on a dynamic triangle
constraint. Liu and An (2010) compared two similar triangles using the invariants
of relative moment reflection to overcome the reflection transformation among match-
ing images. Chen et al. (2006) proposed the fuzzy similarity of triangle matching by
forming a triangle fuzzy function set with feature points. Qian and Wang (2008)
gave a fuzzy expression of the triangle. Zheng et al. (2009) completed the vector tri-
angle matching. The experiment results and application effects show that compared
to the previous ICCP matching method, the matching method based on triangle con-
straint features better accuracy and stability. In addition, the triangle matching tech-
nique was introduced by Yang et al. (2014) to the gravity map-matching algorithm
for the first time. They built a high-accuracy triangular observed quantity with a
short time and high-accuracy measurement of the inertial navigation system.
From the SITAN and ICCP algorithms, it is known that the accurate initial position

information is critical in the gravity map-matching algorithm. In this paper, the re-
search will focus on the initial matching technique for a gravity map based on the tri-
angle constraint model.

2. BASIC PRINCIPLE OF GRAVITY MAP MATCHING ALGORITHM
BASED ON TRIANGLE CONSTRAINT MODEL

2.1. Matching Possibility of a Triangle. The matching possibility of a triangle is
defined as follows: for two triangles ΔA1A2A3 and ΔB1B2B3 in the space R3, if there

354 ZHU ZHUANGSHENG AND OTHERS VOL. 69

https://doi.org/10.1017/S0373463315000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000661


are three parallel lines p1, p2 and p3 and rigid transformations σ and τ to enable σ (Ai)
and τ(Bi) to be on pi (i = 1,2,3), then the triangle can be matched with ΔB1B2B3 (Yang
and Zhang, 1983; Robbins and Goldberg, 1979), as shown in Figure 2.
However, due to various error factors, the three vertices of ΔB1B2B3 may not be

located on the three parallel lines p1, p2 and p3 but must be within the respective cor-
responding confidence area Ωi (i = 1,2,3), as shown in Figure 2. The confidence areas
Ωi respectively represent the areas between pi

1 and pi
2. In the process of gravity map

matching, errors mainly result from the grid resolution of the gravity map, measure-
ment error of gravity meter and random error of the INS.

2.2. Three Factors for Triangle Matching Algorithm. The triangle-matching algo-
rithm mainly consists of three factors: triangle constraint model, triangle matching
model and triangle space mapping relation.

(I) Triangle constraint model: Build a triangle constraint model with the distances
of sampling points as two sides of the triangle at ti−m–ti and ti – ti+k (i, m and k
are natural numbers) and the relative turn angle θ exported by the inertial navi-
gation as its included angle at ti for the inertial navigation system.

(II) Triangle matching model: First, get effective and corresponding matching point
sets P1, P2 and P3 respectively from the gravity database based on the gravity
values measured at ti−m, ti and ti+k with the gravity meter carried by the carrier;
then, randomly take one point respectively from the point sets P1, P2 and P3 to
form a triangle matching model.

(III) Triangle space mapping relation: Map the triangle to a point on one plane co-
ordinate based on the space mapping relation in order to handle the length and
angle matching in different dimensions. By this way, the triangle characteristics
are described from ternary information to binary information further to sim-
plify the subsequent matching algorithm.

2.3. Principle of triangle matching algorithm. As shown in Figure 1, when the
carrier enters into the applicable matching zone, the position and angle information
exported by the INS contains accumulative errors, which will result in the position
and angle errors between the constructed triangle constraint model and actual triangle.
For example, errors of turn angle between the triangle constraint model ΔA1B1C1 and

Figure 1. Schematic diagram for initial gravity map matching error.
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actual triangle ΔABC as well as position errors between the middle transitional tri-
angle ΔA0B0C0 and ΔABC in Figure 3.

2.3.1. Definition of measurement parameters of triangle similarity. Because the
triangle still maintains similarity after rotation, translation and stretching transform-
ation, the centre of gravity is selected as a triangle rotation centre in this paper.
Provided that the triangle ΔA1B1C1 becomes a similar triangle ΔABC after rotation,
translation and stretching transformation, then the transformation formula corre-
sponding to coordinates is:

xi

yi

� �
¼ s

cosf sinf
� sinf cosf

� �
xi1
yi1

� �
þ tx

ty

� �
ð1Þ

where (xi, yi) and (x1
i , y1

i )(i= 1,2,3) are respectively coordinates for three angles in
ΔABC and ΔA1B1C1, ϕ is rotation angle (positive in a counter-clockwise direction),
s is a scaling coefficient, and (tx, ty) is a translation vector. The similarity matching
for two triangles means seeking a group of optimal parameters tx, ty, s, and ϕ to
realise the greatest similarity of two triangles.

2.3.2. Constraint conditions of triangle matching model. In the process of match-
ing for the gravity map as shown in Figure 3, the error factors such as measurement
error from gravity map grid resolution and the gravity meter as well as random
error of the INS, result in the non-rigid transformation between the triangle constraint
model and the triangle matching model. The side lengths of the triangle constraint
model come from the relative distances exported from the INS at ti relative to ti−m
and ti+k relative to ti, and the relative turn angle at ti, but not including the accumu-
lated errors of the INS. These lengths can be assumed as the “actual values”. So,
the constraint conditions for the matching model sides and direction angles are
defined in the construction of the triangle-matching model. The matching triangles
which are not in line with the triangle-matching model sets can be cropped.

2.3.2.1. Constraint conditions of sides.

jP1, iP2, j � aj< Ra, jP2, jP3, k � bj< Rb ð2Þ

P1,i, P2,j and P3,k (i, j, k are natural numbers) are points respectively on P1, P2 and P3;
P1, P2 and P3 are matching points from the gravity database based on the gravity
values measurements; a and b are sides AB and BC for the triangle constraint

Figure 2. Schematic diagram of matching possibility of triangle.
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model respectively;Ra andRb are the confidence radius determined in accordance with
error source of the non-rigid transformation.

2.3.2.2. Constraint conditions of direction angle.

AB⇀�BC⇀
� �

� P1, iP2, j
�������⇀ � P2, jP3, k

�������⇀� �
> 0 ð3Þ

AB⇀ and BC⇀ are vectors corresponding to two sides of the triangle constraint model.
The modelling analysis and matching calculation can be implemented in accordance

with the above triangle constraint conditions.

3. BUILDING AND ACQUISITION OF INITIAL TRIANGLE MATCHING
MODEL. See Figure 1. When the carrier enters into the applicable matching area,
the position and navigation information provided by the INS in real time contains
accumulated errors. In order to quickly and accurately get results of initial matching,
the steps to build and get the initial triangle-matching model are:

3.1. Determination of matching and searching area. As shown in Figure 4, a× n2

arrays with equal dimensions (a is the side length of the minimum square area which
can be determined by gravity gradient, n is series) shall be established in accordance
with carrier position A(x, y) provided in a certain sampling point of the INS. In
order to cover the actual track points for the searching area and prevent an endless
loop in the process of searching and matching points, the maximum searching series
shall be set asN (N depends on the range of accumulative errors when the INS provides
the position point A(x, y), and it can be determined by the error and working time of
INS), i.e. the maximum searching range is an aN × aN square area.

3.2. Methods of searching and getting initial matching points. As shown in
Figure 5, the square array (including aij (i = 1,2,3,4; j = 1,2,3,4), which reflects the
ith line and jth column square area of Figure 5) refers to the matching searching
area at t. gi (i = 1,2,3,4) refers to the contour line with the gravity value of gi in the
gravity field. There are numerous position points in each contour line. In order to

Figure 3. Rotation and translation between triangle constraint model and actual triangle.
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quickly get the corresponding matching points, the gravity value measured by the
gravity meter carried by the carrier at t is assumed as gt in the process of initial match-
ing. Firstly, select the corresponding contour line in the gravity database by the refer-
ence value of gt (g1 and g4 in Figure 5); secondly, divide the matched contour line into
several parts by the unit of array, e.g. a13, a14, a24, a33, a42 and a43; thirdly, take the
midpoint in the lines corresponding to the contour lines for the array as the matching
point, e.g. Pij (i is natural number, j = 1, 2, …, 6).

Figure 5. Searching diagram for initial matching points.

Figure 4. Searching array for matching points of initial matching process.
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3.3. Building of initial triangle matching model sets. Provided that the INS
exports three positions A1, A2 and A3 at ti−m, ti and ti+k respectively (m and k are
chosen according to the accuracy, and can be the same), then three corresponding
and matched searching areas (a uniform 4-level array in Figure 6) as well as initial
matching points are obtained at ti−m, ti and ti+k, to form three groups of matching
point sets P1= {P11, P12, P13}, P2= {P21, P22, ··· P26} and P3= {P31, P32, ··· P39}.
Connect each point in the point sets P1, P2, P3 in sequence to build a triangle match-
ing set Ω. The number of possible triangles is C1

n1C
1
n2C

1
n3 (n1, n2 and n3 are numbers of

three point sets P1, P2, P3 respectively).
3.4. Acquisition of the initial triangle matching model. In order to improve the

speed of the initial matching process, the initial triangle matching model set Ω shall
be cut in accordance with its constraint conditions to get the initial triangle matching
model setΩ′. When the number of triangle matching model in the model setΩ′ is more
than one, the 4th position point A4 exported by the INS shall be continually used, and
then the information of three positions A2, A3 and A4 will help to build a new triangle
matching model until getting the optimal initial triangle matching model.

4. ANALYTICALMETHOD OF TRIANGLEMATCHING PARAMETERS.
As shown in Figure 7, the triangle constraint model ΔQ1Q2Q3 and the triangle matching
model ΔP1P2P3 may not be matched with each other completely due to system error or
sensor error in the process of the matching algorithm. In this section, the translation and
rotation information satisfying the objective triangle matching model will be solved in
accordance with the known information about the triangle constraint model.
Set the three-dimensional matrix R as the rotation matrix from ΔQ1Q2Q3

to ΔQ′1Q′2Q′3 (rotate around the centre of ΔQ1Q2Q3 counter clockwise). t⇀ ¼
tx, ty, tz
� �T

is the translation vector for the triangle constraint model from ΔQ′1Q′2
Q′3 to ΔQ″1Q″2Q″3, and rotation and translation transformation formula for the
vector of coordinate point is:

x0

y0

z0

2
4

3
5 ¼ t⇀ þ R

x
y
z

2
4

3
5þ q⇀0 ð4Þ

where [x′, y′, z′]T is the vector after translation and rotation, [x, y, z]T is the vector
before translation and rotation, q⇀0 is the centre of ΔQ1Q2Q3.
Matched objective: The distance square error of the corresponding point is

minimum, i.e. the sum of distance square errors between the ΔQ00
1Q

00
2Q

00
3 after rotation

and translation of ΔQ1Q2Q3 and the corresponding point of ΔP1P2P3 is minimum.

Define the coordinate vector for each point of ΔP1P2P3 as p⇀i ¼ x⇀pi, y⇀pi, z
⇀
pi

� �T
, q⇀i ¼

x⇀qi, y⇀qi, z
⇀
qi

� �T
for ΔQ1Q2Q3, q⇀0

i ¼ x⇀0
qi, y

⇀0
qi, z

⇀0
qi

� �T
for ΔQ′1Q′2Q′3 and q⇀00

i ¼

x⇀00
qi , y

⇀00
qi , z

⇀00
qi

� �T
for ΔQ″1Q″2Q″3. Then the objective function is:

T t⇀,Rð Þ ¼
X3
i¼1

p⇀i � q⇀00
i

�� ��2 ð5Þ
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Meanwhile, the rotating translation formula for the triangles from ΔQ1Q2Q3 to
ΔQ″1Q″2Q″3 is:

q00i ¼ R q⇀i
0 � q⇀0

� �þ t⇀ þ q⇀0 ð6Þ

The final objective function is:

T t⇀,Rð Þ ¼
X3
i¼1

p⇀i � R q⇀i
0 � q⇀0

� �� t⇀ � q⇀0

�� ��2 ð7Þ

Figure 7. Rotation and translation transformation of triangles.

Figure 6. Building of diagram of initial triangle matching model.
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Because there is no relationship between translation vector t⇀ and rotation matrix R, it
can be calculated separately to get the minimum value for the objective function.

4.1. Calculation method of translation vector. The translation vector t⇀ shall
satisfy the following conditions to get minimum value for the objective function:

∂T t⇀ ,Rð Þ
∂ t⇀

¼ 0 ð8Þ

While

∂T t⇀ ,Rð Þ
∂ t⇀

¼ ∂T
∂tx

,
∂T
∂ty

,
∂T
∂tz

� �T
ð9Þ

Then

∂T
∂tj

¼ 0, ðwhere j ¼ x, y, zÞ ð10Þ

Select a group of orthogonal basis {ex, ey, ez}, where ex= (1,0,0)T, ey = (0,1,0)T, and
ez= (0,0,1)T

∂T
∂tj

¼
∂

P3
i¼1

p⇀i � R q⇀i
0 � q⇀0

� �� t⇀ � q⇀0

�� ��2	 

∂tj

¼ �2
X3
i¼1

eTj p⇀i � R q⇀i
0 � q⇀0

� �� t⇀ � q⇀0

� �" # ð11Þ

So

∂T
∂tj

¼ �2
X3
i¼1

eTj p⇀i � R q⇀i
0 � q⇀0

� �� t⇀ � q⇀0

� �" #
¼ 0 ð12Þ

Then value of the translation vector t⇀ is:

t⇀ ¼ 1
3

X3
i¼1

p⇀i � R q⇀i
0 � q⇀0

� �� q⇀0

� � ð13Þ
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4.2. Calculation method of rotation matrix. Define ~p⇀i ¼ p⇀i � t⇀ � q⇀0 ¼ p⇀i � p⇀0,
~q⇀i ¼ q⇀i

0 � q⇀0, then

T t⇀;Rð Þ ¼
X3
i¼1

p⇀i � R q⇀i
0 � q⇀0

� �� t⇀ � q⇀0

�� ��2

¼
X3
i¼1

p⇀i � t⇀ � q⇀0 � R q⇀i
0 � q⇀0

� ��� ��2

¼
X3
i¼1

p⇀i � p⇀0ð Þ � R q⇀i
0 � q⇀0

� ��� ��2

¼
X3
i¼1

~p⇀i � R ~q⇀i

��� ���2

¼
X3
i¼1

~p⇀i

��� ���2 þ ~q⇀i

��� ���2 � 2 ~p⇀i
T
R ~q⇀i

� �

ð14Þ

Respectively define MC ¼ P3
i¼1

~p⇀i

��� ���2 þ ~q⇀i

��� ���2� �
, MV ¼ P3

i¼1

~p⇀i

T
R~q⇀i

� �
, then

T t⇀;Rð Þ ¼ MC � 2MV ð15Þ
Because MC is constant, the maximum MV shall be calculated when the objective
function is minimum.

MV ¼
X3
i¼1

~p⇀i

T
R ~q⇀i

h i
¼

X3
i¼1

Trace ~p⇀i
~q⇀i

T
RT

� �h i
ð16Þ

When S ¼ P3
i¼1

~p⇀i
~q⇀i
T� �

, then

MV ¼
X3
i¼1

Trace ~p⇀i
~q⇀i
T
RT

� �h i

¼ Trace
X3
i¼1

~p⇀i
~q⇀i

T� �
RT

" #
¼ Trace SRT

� � ð17Þ

The Singular Value Decomposition (SVP) for S shall be S =UWVT, whereU andVare
orthogonal matrices, and W = diag(w1, w2, w3), wi≥ 0, then

Trace SRT� � ¼ Trace UWVTRT� �
¼ Trace UWVTRTUUT

� � ¼ Trace WVTRTU
� � ð18Þ

Meanwhile, let Z =VT RT U, and the matrix Z is also the orthogonal matrix as U, V
and R are orthogonal matrices, then

Trace SRT� � ¼ Trace WVTRTU
� � ¼ Trace WZð Þ � Trace Wð Þ ð19Þ
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Only when Z =VT RT U= I, can Trace(SRT) achieve the maximum value, i.e. MV
achieves the maximum value, and the objective function T t⇀ ,Rð Þ has the minimum
value. Then the calculation formula of the rotation matrix R is:

R ¼ UVT ð20Þ
4.3. Measurement method of triangle similarity. The normalisation mapping of

the triangle can be implemented in accordance with its stretching feature in order to
conduct the similarity measurement of the triangle, and the mapping function for
the normalisation is:

ðx; yÞ ¼ f ða; b; cÞ

x ¼ a
c
, y ¼ b

c
ðAssume c to be the longest between the three sides a, b, c of a triangleÞ

See Figure 8. Define three sides of ΔQ1Q2Q3 as Q1Q2 = aq, Q2Q3 = bq and Q1Q3 = cq
respectively, and three sides for ΔP1P2P3 as P1P2 = ap, P2P3 = bp and P1P3 = cp respect-
ively. So the two triangles are mapped as one point on the plane, and the data range of
this point is [0, 1].
Select the relative errors ɛx, ɛy of the mapping points to get the similarity of two tri-

angles. Define P′(xp, yp) and Q′(xq, yq), then

c ¼ 1� f ðεx, εyÞ ð21Þ
Where

f ðεx, εyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2x þ ε2y

2

s
ð22Þ

While

εx ¼ 2
xp � xq
xp þ xq

, εy ¼ 2
yp � yq
yp þ yq

ð23Þ

Based on calculation of the Euler distance between two points in the mapping space,
the distance can be taken as a similarity measurement parameter for two correspond-
ing triangles as well as a reliable evaluation parameter for matching results of the tri-
angle-matching algorithm.

5. SIMULATION ANALYSIS OF PRECISION FOR INITIAL MATCHING
5.1. Design of simulation platform. To conduct simulation analysis on the initial

matching technical precision of the triangle constraint model, this paper establishes a
simulation platform based on Matlab, mainly including a motion simulation model of
the carrier, a generation model of abnormal gravity database, a calculation model of
strapdown inertial navigation and the algorithm model of gravity map matching
(see Figure 9).

5.1.1. Motion simulation model of carrier. The motion model of the carrier
applies the six-variable fluid mechanical models in Healay and Lienard (1993) and
Li et al. (2007), and the six variables are the average speed and angular velocity in
the front, right and bottom of the self-system respectively, and they are also the
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expression of the self-system relative to the ocean current. They are expressed as:

xðtÞ ¼ ½uðtÞ, vðtÞ,ωðtÞ, pðtÞ, qðtÞ, rðtÞ� ð24Þ

where u(t), v(t), ω (t) are average speed in the front, right and bottom of the self-system
and p(t), q(t), r(t) are angular velocity in the front, right and bottom of the self-system.
This paper mainly transforms the quantities into an expression of the self-system rela-

tive to the ocean current in the ocean current system, and then changes them into the
position and attitude information of the self-system relative to the navigation system.

5.1.2. Generation model of abnormal gravity database. This refers to the range of
global abnormal gravity changes, and determines the simulation data range of abnor-
mal gravity between −80mGal to 80mGal (1mGal≈ 10−5 m/s2). The random numbers
are generated as follows: Firstly, generate a 3 × 3 random number with Matlab, and
enable them to present a normal distribution at [0, 60mGal]; secondly, generate nine
3 × 3 random numbers by the centre of each random number, and enable them to
present a normal distribution at [0, 20mGal]; add them to the centre data, and get a
9 × 9 database; thirdly, generate 81 3 × 3 random numbers by the centre of each 9 ×
9 random number, and enable them to present a normal distribution at [0, 5mGal];
then add them to the centre data and get a 27 × 27 database; finally, generate

Figure 9. Schematic diagram of simulation platform module.

Figure 8. Principle of triangle normalisation mapping.
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several 50 × 50 random numbers by the centre of each 27 × 27 random number and
enable them to present a normal distribution at [0, 5mGal]; then add them to the
centre data, and get a 1350 × 1350 random database, which shall be disposed smoothly
to be the final abnormal gravity database.
Figure 10 shows the simulated abnormal gravity database which corresponds to a

longitude range of 115°− 117·7° and a latitude range of 38°− 40·7°. The resolution
ratio of its longitude and latitude grid is 0·002°/grid.

5.1.3. Realisation of dynamic analogue simulation
5.1.3.1. Simulation of measurement value for gravity meter. The samples are

taken in the abnormal gravity database in accordance with actual traces of the simu-
lated carrier, and the 0·05 mGal white noise is superposed in the sampling data to simu-
late the measurement value of the gravity meter in real time with a sampling period of
150 s.

5.1.3.2. Simulation of dynamic trace for real-time export carrier of INS. The
dynamic trace simulation model of the carrier offers its real position and attitude in-
formation, then generates the output of the inertial device (gyroscope and weight)
based on the position and attitude information. Meanwhile, it overlays the random
drift of accelerometer, random zero offset of the gyroscope and white noise. Finally
the position information with errors is obtained by the inertial navigation calculation
as the actual trace of the carrier, where the carrier’s quality is assumed to be 5454·5 kg,
and its route speed is 40 knots (about 74 km/h). The suitable matching area of the
gravity map is the one covered by the simulated abnormal gravity database. In add-
ition, the accumulated errors (i.e. initial error of INS) for the suitable-matching area
of the gravity map for the INS can be acquired directly by overlaying the constant
value.

5.2. Simulation analysis of initial matching precision
5.2.1. Simulation analysis of initial matching precision for short endurance. Before

access to the gravity suitable matching area, the accumulated longitude and latitude
errors for the INS shall be set as 0·01°, the drift error of the constant value as 0·01°/h,
and the random noise as 0·001°.
Figures 11 (a) and (b) show the local magnification diagram of matching results for

the previous ICCP algorithm and triangle algorithm respectively, and Figures 11 (c)
and (d) show the longitude and latitude matching error diagrams respectively. It is
known from the above figures that the matching precision of the triangle-matching al-
gorithm on the first matching point is higher than that of the ICCP algorithm.
However, the precisions of two algorithms are equivalent, while the matching error
decreases in the matching process.

5.2.2. Simulation analysis of error model for long endurance. Before access to the
gravity suitable matching area, the accumulated longitude and latitude errors for
the INS shall be set as 0·05°, the drift error of the constant value as 0·01°/h, and the
random noise as 0·001°.
Figure 12 shows the matching traces and longitude-latitude matching errors for the

ICCP and triangle algorithms. For the triangle-matching algorithm, the precision of
initial matching at an initial error 0·05° for the long endurance is more obvious than
the matching result that the initial error is 0·01° for the short endurance. The precision
of initial matching corresponding to the triangle-matching algorithm for the long en-
durance is three and four times higher than that of the ICCP algorithm, nearly up to
the overall matching precision.
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Figure 13 shows the comparison of calculating time consumption between the ICCP
algorithm and the triangle algorithm for simulation by Matlab. It is known from the
figure that the main reason why the time-consuming vibration corresponding to
each matching point is larger is that the iterations of the ICCP algorithm are uncertain.
Low or high matching precision for the first time results in different iterations, and

Figure 11. Comparison of matching results for short endurance.

Figure 10. Simulation of local abnormal gravity database. (a) Three-dimensional gravity field (b)
Contour map.
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even time-consuming vibration effects. Moreover, the general time consumption of the
ICCP algorithm increases with sequence points. The reason for this is that the increase
of matching sequence points results in a linear growth of time consumption for the
matrix operation. Compared with the ICCP algorithm, the time consumption of the
triangle-matching algorithm is relatively steady because each matching operation only
needs three sequence points in the matrix operation rather than the iteration operation.

Figure 12. Comparison of matching results for long endurance.

Figure 13. Comparison of time-consumption between triangle and ICCP algorithms. (a) short
endurance (b) long endurance.
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In this way, the time consuming stability of the triangle-matching algorithm is
ensured.
Table 1 provides longitude and latitude error results respectively corresponding to

the short and long endurances, and the calculation method is useful to high precision
GNSS differential results as a benchmark and to calculate the average value of all
matching errors.
From the table, the initial longitude and latitude error of the inertial navigation is

0·01° or 0·05°, and the matching error of the triangle-matching algorithm shall be
maintained within 0·002° (about 220 m). When the initial error of inertial navigation
for the ICCP algorithm is 0·01°, the matching error is close to 0·002°; when it is
0·05°, the matching error exceeds 0·01° (about 1100 m). Generally, the ICCP algorithm

Table 1. Comparison of simulation errors between triangle and ICCP algorithms.

Short endurance error (0·01°) Long endurance error (0·05°)

Matching algorithm longitude (°) latitude (°) longitude (°) latitude (°)

ICCP algorithm 0·0027 0·0023 0·0124 0·0123
Triangle algorithm 0·0017 0·0019 0·0017 0·0019

Table 2. Simulation results in the Bohai Sea local district.

Initial error Algorithm Longitude Latitude processing time

(Lon/deg, Lat/deg) – ε(deg) η ε(deg) η (ms)

(0·05, 0·05)
ICCP 0·0129 23·5% 0·0048 8·7% 1·8596
Triangle 0·0053 9·6% 0·0033 6·0% 0·7056
SITAN – – – – –

(0·01, 0·01)
ICCP 0·0032 21·2% 0·0043 28·7% 1·8047
Triangle 0·0027 18·2% 0·0041 27·5% 0·6627
SITAN 0·0040 27·0% 0·0047 31·6% 0·5129

(0·002, 0·002)
ICCP 0·0025 35·4% 0·0026 37·7% 1·7871
Triangle 0·0027 38·1% 0·0027 38·3% 0·6475
SITAN 0·0013 18·0% 0·0025 36·3% 0·5145

Table 3. Simulation results in the South China Sea local district.

Initial error Algorithm Longitude Latitude processing time

(Lon/deg, Lat/deg) – ε(deg) η ε(deg) η (ms)

(0·05, 0·05)
ICCP 0·0092 16·8% 0·0125 22·7% 1·8122
Triangle 0·0149 27·1% 0·0195 35·5% 0·7295
SITAN – – – – –

(0·01, 0·01) ICCP 0·0023 15·2% 0·0060 39·8% 1·7598
Triangle 0·0031 20·6% 0·0052 34·6% 0·7334
SITAN 0·0037 24·6% 0·0070 46·8% 0·5170

(0·002, 0·002)
ICCP 0·0022 30·9% 0·0061 87·2% 1·8545
Triangle 0·0009 13·6% 0·0009 13·0% 0·6678
SITAN 0·0025 36·0% 0·0037 53·3% 0·5189
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is more sensitive to the initial error which will directly affect the matching results.
While the matching algorithm of the triangle constraint model is not sensitive to the
initial error and can effectively overcome different initial errors, so the longitude
and latitude error of the inertial navigation can be decreased by 20% below the
random drift.

6. SIMULATION COMPARISON. Three groups of simulations were implemen-
ted in the Bohai Sea, South China Sea and Pacific Ocean respectively, in order to
compare the triangle matching algorithm with the prevalent ICCP algorithm. The
simulation conditions are as follows:

(1) The INS initial error (Lon/deg, Lat/deg) ranges from 0·050–0·010 and 0·0020 in
each group.

(2) The drift error of the INS constant value is 0·010/h, and the random noise is
0·0010.

(3) The gravimeter is simulated by sampling the gravity data from the gravity field
maps along the Autonomous Underwater Vehicle (AUV) path and adding the

Table 4. Simulation results in the Pacific Ocean local district.

Initial error Algorithm Longitude Latitude processing time

(Lon/deg, Lat/deg) – ε(deg) η ε(deg) η (ms)

(0·05, 0·05)
ICCP 0·0022 3·9% 0·0096 17·5% 1·7942
Triangle 0·0147 26·7% 0·0277 50·4% 0·6864
SITAN – – – – –

(0·01, 0·01)
ICCP 0·0027 17·8% 0·0055 37·0% 1·6450
Triangle 0·0045 30·2% 0·0068 45·6% 0·6847
SITAN 0·0050 33·3% 0·0076 50·9% 0·5120

(0·002, 0·002)
ICCP 0·0029 41·2% 0·0033 46·7% 1·7644
Triangle 0·0019 26·8% 0·0030 42·7% 0·6931
SITAN 0·0020 28·8% 0·0032 46·0% 0·5232

Figure 14. Gravity fieldmap in Bohai Sea local district and the actual path.
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gravity noise regardless of the influence from waves and current. The gravity
noise, which mainly reflects the precision of the simulated gravimeter occurs
in the normal distribution at a variance of 0·01 mGal, and the time for sampling
is 150 seconds.

(4) The grid resolution of the original gravity field maps, which are provided by the
Scripps Institution of Oceanography, is just 0·0160 per grid. The original gravity
field maps are defined to 0·0020/grid by the Kriging algorithm.

(5) Motion simulation model of carrier makes the trace of the carrier.
(6) The speed of the AUV is 60 km/h, the time for sampling is 150 seconds, and all

the simulations will be implemented for 3600 seconds.

In Tables 1 and 2, the remainder error ε(deg) = |e1–e2| represents the difference between
the added position error e1 and the matching result e2 in degrees, and η= ε/e1 is the
percentage of the remainder error ε (°) related to the added position error. It is important
to note that the results given in the tables are all mean values, as are the yaw error (°),
reliability (%), and processing time (ms) respectively for each point.

Figure 15. Gravity field map in South China Sea local district and the actual path.

Figure 16. Gravity field map in Pacific Ocean local district and the actual path.
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From the simulation results in Tables 2 to 4 and Figures 14 to 16, the SITAN algo-
rithm cannot provide matching results when the initial error is larger (the initial longi-
tude and latitude errors in this paper are all set as 0·05°); when the initial error
gradually decreases from 0·01° to 0·002°, the residual error of the SITAN algorithm
ε (°) gradually decreases, and the corresponding relative residual error η can remain
an acceptable result.
From the comparison and analysis results of ICCP, SITAN and triangle matching

algorithms in Tables 2 to 4, the matching precision of the triangle matching algorithm
is equivalent to that of the ICCP algorithm under the larger initial error for inertial
navigation, but the triangle matching algorithm has better real-time level; when the
initial error of the inertial navigation is smaller, both triangle matching and SITAN
algorithms have equivalent real-time level.

7. CONCLUSIONS. In the case of large initial errors, the matching algorithm
based on the triangle gives the results of the initial matching accuracy quickly and ef-
fectively. In the whole matching process, the errors introduced by non-rigid transform-
ation are considered in the triangle-matching algorithm, which is of great flexibility
and high precision. In addition, the single matching is stable in a triangle-matching al-
gorithm with a small amount of computation.
The triangle-matching algorithm can be applied independently in conjunction with

an ICCP algorithm or the SITAN algorithm. When the carrier enters into the suitable-
matching area, accurate initial matching algorithm parameters are obtained for the
ICCP and SITAN algorithms.
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