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Abstract

We introduce an index for symmetry-protected topological (SPT) phases of infinite fermionic chains with an on-site
symmetry given by a finite group G. This index takes values in Zp x H' (G, Z,) x H2(G, U( 1)p) with a generalised
Wall group law under stacking. We show that this index is an invariant of the classification of SPT phases. When
the ground state is translation invariant and has reduced density matrices with uniformly bounded rank on finite
intervals, we derive a fermionic matrix product representative of this state with on-site symmetry.

1. Introduction

The notion of symmetry-protected topological (SPT) phases was introduced by Gu and Wen [16]. We
consider the set of all Hamiltonians with a prescribed symmetry and that have a unique gapped ground
state in the bulk. Two Hamiltonians in this set are equivalent if there is a smooth path within the set
connecting them. We may classify the Hamiltonians in this family by this equivalence relation. The
equivalence class of a Hamiltonian with only on-site interactions is regarded as a trivial phase. If a
phase is nontrivial, it is called an SPT phase (see also Remark 1.2).

A basic question is how to show that a given Hamiltonian belongs to an SPT phase. A mathematically
natural approach for this problem is to define an invariant of the classification. This approach has been
studied in the physics literature using matrix product states (MPS) [35, 36, 16, 12, 37]. MPS is a powerful
framework introduced in [13], after the discovery of the famous Affleck-Kennedy-Lieb-Tasaki (AKLT)
model [1]. Hastings showed that MPS approximates unique gapped ground states of quantum spin chains
well [17]. However, we cannot comprehensively study invariants of the path-connected components of
the space of unique gapped ground states via MPS only. Firstly, MPS are translationally invariant
systems and we would like to define an invariant that does not require this assumption. Furthermore,
an approximation of a gapped ground state by MPS may not be compatible with the path-connected
components and so is insufficient to define an index in general. If the index is not defined for all unique
gapped ground states, there is no way to discuss whether it is actually an invariant or not.

In [29, 30, 31], an index for SPT phases with on-site finite group symmetry and global reflection
symmetry was defined for infinite quantum spin chains in a fully general setting. In these papers, it
was proven that the index is actually an invariant of the classification of SPT phases. An important
observation for stability of the index is the factorisation property of the automorphic equivalence. The
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key ingredient for the definition of the index is the split property of unique gapped ground states,
proven by Matsui [23]. The index introduced in [29, 30] generalises the indices introduced for MPS
in [35, 36, 16, 12, 37], where an MPS emerges naturally from a translation-invariant split state whose
reduced density matrix has uniformly bounded rank on finite intervals [7, 23].

In this article, we are interested in the analogous problem for fermionic chains with on-site finite group
symmetries. Fermionic SPT phases for finite systems in one dimension have already been extensively
studied in the physics literature [14, 15, 11, 19, 20, 39]. In contrast to quantum spin chains, for parity-
symmetric gapped ground states without additional symmetries, there are two distinct phases. A Z,-
index to distinguish these phases in infinite systems was introduced in [4] and independently in [24].
It was outlined in [4] that this Z,-index is an invariant of the classification of unique parity-invariant
gapped ground state phases using techniques from [29] and [28]. The aim of this article is to extend the
analysis of fermionic gapped ground states to the case with an on-site symmetry; namely, a classification
of one-dimensional fermionic SPT phases.

1.1. Setting and outline

We assume that the reader has some familiarity with the basics of operator algebras and their application
to quantum statistical mechanical systems; see [8, 9]. Throughout this article, we fix d € N. Let
h := 1*(Z) ® C? and A be the CAR-algebra over b; that is, the universal C*-algebra generated by the
identity and {a(f)} s ey such that f + a(f) is anti-linear and

{a(fi),a(f2)} =0, {a(f1),a(f2)"} = (f1. f2). (1.1)

For each subset X of Z, we set hy := lz(X) ® C4 and denote by Ax the CAR-algebra over hx. We
naturally regard Ax as a subalgebra of A. We also use the notation Ag := Az, and A := Az_,. We
denote the set of all finite subsets in Z by Sz and set Ajoc := Uxeg, Ax. Given a Hilbert space &, the
fermionic Fock space of anti-symmetric tensors is denoted by F(&). For a unitary/anti-unitary operator
U on C%, we denote the second quantisation of U on the Fock space F(C¢) by I'(U).

By the universality of the CAR-algebra, for any unitary/anti-unitary w on b, we may define a
linear/anti-linear automorphism f,, on A such that B, (a(f)) = a(wf), f € b. In particular, for
w = —I, we obtain the parity operator ® := B_;. For each X € Sz, Ax is O-invariant. We denote the
restriction ®| 4, by ®x. For o = 0, 1, the set of elements A in A with ®(A) = (—1)7 A is denoted by
A Elements in A are said to be even and elements in A" are said to be odd.

In this article, we consider an on-site symmetry given by a finite group G. We let M4 denote the algebra
of d X d matrices with complex entries and consider a projective unitary/anti-unitary representation of
G on C¥ relative to a group homomorphism p : G — Z,.! That is, there is a projective representation
U of G on C? such that U, is unitary if p(g) = 0 and anti-unitary if p(g) = 1. Because U is projective,
there is a 2-cocycle v : G X G — U(1) such that U Uy, = v(g, h)Ugp, and for all f,g,h € G

v u(rgh)

v(f.gv(fg.h)

v(e,g) =1=uv(g,e), (1.2)

where 77V = 7 if p(f) = 0 and PV =z if p(f) = 1. For a fixed homomorphism p, equivalence
classes of such 2-cocycles give rise to the cohomology group H*(G,U (1)p).

For a fixed projective unitary/anti-unitary representation U of G on C¢ relative to p : G — Z,, we
can extend this representation to an on-site representation 5, U on [ 2(Z) ®C?. We therefore can define
the linear/anti-linear automorphism a on A, where

g = ﬁ(@zug)’ geaq. (1.3)

IThroughout this article we use the presentation of Z; as the additive group {0, 1}.
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If p(g) = 0, then a, is an automorphism on A and if p(g) = 1, then a, is an anti-linear automorphism
on A. Note that « satisfies

g 00O =0o0q, ag(Ax)=Ax, ge€G, XeGg. (1.4)

For each g € G and a state ¢ on A, we define a state ¢, by ¢, (A) = poag(A), A € Aif p(g) =0, and
by ¢g(A) = poag(A), A e Aif p(g) = 1. We say that ¢ is a-invariant if ¢, = ¢ forany g € G.

In the latter half of the article we also consider space translations Ss_, x € Z. Here the unitary Sy is
given by S, = s, ® Ica with s, the shift by x on [?(Z).

Throughout this article, for a state ¢ on Ax (with X a subset ofAZ), (f]-f‘p, T, Q¢) denotes a Gelfand-
Naimark-Segal (GNS) triple of ¢. When ¢ is ®x-invariant, then I', denotes the self-adjoint unitary on
H,, defined by ['y7,(A)Q, = 1, 0 Ox(A)Q,, for A € Ax. If ¢ is a-invariant, then we denote by &,
the extension of &[4, to 7, (Ax)"”.

The mathematical model of a one-dimensional fermionic system is fully specified by the interaction
®. An interaction is a map ® from Sz into A, such that ®(X) € Ay and ®(X) = ®(X)* for X € Gz.
When we have ©@(®(X)) = @(X) for all X € Sz, ® is said to be even. We say that @ is a-invariant
if we have @, (®(X)) = ®(X) for all X € Sz and g € G. An interaction @ is translation invariant if
P(X +x) = Bs, (P(X)), forall x € Z and X € Sz. Furthermore, an interaction @ is finite range if there
exists an m € N such that ®(X) = 0 for any X with diameter larger than m. We denote by B; the set of
all finite range even interactions @ that satisty

sup [|@ (X)|| < oo. (1.5)
Xeyz

For an interaction @ and a finite set A € Sz, we define the local Hamiltonian on A by

Hpo = Z D(X). (1.6)

XcA

The dynamics given by this local Hamiltonian is denoted by
PN (A) = e ATt e R A€ A (1.7)

If @ belongs to B?, the limit
) . @A
A) =1 (A 1.
7 (A) = lim 7,77 (A) (1.83)

exists foreach A € Aandt € R and defines a strongly continuous one-parameter group of automorphisms
7® on A (see Appendix B). We denote the generator of 7% by 8.
For ® € B?, a state ¢ on A is called a 7®-ground state if the inequality —i ¢(A*6(A)) > 0 holds

for any element A in the domain D(¢) of de. If ¢ is a 7®-ground state with GNS triple (H, 74, Qy),
then there exists a unique positive operator H, ¢ on ¥, such that e’Heo 7, (A)Q, = n, (12 (A))Q,,
forall A € A and ¢t € R. We call this H, ¢ the bulk Hamiltonian associated with ¢. Note that €, is
an eigenvector of H, ¢ with eigenvalue 0. The following definition clarifies what we mean by a model
with a unique gapped ground state.

Definition 1.1. We say that a model with an interaction @ € B; has a unique gapped ground state
if (i) the 7®-ground state, which we denote as ¢, is unique and (ii) there exists a ¥ > 0 such that
o(Hyp,0) \ {0} C [y, 0), where o (H, o) is the spectrum of H, o.

Note that the uniqueness of ¢ implies that 0 is a nondegenerate eigenvalue of H, o.

If ¢ is a 7®-ground state of an a-invariant and ®-invariant interaction ® € B¢, then ¢ o ® and g

is also a 7®-ground state for each g € G. In particular, if ¢ is a unique 7®-ground state, it is pure,
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®-invariant and a-invariant. We denote by 9;."’ the set of all @-invariant interactions @ € 'B; with a
unique gapped ground state.

Now the classification problem of SPT phases is the classification of 9;"’ with respect to the following
equivalence relation: ®g, @ € 9;’” are equivalent if there is a smooth path in 9;’“ connecting them.
(See Section 3 for a more precise definition.)

We now outline the main results of the article. In Section 2, we introduce an index for ©-
invariant and a-invariant gapped ground states in a fully general setting. This index takes value in
Z, x H'(G,Zy) x H?(G,U(1),), which is analogous to the indices introduced in [19] in the context
of spin-topological quantum field theory (spin-TQFT) and [11, 20, 39] for the fermionic MPS setting.
When G is trivial, the index is Z;-valued and recovers the index studied in [4, 24]. The key ingredient
for the definition is again the split property of unique gapped ground states for fermionic systems proven
recently in [24]. In Section 3, we show that our defined index is an invariant of the classification; that
is, it is stable along the smooth path in 9;’“.

Because our index takes values in a group, it suggests that one may compose fermionic SPT phases
to obtain a new phase with index determined from the original systems. In the physics literature,
this is achieved by stacking of systems; see [15, 39], for example. Mathematically this operation
corresponds to a (graded) tensor product of ground states. In Section 4, we show that our index is
indeed closed under this tensor product operation. However, despite the notation, the group operation
on Zy x H'(G,Zy) x H*(G,U(1)y) is not the direct sum but rather a twisted product that follows a
generalised Wall group law; cf. [40]. As an example, we consider the case of an anti-linear Z,-action
(e.g., an on-site time-reversal symmetry) and show that our index takes values in Zg. This recovers the
Zg-classification of time-reversal symmetric one-dimensional fermionic SPT phases noted in [14, 15]
and extends this classification to infinite systems.

In Sections 5 and 6 we consider the unique ground state of a translation invariant ® € 9;"’. For
quantum spin systems, it is known that a representation of Cuntz algebra emerges from translation
invariant pure split states [7, 21]. The generators of this Cuntz algebra representation give an operator
product representation of the state and also implement the space translation. We find an analogous object
for fermionic systems in Section 5. Because odd elements with disjoint support anti-commute in the
CAR-algebra, the operator product representation and space translation is more complicated than the
quantum spin chain setting. The results of Section 5 are then applied to the study of fermionic MPS in
Section 6. When the rank of the reduced density matrices of the infinite volume ground state is uniformly
bounded, we show that the ground state has a presentation as a fermionic MPS with on-site symmetry.
We then show that our index agrees with and therefore extends the indices defined for fermionic MPS
with an on-site symmetry in [7, 20, 39].

Basic properties of graded von Neumann algebras are reviewed in Appendix A. In Appendix B we
adapt the Lieb-Robinson bound to the setting of lattice fermions (see also [10, 27]).

Remark 1.2 (A note on terminology). For the sake of clarity, let us more carefully specify the char-
acterisation of an SPT phase used in this article. Given a G-symmetric unique gapped ground state,
an SPT phase is often defined to be an equivalence class of ground states that can be connected to a
ground state from an on-site interaction but that cannot be connected G-equivariantly. In this article,
we define a Z X H'(G,Z,) x H*(G, U(1),)-valued invariant for any unique gapped ground state of a
one-dimensional fermionic interaction and do not assume that the ground state can be connected to a
ground state from an on-site interaction without symmetry.

2. The index of fermionic SPT phases
2.1. Graded von Neumann algebras and dynamical systems

In order to introduce the index, we first need to introduce type I central balanced graded W*-
(G,p)-dynamical systems. Further details on graded von Neumann algebras can be found in
Appendix A.
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Definition 2.1. A graded von Neumann algebra is a pair (M, #) with M a von Neumann algebra 6
an involutive automorphism on M, 6% = Id. If M ¢ B(J) and there is a self-adjoint unitary I" on 3
such that Adr|y = 6, then we call ()M, 6) a spatially graded von Neumann algebra acting with grading
operator I'. If 4 is the identity automorphism, then we say that (M, ) is trivially graded.

We say that a graded von Neumann algebra (M, ) is of type 4, A € {I, I, IIT}, if M is type A.
Given a graded von Neumann algebra (M, 6), M is a direct sum of two self-adjoint o-weakly closed
linear subspaces as M = MO & MD | where

M@ = {xeM|0(x)=(-1)7x}, xeM, oe{01}. 2.1

An element of M(?) is said to be homogeneous of degree o= or even/odd for o = 0/c- = 1, respectively.
For a homogeneous x € M, its degree is denoted by dx. For graded von Neumann algebras (M, 6;),
(M3, 6,), ahomomorphism ¢ : M; — M, is a graded homomorphism if¢(M§U)) c J\/[g‘ﬂ forc=0,1.

Definition 2.2. Let (M, 6) be a graded von Neumann algebra. We say that (M, 0) is balanced if M
contains an odd self-adjoint unitary. If Z(M) N M(® = CI for the center Z (M) of M, we say that (M, 6)
is central.

We now consider dynamics on graded von Neumann algebras via a linear/anti-linear group action.

Definition 2.3. Let G be a finite group and p : G — Z; be a group homomorphism. A graded W*-
(G, p)-dynamical system (M, 6, &) is a graded von Neumann algebra ()M, 6) with an action & of G on
M such that @, is a linear automorphism if p(g) = 0 and &, is an anti-linear automorphism if p(g) =1,
satisfying &g 0 6 = 6 o &,.

We consider some key examples that will play an important role in defining our index. We fix a
group homomorphism p : G — Z; and consider projective unitary/anti-unitary representations V of G
relative to p (see Subsection 1.1 for the definition).

Example 2.4 (R 5, Adr,, Advg ). Let K be a Hilbert space and set I'c := Iy ® 0, a self-adjoint unitary
on X®C2.2 We set Ro 5 := B(K)®M; and so (Ro,5, Adr,. ) is a spatially graded von Neumann algebra
acting on K ® C? with grading operator I'sc. Let V be a projective unitary/anti-unitary representation
of G on K ® C? relative to p. We also assume that there is a homomorphism q : G — Z; such that
Ady, (') = (=1)%®)gc. We then obtain a graded W*-(G, p)-dynamical system (Ro,%, Adr,., Ady,).

We denote the set of all W*-(G, p)-dynamical systems of the form in Example 2.4 by 8¢.

Example 2.5 (R; «, AdrK,Advg). Let K be a Hilbert space and set 'y := Iy ® o,. Let @ be the
subalgebra of M, generated by o and set R; % := B(K) ® €.° Then (R x,Adr,.) is a spatially
graded von Neumann algebra acting on K ® C? with grading operator I'y. Let V be a projective
unitary/anti-unitary representation of G relative to p such that Ady, (Ix ® o) = (-1)9&) (Ix ® o)
and Ady, (I'x) = (=1)9@® Ty for q : G — Z» a group homomorphism. These assumptions imply that
Ady, (R1x) = Ri,x and so (Ry,x, Adr,., Ady,) is a graded W*-(G, p)-dynamical system.

We denote the set of all W*-(G, p)-dynamical systems of the form of Example 2.5 by 8. Given a
W*-(G, p)-dynamical systems in 81, we can construct a projective representation of G on X from the
projective representation on X ® C2.

We first establish some notation. Let C be the complex conjugation on C2 with respect to the standard
basis. Given two group homomorphisms q;, g2 € Hom(G,Z;) = H'(G,Z,), we can define a group

2In this article we use the following notation of Pauli matrices:
(01 [0 i (1o
ox =1 9] oy =\ ol oz =y _1]-
3We may regard ¢ as Clifford algebra CI; generated by e := 0.
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2-cocycle,
ear,a)(g.h) = (~DIE2W, g heG. (2.2)

Remark 2.6. Note that [e(q1,q2)] = [€(a2,q1)] € H*(G,U(1)y,)-

Lemma 2.7. For (R x, Adr,., Ady,) € 81, there is a unique projective unitary/anti-unitary represen-
tation VO of G on X relative to p such that Vg = Vg(o) ® CP®) U;‘(g). If [0] and [v] are the second
cohomology classes associated to V and V') respectively, then [0] = [v e(q,p)] € H*(G, U(1)p).
Proof. Because Ady, oAdr,. = Adr,. o Ady,, we have Ady, (B(X) ®Cl2) = B(K) ®Cl2. Therefore,
Ady, induces a linear/anti-linear +-automorphism on B(X). Applying Wigner’s theorem, there is a
unitary/anti-unitary \7&50) on X such that

Ady, (x ®1z2) = Ady 0 (¥) ® le,  x € B(K). 2.3)
8

Itis clear that V) gives a unitary/anti-unitary projective representation relative to p. Note that Ve (Vg(o) ®
C”(g)cr;'(g)) is a unitary that commutes with B(X) ® Cl, Ix ® oy, Ik ® 0 and therefore commutes
with B(X) ® M». Therefore, there is a c¢(g) € T such that V, = c(g) (Vg(o) ® C"(g)oﬂ(g)). Setting

Véo) = c(g)V(O), we obtain V, = Vg<0) ® CP©) a';(g) . Clearly, V(© satisfies the required conditions.
Because O';(g) CcP) = (—1)a@p(h) C”(h)O';(g), we obtain the last statement. O

We introduce the following equivalence relation on graded W*-(G, p)-dynamical systems.

Definition 2.8. Let G be a finite group and p : G — Z; be a group homomorphism. We say
that two graded W*-(G, p)-dynamical systems (M, 61, @), (Ma, 0, 8?) are equivalent and write
(M1, 01,8 ~ (Ma, 0, a?) if there is a x-isomorphism ¢ : M; — M, such that

Lo aél) = &;2) o, geG 2.4
tofy =601 2.5)

Clearly, this is an equivalence relation.
Using equivalence of W*-(G, p)-dynamical systems, we can reduce all type I balanced central graded
W*-(G, p)-dynamical systems to the case of either Example 2.4 or 2.5.

Proposition 2.9. Let (M, 0, &) be a graded W*-(G, p)-dynamical systems with (M, 0) balanced, cen-
tral and type I. Then there is a k € Zy and (R, 5, Adr,.,Ady,) € Sy such that (M,0,d&) ~
(R, 5> Adry., Ady,).

Proof. Because (M, 6) is central, by Lemma A.2 either M is a factor or Z(M) has an odd self-adjoint
unitary b € Z(M) N MY such that

ZV) n MDY = Cb. (2.6)

We set k = 0 for the former case, and « = 1 for the latter case.
(Case: k = 0) Suppose M is a type I factor. Because (M, ) is balanced, there is an odd self-adjoint
unitary U € MV,

We claim that M(® is not a factor. If M9 is a factor, by Lemma A.l it is of type I. Note then
that Ady |y is an automorphism on the type I factor M(?). By Wigner’s theorem, there is a unitary
u € MO such that Ady (x) = Ad, (x), x € M. Therefore, u*U € (M(O))’. At the same time, u*U
commutes with U because Ady (u*) = Ad,, (u*) = u* for u € M©. Hence, u*U € M’ N M = CI. This
is a contradiction because u*U is nonzero and odd. Hence, we conclude that M© ig not a factor.
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Therefore, there is a projection z in Z(M(?) that is not 0 nor I. For such a projection, we have
z+Ady(z) e MNn (M(O))' N {U} = Z(M) = CI, which then implies that z + Ady (z) = I. (We note
that for orthogonal projections p, g satisfying p + g = I with ¢ € R, either p + g =1 or p = 0, I holds,
by considering the spectrum of p = I — g.)

We claim Z(M(®) = Cz + CI. Now, for any projection s in Z(M(?), zs is a projection in Z(M®).
Therefore, either zs = 0 or zs+Ady (zs) = L. The latter is possible only if zs = z because z+Ady (z) = 1.
Similarly, we have (I—z)s = 0 or (I—-z)s = I—z. Hence, we have Z(M () = Cz+CI, proving the claim.

Combining this with Ady (z) = I -z, M@ is a direct sum of two same-type factors M? z and
MO (I - z). Applying Lemma A. 1, we see that M©) is of type I, and M© z and M (I — z) are type I
factors.

SetT" := z— (I-z). Note that Adr and 6 are the identity on M (?. We also have Ady (I') = (I-z)—z =
—I"; hence Adr(U) = —-U = 6(U). Therefore, we get

0(x) = Adr(x), xeM. 2.7)
Next we claim that there is a Hilbert space X and a *-isomorphism ¢ : M — B(XK) ® M such that
tof=Adr, o, and ((I')=Ix®o; =Tx. 2.8)

Because M is a type I factor, there is a Hilbert space K and a *-isomorphism  : M — B(X). Let /(") =
Qo— 01 be the spectral decomposition of a self-adjoint unitary 7(I"), with orthogonal projections Qg, Q1,
corresponding to eigenvalues 1, —1. Because we have Ad;(r) oi(x) = o Adr(x) = {0 6(x) forx € M by
(2.7), we have (M) = B(QoK) ® B(Q1K). Because Adr(U) = ~U, we have Ad; (/) ({(I)) = —i(I).
From the spectral decomposition, we then have Ad; ) (Qo) = Q1 and Ady ) (Q1) = Qo. We therefore
see that v := Qoi(U)Q; is a unitary from QIJAC onto QOIJAC. We set K := QOIJAC and define a unitary
W:K — K ®C?by

w (?1)) =b®etvéi®e, & ek, &eoik. 29)

Here {eg, e1} is the standard basis of C2. Note that Adw of(I") = I ® o, = I'c. Then ¢ := Ady of :
M — B(K) ® M3 is a =-isomorphism satisfying (2.8), proving the claim.

Next we consider the action of G. Because Z(M(?) = Cz+C(I-z),T = z—(I-z) and -T" = —z+([-2)
are the only self-adjoint unitaries in Z(M) \ CL Because &g preserves MO, @, (I') is a self-adjoint
unitary in Z(M @) \ CI and so a,(I) = (=19 for q(g) =0orq(g) = 1.Clearly, q : G — Zs isa
group homomorphism.

Because Lo &g 0 ! is a linear/anti-linear automorphism on B(X) ® M», by Wigner’s theorem there
is a projective representation V satisfying

Ady,(x) =todgo ' (x), xeB(K)®M2 g€G, (2.10)
and where Vj is unitary/anti-unitary depending on p(g). Because a4 (I") = (=1)9@®)T, we have
Ady, (Tx) = (-1)"®Ty, geg. (2.11)

Hence, we obtain (Ro,x,Adr,.,Ady,) € So. By (2.8) and (2.10), we also have (M,0,&) ~
(RO,K5 Adl"x £ AdVg)'

(Case: x = 1) Suppose that M has a self-adjoint unitary b € Z(M) N MV satisfying (2.6). Set
P. = 1%, where P. are orthogonal projections in Z(M) such that P, + P_ = I. By (2.6), Z(M) =
Cb +CI = CP, + CP_. Because M is type I, M is a direct sum of the type I factors M P, and MP_.
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We claim that M) is a type I factor. For any x € Z (M(?), we have x € M n (M©)" n {p}’ =
MO AM = Z(M) n MO = CI, because b is a self-adjoint unitary in Z(M) N MV, Hence,
Z(M©) = CI and by Lemma A.1, M© is a type I factor.

Next we claim that there is a Hilbert space K and a #-isomorphism ¢ : M — B(X) ® ¢ such that

tof=Adr, o, u(b)=Ix ® o0y, (2.12)

for Ty =I5 ® 0. (Recall Example 2.5 for €.) Because M?) is a type I factor, there is a Hilbert space
X and a #-isomorphism 9 : M© — B(XK). As M = M@ ¢ M©p, we may define a linear map
t: M- B(K)® ¢ by

Wx+yb) = 10(x) ®L+1(y) ® 0, x,y € MO, (2.13)

It can be easily checked that ¢ is a *-isomorphism satisfying (2.12).

Now we consider the group action. Because Z(M) N M) = Ch, b and —b are the only self-adjoint
unitaries in Z(M) M. Because @, commutes with the grading automorphism, &, (b) is a self-adjoint
unitary in Z(M) N M. Therefore, Qg (b) = (=1)%®p with q : G — Z, a group homomorphism.

Because @ (M) = M@ and (M) = B(KX) ® CI by (2.12), t 0 & o ¢~! induces a linear/anti-

linear automorphism on B(XK) that is implemented by a unitary/anti-unitary Véo) on X by Wigner’s
theorem. That is,

todgor(a®lx)=Ad,o0(a)®lz, acB(K), geG, (2.14)
8

with V(© a projective unitary/anti-unitary representation of G on X relative to p. Set V, := Vg(o) ®

C”(g)cr;(g), with the complex conjugation C on C? with respect to the standard basis. Clearly, V is also
a projective unitary/anti-unitary representation of G on X ® C? relative to p. We then have

Ady, (a®Iz) =todgor  (a®lw), acB(K), (2.15)
Ady, (Ix ® 0y) = (-1)"& (I ® ) = 10 Gy (b) =10 Gg 0t (Ixx ® 0). (2.16)

Combining these identities, we obtain

Ady, ou(x) =10 dg(x), xeM. (2.17)

We also have
Ady, (Tx) = (-1)"®) . (2.18)
Hence, we obtain (R 5, Adr,, Advg) € 81 such that (M, 6, &) ~ (R %, Adr,, Advg). O

Definition 2.10. Let (M, 6, &) be a graded W*-(G, p)-dynamical system with (M, ) balanced, central
and type 1. By Proposition 2.9, there is a « € Z, and (R, «, AdrK,Advg) € 8, such that (M, 9, &) ~
(Re, 5, Adry., Ady,). Let q : G — Z; be a group homomorphism such that Ady, (I'x) = (—=1)9®' Tk

and [v] the second cohomology class associated to the projective representation V,, if k = 0 and VEEO)
(from Lemma 2.7) if k = 1. We define an index of (M, 6, &) by

Ind(M, 6, &) := (x,q, [v]) € Zy x H'(G,Z,) x H*(G,U(1)y). (2.19)

Lemma 2.11. The quantity Ind(M, 0, &) is well defined and independent of the choice of
(:R,(’j{, Adrj{, Advg) € SK such that (M, 0, (i’) ~ (fRK’j{, Adrx, Advg).
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Proof. Suppose that both (R, %, Adry Advg(l)) € S and (R, 5¢,, Adry, » Advg(z)) € 8, are equiv-

alent to (M, 6, &), via *-isomorphisms ¢; : M — R, x,,i = 1,2, respectively. Then i, oql f R ;e —
Ry, 5%, is a #-isomorphism such that for all g € G,
-1 -1 -1 -1
1pot] o Advgm = Advgm oppotL, 1poty o Adrx1 = Adrj<2 oot . (2.20)
Let (x;,qi, [v;]) be indices obtained from (Rki’j{i,Adr‘K_,AdV(i)), for i = 1,2. Because of the x-
t g

isomorphism ¢, o (7!, we clearly have k| = k. If k; = k» = 0, then both of ;' (Ix, ® o), i =

1,2, are self-adjoint unitaries in Z(M(®) \ CL From the proof of Proposition 2.9, this means that
1o L]‘l(]Igc, ® o) = =(Ix, ® ;). Hence, we get

(—l)ql(g)Lg o LII(H:KI ®0;)=1po LII o Advg(]) (Ix, ® 0%)
= Ady ) o1 0 g (I, ® )
==+ Advgm (Ix, ® 0%)
=£(-)*¥ (Ix, ® o)
= (=12 07N Iy, ® o). (2.21)

We therefore obtain that q;(g) = q2(g). When k1 = k, = 1, an analogous argument for Ll-_l (Ix, ® ox) €
ZOV) N MWD i =1,2 implies q;(g) = q2(g).

If k1 = kp = 0, the *-isomorphism ¢, o LII  B(Ky) @ M2 — B(K,) ® My is implemented by a
unitary W : X; ® C> — K, ® C2. Hence, we see from (2.20) that Ady, )4y () = Ady o (x) for all
x € B(X;) ® Mz. This means that [v;] = [vz]. If k; = kp = 1, the restrﬁction of the >x<—igsomorphism
Lo LII onto B(XK;) induces a *-isomorphism from B(X;) to B(XK,). Therefore, there is a unitary
W : X; — X, such that ¢; o L]_l(x Q1) = Adw (x) ® I, for all x € B(K;). Therefore, from (2.20) we

have AdW(ng)(O)W*(x) = Ad(vg‘z))«)) (x) for all x € B(XK;). This means that [v;] = [v2]. |

Proposition 2.9, Lemma 2.11 and the fact that equivalence of W*-(G, p)-dynamical systems is an
equivalence relation gives us the following.

Proposition 2.12. Let (M4, 61, &), (Ma, 02, &2) be graded W*-(G, p)-dynamical systems of balanced,
central and type I graded von Neumann algebras. If (M4, 01, &1) ~ (My, 02, &), then Ind(My, 61, &) =
Ind(Mp, 02, @3).

2.2. The index for pure split states

We now define an index to fermionic SPT phases. For each ®-invariant and @-invariant state A,
(mp(AR)", Adfq:’ &,) is a graded W*-(G, p)-dynamical system.

We first review the split property and recent results of Matsui [24] that relate the split property to
unique gapped ground states of the CAR-algebra. Given a state ¢ on A, ¢| 4, denotes the restriction of
¢toAg and 7y,  is the GNS representation of Ag from this restricted state.

Definition 2.13. Let ¢ be a pure ®-invariant state on A. We say that ¢ satisfies the split property if
Tolag (AR)” is a type I von Neumann algebra.

If ¢ is a pure ®-invariant state satisfying the split property, then there is an approximate statistical
independence between the half-infinite restrictions ¢| 4, and ¢|4, . It is shown in [23] that pure states
whose entanglement entropy is uniformly bounded on finite regions satisfy the split property. Hence, the
split property of pure states is closely related to the area law of entanglement entropy in one-dimensional
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systems. See [34, 33] for further applications of the split property to Lieb-Schulz-Mattis-type theorems
in the setting of quantum spin chains.

Recall the notation B¢, which denotes the set of all finite-range even interactions that satisfy the
bound (1.5). Similarly, 9;’” denotes the set of all @-invariant interactions ® € B;i. , with a unique gapped
ground state.

Theorem 2.14 ([24]). Let ¢ be a unique gapped t®-ground state of an interaction ® € B?. Then ¢
satisfies the split property.
To apply Matsui’s result to graded W*-(G, p)-dynamical systems, we must first relate the split ground

state of an interaction ® € G%“ to balanced and central graded type I von Neumann algebras. To show
this, we first note the following.

Lemma 2.15. Let ¢ be a ®-invariant pure state on A. Then

@) Z(ﬂ'(p(.AR)") N (7T<p(AR)”)(O) =CL
(ii) The representations m and (7 y)| A, the restriction of m, to AR, are quasi-equivalent.
elag ©) AR @

Proof. (i) We have that
Z(1,(AR)") N (1, (AR)") Y C mu(AL) N7y (AR) = my(A) =CL (2.22)

where the last equality is because ¢ is pure.

(i) Let Ty, be a self-adjoint unitary on 3, given by [',7,(A)Q, = 1, 0 O(A)Q,, A € A. Let p
denote the the orthogonal projection onto 7, (Ag)Q,. Then (pHy, 7, (+)|ag P> Qyp) is a GNS triple of
@lag- To show (ii), it suffices to show that 7 : 1, (AR)” — (m,(Ag)p)” defined by 7(x) = xp isa
x-isomorphism. It is standard to see that 7 is a surjective *-homomorphism. To see that 7 is injective,
note that from (i) and Lemma A .2, either 7, (Ag)" is factor or Z(n,(Ag)"’) = CI+Cb with some self-
adjoint unitary b € Z(n,(Ag)”) N (7, (Ag)”")V. For the former case, 7 is clearly injective. For the
latter case, let b = P, — P_ be the spectral decomposition. Because b is odd, we have Adfw (Py) = Ps.

If 7 is not injective, the kernel of 7 is either 7, (Ag)"” Py or m,(Ag)”P_. If T(P,) = 0, then we have
P,Q,=0. We then have

P.Q, =I,P,[,Q, = [,P,Q, = 0. (2.23)

Hence, we obtain Q, = (P, + P_)Q, = 0, which is a contradiction. Similarly, we have 7(P_) # 0.
Therefore, 7 is injective. O

Lemma 2.16. Let ¢ be a split pure ®-invariant and a-invariant state on A. Then n,(AR)" is balanced
and central with respect to the grading given by I'y, and type 1. The triple (n,(AR)"”, Adm, Q) isa
graded W*-(G, p)-dynamical system.

Proof. Because ¢ is pure and @-invariant, 7, (Ag)"” is central by part (i) of Lemma 2.15. Because ¢

is split, o, (AR)” is type I by definition. Because ()|, is quasi-equivalent to 7y 4, DY part (i)

of Lemma 2.15, n,(Ag)" is also type L. It is also balanced because Ag has an odd self-adjoint unitary.

Because ag 0 © =@ o @, forall g € G, we have (&), 0 Adp = Adp_ o (&y),. o
¢ ¢ &

Remark 2.17. Consider the setting of Lemma 2.16. Let g := ¢|4,. Then (7, (Ar)", AdeR ,Qor)

is also a graded W*-(G, p)-dynamical system of a balanced, central and type I graded von Neumann
algebra with

(T (AR)", Adp, @) ~ (T (AR)", Adp, , dgy)- (2.24)
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From Lemma 2.16, we see that our index of W*-(G, p)-dynamical systems can be applied to split,
pure, ®-invariant and @-invariant states on A. In particular, we may define an index for ® € 9;"’.

Definition 2.18. Let ¢ be a ®-invariant, a-invariant, split and pure state on A with ¢r = ¢|4,. We set
ind ¢ := Ind(7,(Ar)”, Adf“w’ &y) =Ind(my, (AR)”, Adwa L Oog). (2.25)

For interactions @ € 9;"’, we define the index of ® by ind(®) := ind(¢g), with ¢g the unique ground
state of @. ‘

3. The stability of the index

In this section we prove that ind(®) is an invariant of the classification of SPT phases. That is, for a
path of interactions {®(s)}e[o0,1] satisfying Assumption 3.2, we show that ind(®(0)) = ind(P(1)).

For each N € N, we denote [-N, N]|NZby An.LetEyx : A — Ajx, be the conditional expectation
with respect to the trace state; see [2]. We consider the following subset of A.

Definition 3.1. Let f : (0,00) — (0, c0) be a continuous decreasing function with lim,_,., f(¢) = 0.
For each A € A, let

Al = IA]l + sup (3.1

N eN

(IIA —EN(A)II)
f(N)

We denote by D the set of all A € A such that [|A]| < co.
We consider a path in 9;’“ satisfying the following conditions.

Assumption 3.2. Let [0,1] 2 5 > ®(s) € B‘; be a path of interactions on .A. We assume the following:

(i) Foreach X € &z, themap [0, 1] 3 s — ®(X;s) € Ay is continuous and piecewise C'. We denote
by ®(X;s) the corresponding derivatives. The interaction obtained by differentiation is denoted
by &(s) for each s € [0, 1].
(ii) Thereisanumber R € N such that X € Sz and diam(X) > R implies ®(X;s) = Oforalls € [0, 1].
(iii) For each s € [0, 1], ®(s) € 9;"”. We denote the unique 7®(*)-ground state by ;.
(iv) Interactions are bounded as follows:

sup sup (D (X;s)]| +1X]]|@ (X;5)]]) < oo. (3.2)
s€[0,1] Xe&z

(v) Setting

- ®(Z;50)

b(g) := sup  sup (3.3)
ZE@Z S,S()E[O,l],

0<|s—spl<e&

H‘D(Z; 5) — D(Z; s0)

S =50

for each € > 0, we have lim._,o b(&) = 0.
(vi) There exists ay > O such that o (H, a(s)) \ {0} C [y, o) forall s € [0, 1], where o (H, o(s)) is
the spectrum of H,_ o (s)-

(vii) There exists 0 < 8 < 1 satisfying the following: Set £ (7) := ¢~ . Then for each A € Dy, ¢s(A)is
differentiable with respect to s, and there is a constant C; such that

lgs (A)] < Ce Al (34
forany A € D,.

The main result of this section is the following.
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Theorem 3.3. Let [0,1] 3 s — ®(s) € Bj, be a path of interactions on A satisfying Assumption 3.2.
Then ind(®(0)) = ind(P(1)).

The proof relies on the idea introduced in [29]; that is, using the factorisation property of automorphic
equivalence. Namely, we note the following.

Proposition 3.4. Ler [0,1] 3 5 — ®(s) € %? be a path of interactions on A satisfying Assumption
3.2. Let @, be the unique ®%)-ground state for each s € [0, 1]. Then there is an automorphism E on A

and a unitary u € A such that for all g € G,

E(AL) = AL, E(AR) = Ag, HEo®=00E, Eoag=ag40k,

@(I/t) =u, ag(u) =u, $1=%o° Ad, oE.

In Appendix B, we prove the Lieb-Robinson bound and a locality estimate for lattice fermion systems.
Having them, the proof of Proposition 3.4 is the same as that of [25, Theorem 1.3] and [29, Proposition
3.5].

To prove Theorem 3.3, we first prove a preparatory lemma.

Lemma 3.5. Let ¢y, ¢ be pure ®-invariant states on A. If ¢1 and ¢, are quasi-equivalent, then ¢,
and @2 4, are quasi-equivalent.

Proof. Let m;, m; g be GNS representations of ¢; and ¢;| 4, respectively fori = 1,2. By Lemma 2.15,
there are *-isomorphisms 7; : 7;(Ag)” — 7 r(Agr)” for i = 1,2 such that 7; o 7;(A) = 7; r(A)
A € Ag. Because ¢ and ¢, are quasi-equivalent, there is a x-isomorphism 7 : 71(A)” — m(A)”
such that 7 o 11 (A) = mp(A), for A € A. The restriction of 7 to 7| (Ag)”’ gives a *-isomorphism 7 :
w1 (AR)” — mp(Ar)”. Hence, we obtain a *-isomorphism 7 := TQOTROTI_I : 7 R(AR) — ma r(AR)”
such that 7 o 1 g (A) = ma r(A), A € Ag. Therefore, ¢ |4, and 2|4, are quasi-equivalent. O

Now we are ready to prove the theorem.

Proof of Theorem 3.3. Let (J;, m;, Q;) be the GNS triple of the states ¢;|4, fori = 0,1. Let I'; be
a self-adjoint unitary given by I'im; (A)€Q; = m; 0 ©@(A)Q;, A € Ag. Let &; be the extension of «|4,
to 7;(Ag)”’. From Proposition 2.12 and Remark 2.17, it suffices to show that (mo(Ag)"”, Adr,, &) ~
(m1(ARr)"”, Adr,, &@;). Recalling the s-automorphism E from Proposition 3.4, E(Ag) = Ag and so
ER := E|a defines a x-automorphism on Ag. Note that (Hy, mpoEg, o) is a GNS triple of ¢4, 0 Er.
The state ¢ = ¢o o Ad,, oE is quasi-equivalent to ¢ o E. Because 20 ® = © o B, both ¢ o E and ¢; are
©-invariant pure states. Applying Lemma 3.5, ¢ |4, and @90 E| 4, = ¢ola, © Er are quasi-equivalent.
Hence, there is a *-isomorphism

7m0 ER(AR)” = mo(AR)"” — mi(AR)”, tompoEr(A) =mi(A), AE€AR. (3.5
Using properties of the quasi-equivalence T and automorphism Eg, we see that

TodpgomoER(A)=TompoagoER(A) =TomyoEgoag(A)

=moag(A)=0a1g0m(A)=a 4070moER(A), (3.6)
T o Adr, om0 Eg(A) =Ttomyo®ocEg(A) =TomyoEg 0 O(A)
= 0 ®(A) = Adr, om(A) = Adr, ot o mp 0 Eg(A) 3.7
for all A € Ag. Hence, we obtain
Todgg(x) =d1g07(x), ToAdr(x)=Adr or(x), xem(Ar)”. (3.8)
This completes the proof. O
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4. Stacking and group law of fermionic SPT phases
4.1. The graded tensor product

Let (M, Adr,) and (M5, Adr,) be spatially graded von Neumann algebras acting on on H;, H, with
grading operators 'y, I';. We define a product and involution on the algebraic tensor product M; © M, by

(a1 ®b1)(ar & by) = (=1)%P19 (a1a, & b1 by),

(Cl ®b)* — (_l)aaaba* & b* 4.1
for homogeneous elementary tensors. The algebraic tensor product with this multiplication and involu-
tion is a =-algebra, denoted M; & M. On the Hilbert space H; ® Ho,

m(a®b):=al?* ®b 4.2)

for homogeneous a € My, b € M, defines a faithful *-representation of M; & M,. We call the von Neu-
mann algebra generated by 7(M; ® M,) the graded tensor product of (M, H;, 1) and (M, H, )
and denote it by M; & M. It is simple to check that M; & M, is a spatially graded von Neumann algebra
with a grading operator I'1 ® I'.

For a € M; and homogeneous b € M,, we denote n(a ® b) by a ® b, embedding M; &M, in
M; & Mj. Note that d(a & b) = d(a) + d(b) for homogeneous a € M; and b € M.

Fix a finite group G and a homomorphism p : G — Z,. Let (M, Adr,, @;) and (M, Adr,, a;) be
graded W*-(G, p)-dynamical systems, where (M, Adr, ) and (M, Adr,) are spatially graded, balanced,
central and type I. We may define an action a1 ® a> of G on M; & M, by

(a1 ®a2)g (a®b)=a14(a)®arg(b), g€G 4.3)

for all homogeneous a € M and b € My; see Lemma A.8.

4.2. Stacking and the group law

In this section, we show that W*-(G, p)-dynamical systems of balanced, central, type I and spatially
graded von Neumann algebras are closed under graded tensor products. Furthermore, our index from
Definition 2.10 obeys a twisted group law (a generalised Wall group law) under this operation.

Theorem 4.1. Let (M, Adr,,@1), (Ma, Adr,,@2) be graded W*-(G,p)-dynamical systems with

balanced, central and spatially graded type 1 von Neumann algebras. Then the triple

(M ® My, Adr,er,, @1 ® az) is a graded W*-(G, p)-dynamical system with a balanced, central and

spatially graded type I von Neumann algebra. If Ind(M;, Adr,, a;) = («;,qi, [v;]), i = 1,2, then
Ind(M; & Mo, Adr, gr,, @1 ® @)

= (k1 + k2, Q1 + Q2 + k162D, [V V2 € (K1, 01, K2, 02)]), (4.4)
where €,(k1,q1, k2, 02) is a group 2-cocycle defined by
Ep(Kl, q1, k2, q2) (g, h) = (=)™ (g)a2 (h)+(k1—K2) (k102(8) +K2q1 (g))-v(h), 8. heG. (4.5)

Remarks 4.2.

(i) One can check that (4.4) gives an abelian group law, which is not surprising because of the
corresponding properties of the graded tensor product.

(ii) The group law (4.4) is a little cumbersome in full generality but simplifies in many examples of
interest. For example, if @; and a; are linear group actions, p(g) = 0 for all g € G, we recover the
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more familiar twisted sum formula
(k1, a1, [v1]) - (k2, G2, [v2]) = (k1 + K2, 1 + G2, [v1v2€(q1,02)]). (4.6)
Proof. By Lemma A.5 and Lemma 2.12, we may assume that
(M, Adr;, @i) = (R, 5,5 Adry,, Ady,) € S 4.7
Let
Ind (:RK,«,Jci,Adrxi,Adv,- ) = (ki ai, [vi]), i=1,2. 4.8)
We would like to show that
(Jzkl,gcl ® Ry, Adry, & Adry  Ady, & Advz) ~ (Rese, Adry  Ady) €8, (49)
for suitably chosen « = 0, 1, Hilbert space K and projective representation V on K ® C2, satisfying

Ind(Ry 5, Adr,., Ady,) = (k1 + &2, 1 + Q2 + K1 K2D, [U1 V2 € (K1, q1, K2, 02)]). (4.10)

(Case: k1 =0or k; =0)
We set the following notation:

1, ifky =Kk =0,
K=K ® K, ® C?, A=132, ifk=1, kp=0, 4.11)
3, ifK]ZO, K2:1,

and define the unitary v : C2@ K, — K, ® C2,
vE®N) =n®E £eCl neXn. 4.12)

Using the standard basis {eg, 1} of C2, we define the unitaries w1, wo, w3 on C? @2 by

wi(eo ® e) = eg ® e, wi(e1 ®ey) = e ® e, wi(e1 ®eg) =eg® ey,
wi(eo®ey) = e ®ey, wa(eo ® eg) = e ® e, wa(er ® e1) = e ® e,
wa(e1 ®ep) =eg®ey, wa(eg®ey) = —e1 ® ey, w3(ep ® ep) = eg ® e,
W3(€1®€1)=€1®€0, W3(€1®€0)=€1®€1, W3(€0®€1)=€0®€1.

By direct calculation, we may check

Ady, (0,0 0,) =l ®0,, 1=1,2,3, (4.13)
Ady, (0x ®07) =l ® 0y, Ady, (Il ® 0y) = 12 @ 0. (4.14)

We now define unitary U, : K; ® C? ®@ K> ® C? — X ® C? such that
U, = (]Ig(] ®}Ig<2®w,l)(1[g<] ®V®HC2), 1=1,2,3. (4.15)
By (4.13), we have

Ady, (Tx, ®T'x,) =Tk, A1=1,2,3; (4.16)
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hence, for x € Ry, 5, ® Ry, 5,5
Ady, o (Adry., & Adry., ) () = Adr,c 0 Ady, (v), 1=1,2,3. 4.17)

By (4.14), when A = 2, for (I, ® o) ® (Ixc, ® o) € Ry 5, ® Riy 5, We have
Ady, ((Ixc, ® 0x) & (I, ® 7)) =Ix ® oy (4.18)
Similarly, when A = 3, for (I, ® o) & (I, ® 0x) € Ry %, ® Ry %55
Ady, ((Ix, ® 07) & (Ix, ® 0x)) = Ix ® oy (4.19)

Let [7;] be the second cohomology class associated to the projective representation V;, i = 1,2. We
set

Ve = Ady, (vl,g ® vz,grggé’)) , g€G, 1=1,23, (4.20)

This gives a projective unitary/anti-unitary representation V of G on K ® C? relative to p. Using that
Ady, (Tx,) = (-1)2®) Ty, for g € G, the second cohomology class associated to V is equal to
(91 D2 (a1, q2)] € H*(G,U(1),), where €(qi,qz) is given in (2.2). By Lemmas A.6 and A.7, we have
that for x € Ry, 5, ® Ry, %,, ¢ € G and any 1 = 1,2, 3,

Ady, o Ady, (x) = Ady, o AdVl,g®V2,gr‘;gg) (x) = Ady, o (a1, ®azg) (x). 4.21)

In particular, for A = 2, 3, we also have

Ady, (I ® 07y) = ()" @& (Ix @ o), g €G, (4.22)
from (4.18) and (4.19).
By (4.16), we have
Ady, (I) = Ady, 0 Ady, oy o) (T, ® Ty,) = ()& @y oG, (4.23)
’ B 2

Having set up the required preliminaries, we now consider the W*-(G,p)-dynamical system

(Re,5¢, Adry., Ady,) € 8, and show equivalence with the graded tensor product in the three cases
where k1 or k3 = 0.
(-1 For A =1 (i.e., k1 = k2 = 0), we set k = 0 and note from (4.23) that (R, 5, Adr,., Ady,) € 3.
In this case, [0;] = [v;] and €,(0, q1,0,q2) = €(qi, q2). Hence, the second cohomology class of V is
[v1v26,(0, 01,0, q2)]. With this and (4.23), the index of (R, , Adr,, Ady,) is given by (4.10). So we
just need to show equivalence of the W*-(G, p)-dynamical system with the graded tensor product. The
equivalence is given by a s-isomorphism

ti=Ady, 1 B(K ® C? @Koy ® C?) = Ry 50, & Ry.5c, — B(K®C?) = Ro . (4.24)

By (4.17) and (4.21), ¢ satisfies the required conditions (2.4) and (2.5) for equivalence of W*-(G, p)-
dynamical systems.

(i)-2ForA =2 (i.e., k1 =1, ko = 0), set k = 1. By (4.22) and (4.23), we see that (R, s, Adr,, Advg) €
S« Note that [#1/] = [v1 €(q1,P)] € H*(G,U(1),) (see Lemma 2.7 and Definition 2.10), with &, = v,.
Hence, the second cohomology associated to our projective representation V is

[01 92 (a1, a2)| = [v1 v2€(ar.p) elar, a2)]. (4.25)
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Combining this and (4.23), the second cohomology associated to the projective representation V() (cf.
Lemma 2.7 and Definition 2.10) is

[01 92 €(a1,a2) €(a1 + a2, 0)| = [v1 v2€(ar, p) e(ar, a2) €(qr + a2, D) |
= [Ul U2 Ep(lv q1,09 QZ)]

From this and (4.23), we see that the index of (R 5, Adr,., Ady,) € S is given by (4.10).

Now we show that (R, c, Adr,., Ady,) is equivalent to the graded tensor product (4.9). From
Lemma A .4, the commutant of Ry, 5, ® Ry, %, is Clyc, gc2@ic,0c2 + Clx, ® 0y ® Ix, ® 0. Note
that by (4.18), Ady, maps the commutant to Clyx ® Iz + Clx ® o = (Ri.x)’. Therefore, we
have Ady, (R, %, ® Ry, 5%,) = Re.xc. Hence, ¢ := Ady, |:RK1’9<] &Ry x, defines a *-isomorphism
0 Ry i, O Ry oc, = Ry ac. By (4.17) and (4.21), ¢ satisfies the required conditions of an equivalence
of W*-(G, p)-dynamical systems.

(i)-3 For 4 = 3 (ie., k1 = 0,k = 1), we set «k = 1. By (4.23) and (4.22), we see that
(Re,5¢, Adry, Ady, ) € Sx. We also have that [01] = [v1] and [§2] = [v2 €(q2, p)]. Hence, the second
cohomology class associated to V is

[01 02 €(a1,@)] = [viv2 €(a2, p) €(ar, a2) |- (4.26)
Hence, from (4.23) the cohomology class associated to V(© is

[01 92 (a1, a2) €(a1 + a2, P) | = [v1v2 (0,01, 1,0)] (4.27)

and the index of (R, 5, Adr,., Ady,) € 8, is given by (4.10).

We now show that (R 5, Adr,, Advg) is equivalent to the graded tensor product. From Lemma A .4,
the commutant of R, 5, ® Ry, %, is Cly, gc2eic, 002 + Clac, ac2eac, ® 0x, Which by (4.19) is mapped
to Clx ® Ic2 + Clg ® 0y = (Re.x)’ by Ady,. Therefore, Ady, (Ry,.%, ® Riy.5c,) = Re.xc and
t == Ady, |RK1£K| &Ry, define a x-isomorphism ¢ : Riy. 5, ® Ryy %, — Ri,xc and implement an
equivalence of W*-(G, p)-dynamical systems.

(Case: k1 =k =1)
Set « := 0and X := K| ® K. We define a projective representation V of G on K ® C? relative to p by

Ve =V @V, & CPW ol gRERE o e g, (4.28)

Here Vl.(o) is the projective representation on X; such that V; , = Vl.(g) ®C ”(3)0';" ®) for i = 1,2 (see

Lemma 2.7). Then we have
AdVg (Tgc) = (_I)QI(8)+QZ(8)+P(8)1"5<, g€G. (4.29)

Hence, (Ry, %, Adr,., Ady,) € 8«. Because oy anti-commutes with oy and C, and oy commutes with
C, the second cohomology class associated to the projective representation V is

[vivae(ar, )] = [viv2 (1, a1, 1L a2)], (4.30)
where we recall that [e(q1,q2)] = [€(a2,q1)]. Hence, the triple (R¢ %, Adr,, Ady,) € S, has index
given by (4.10).

Now we show (4.9) for the constructed (R ¢, Adry, Advg). Regarding € as a graded von Neumann
algebra (€, Ads,) C My, there is a *-isomorphism ¢y : € ® @ — M, such that
WIRD =1, w(ox®D) =0y, wWI®0K) =0y, w(ox&oy) =io. 4.31)
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Noting Adr, ever, (Re,5 @ Rep,5,) = B(K1) ® B(K2) ® (€ & €) with v in (4.12), we obtain a
s-isomorphism ¢ : Ry, 5, ® Ry, 50, = B(K) ® Mz = Ry % given by

1(x) = (idxc ®to) © Adry @y, (X), X € Ry 5c, @ Ry 11, (4.32)

We then have
Ady, ot ((a®0y) & (b®Ie)) =Ady, (a®b® 0oy)
= Ady, 0 (a) ® Ad, 0 (b) ® (-1 ® g,
Lg hog

= (Adv, (@@ ) & (Adve, (b 1))

=to(aig®a,) ((a®0y) ® (b®I2))

and
Ady, ot ((a ®I2) ® (b ®0y)) = Ady, (a®b®0y)
— (g)
= AdVl(f: (a) ® Advz(.(: (b)) ® (-1)018 oy

=1 (Adv,, (@®@12) & (Ady,, (h® o))
=to (@ g®y,) ((a®Ix) & (b®oy))

for all a € B(Xy), b € B(XK,). Because the elements (a ® 05) ® (b ® I2) and (a ® I2) ® (b ® o)
generate R, 5, ® Ry, 5,, we see that Ady, ot(x) = to (a1, ®arg) (x) for x € Ry a; & Ry 5,
We also see from (4.31) that Adr.,, ou(x) = ¢ o (Adr, ® Adr,) (x) for x € Ry, 5, ® Ry, %,. Hence, we
obtain (4.9). ]

Example 4.3 (Time-reversal symmetry and the Zg-classification). As a simple example, let us consider
fermionic SPT phases with time-reversal symmetry. That is, we take G = Z,; = {0, 1} with p(1) = 1.
We let @ = a7 be the anti-linear *-automorphism of order 2 from the nontrivial element. Therefore, if G
acts on a balanced, central and type I von Neumann algebra, then « is implemented on a graded Hilbert
space K by Adg with R anti-unitary. Following [29], we can ensure that R?> = +I4 and so the group
2-cocycle is determined by the sign of R?.

The data Z, x H'(Z»,Z,) X H*(Z»,U(1),) from Theorem 4.1 is wholly determined by the triple
[k; &, +], where £ = q(1) € Z, and = is the sign of R%. Our choice of notation is so that our results
can easily be compared with [26, Appendix A] and [40]. Following (4.4), the triple has the (abelian)
composition law under stacking

[0;e1,£11[0, &2, &2] = [0s 81 + &2, (-) 12 €12]
[0;&1,&1][1, 82, 2] = [1; 81 + &2, (=) 171 22£1 £5]
[1;81’51] [1’82’62] = [0;81 te+1, (_)8182{:162]-
One therefore sees that Zyx H' (Z5, Zo)xH? (Z5, U(1),) = Zg with generator [ 1;0, +]. Hence, we recover

and extend the Zg-classification of time-reversal symmetric fermionic SPT phases in one dimension
considered for finite systems in [14, 15, 11].

5. Translation-invariant states

In this section, we derive a representation of pure, split, translation-invariant and a-invariant states in
terms of a finite set of operators on Hilbert spaces. The idea of the proof is the same as quantum spin
case (cf. [6, 21]), although anti-commutativity results in richer structures.
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Recall the integer shift S, on />(Z) ® C4, x € Z, which defines the *-automorphism Bs. € Aut(A).
Let w be a pure, split, @-invariant and translation-invariant state on A. In particular, such states are
®-invariant (see [9, Example 5.2.21]). By Proposition 2.9 and Lemma 2.16, the graded W*-(G, p)-
dynamical system (7, (Ar)"”, Adr,,, @) associated to w is equivalent to some (R, 5, Adr,., Ady,) €
S«. We denote this k by «,,. The space translation lifts to an endomorphism on 7, (Ag)"”.

Lemma 5.1. Let w be a pure, split, a-invariant and translation-invariant state on A. Suppose that
the graded W*-(G,p)-dynamical system (m.,(Agr)”,Adr,,@&,) associated to w is equivalent to
(Re,5c, Adry, Ady,) € 8y, via a x-isomorphism v : 7wy, (AR)” — Ry ac. Then there is an injective
x-endomorphism p on R, 5 such that

tomyopfs,(A)=poron,(A), Ae€ARg. 5.1
Furthermore, we have
ap(b) = (-1)%**p(b)a =0, (5.2)

for homogeneous a € 1 o nw(ﬂ{g}) and b € Ry x.

Proof. By the translation invariance of w, the space translation Ss, is lifted to an automorphism /?Sl on
7 (A)”. Restricting Bs, to 7., (Ag)”, we obtain an injective *-endomorphism S on 7, (Ag)”". We then
seethat p :=1ofor7! : Re.%c = Ry x is an injective endomorphism on R, x satisfying (5.1). Because
Bs, (Ar) € Azs1, we see that apfs, (a1) — (—1)5“06‘“ﬁg1 (a1)ap = 0 for homogeneous ag € Ay and
a € Ag. Then, because p (R, %) = (t© me 0 Bs, (Ar))”, Equation (5.2) follows. |

Let P be the power set P = P({1,...,d}) = 21~4} of {1,..., d}. We denote the parity of the number
of the elements in 4 € P by |u| = #umod2. We denote by {1}, },ep the standard basis of F(CY).
Namely, with the Fock vacuum Q of F(C¢) and the standard basis {ei}f: , of cH, Y, for u # 0 is given
by ¥, =Cua™(ey)a*(ey,) - a*(ey)RQa with | =#u, u = {u1, po, ..., py} with gy < g -+ < yy and
a suitable normalisation factor C,, € C\ {0}. For the empty set u = 0, we set /¢ := Q.

We denote the matrix units of Aoy =~ B(F (C?)) ~ Mya associated to the standard basis Wutuer

by {E ,(,%}, 4, v € P. Because O is implemented by the second quantisation of —Ixa,

01 = Y (-DMES € Ay, (5.3)
uneP
we see that
O, = (-DHMED,  pve?. 5.4)

We set E l(lx‘), = Bs, (E ,(103,) for general x € Z. Clearly, {E l(,)f‘),}#,vgga are matrix units of A ;.

Lemma 5.2. Let w be a pure, split and translation-invariant state on A and ,@Sn be the extension of fs,,
to (A, ie. ,@Sn omy(A) =m0 Bs,(A), Ae A

(i) Ifx € (1, (AR)")Y, then o-weak lim,, e Bs, (x) = (R, xQ, ).
(i) Ifx € (ﬂw(AR)”)(l) and 1, (AR)" is a factor, then

o-weak lim 7., (D(=DBs, (T(=D) -+ Bs,, (D(-1))) Bs, (x) = 0 = (Qu, xQu)se,,. (5.5

(iii) Ifx € (o (AR)") Y and Z (m4,(AR)") N (7 (AR)") # {0}, then
o-weak lim,, Bsn (x) =0=(Qu,xQ,).
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Proof. First we note from the o-weak continuity of ﬁs,, that
Bs, (o (AR)) 7)) < ((m0 0 Bs, (AR)")' T, meN, o =0,1. (5.6)

(i) By (5.6), we have /?Sn ((ﬂw(AR)I/)(O)) C 7w (Ajo,n-17)’ Therefore, for any x € (nw(AR)”)(O),
any o-weak accumulation point z of {,égn (x)} belongs to m, (Ag)’ N (7 (AR)") . But 7, (Ag)’ N
(er(AR)")(O) = Clg,, by Lemma 2.15. Hence, we have z € Cly . Because (Qw,,ésn x)Qy) =
(Q,xQ,,), this means z = (Q,,, xQ,,)I5 . Because this holds for any accumulation point, we obtain
o-weak limy, o ,@Sn (x) = (Q, xQ, )5,

(ii) Suppose that 7, (Ag)” is a factor and set Y,, := I'(-I)Bs, (I'(-1)) - - - Bs,_, (I'(-I)). Note that
Ady, (B) = ©(B) for any B € A[g 1] Therefore, by (5.6), we have 7, (Y,,)Bs, (1w (Ar)") V) c
Tw(Afo,n-11)". Hence, for any x € (nw(AR)”)(l), any o-weak accumulation point z of the set
{7e (Yn)ﬁsn (x)} belongs to 7, (Ag)’ N (nw(AR)”)(l) = {0}. As such, z = 0. Because this holds
for any accumulation point, we obtain (ii).

(iii) Suppose that Z (7, (Ag)”") N (1o (AR)"HV £ {0}. By (5.6), we have that

ﬁASn ((ﬂw(AR)H)(l)) - ﬂw(-AR)” n nw(-A[O,n—l])’Fw- (57)

Therefore, for any x € (7, (AR)”)(I), any o-weak accumulation point z of {ﬁsn (x)} belongs to
(T (AR)'Tw) N (e (Agr)”)V. Because Z (7., (Ag)”) has an odd element, 7, (Ag)”’ is not a factor.
Lemma A.3 then implies that ., (Agr)' T, N7, (ARr)” = {0}. Hence, we have z = 0. Because this holds
for any accumulation point, we obtain (iii). O

Before stating the result, we fix some notation. Given the operators {W, },,ep we define the completely
positive (CP) map Tw by

Tw(x) = Z WyuxWy,.
ueP

Because the algebraic structure of the von Neumann algebra of interest changes depending on whether
ko = 0, 1, we treat each case separately, though the general strategy of proof is the same.

5.1. Case: k, =0

Recall that I'(U,) denotes the second quantisation of U, on F (C%). In this subsection we prove the
following.

Theorem 5.3. Let w be a pure a-invariant and translation-invariant split state on A. Suppose
that the graded W*-(G,p)-dynamical system (n.,(Agr)”,Adr,,&.) associated to w is equivalent
10 (Ro,5c, Adrye, Ady,) € So, via a =-isomorphism ¢ : m,(AR)”" — B(X ® C?). Let p be the *-
endomorphism on Ry x given in Lemma 5.1. Then there is a set of isometries {B }yep on X ® C? such
that By,B,, = 6,1,

potomy,(A) = Z AdBul”'g‘é' otomy,(A) = Z AdF'g‘g'B” otomy,(A), Ae€ARg, (5.8)
ueP ueP

and

N k-1
2 (e +ve ) Z vl
Lo, (E(O) WD L gWN) ) = (=)= = By - BuyB', - B (5.9)

Ho-Y0 ™ H1,V1 MN>HUN VN Yo
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forall N € NU {0} and po, ... un,vo,...,vN € P. The operators B, have homogeneous parity and
are such that Adr,. (B,) = (=1)#*90B,,, with some uniform o € {0, 1}. Furthermore,

o-weak lim Ty 0 U(x) = (Qe, xQ0) g2, X € Mo (AR)” (5.10)
and for each g € G, there is some cg € T such that

Z(w,,, T(Ug)Wy)By = cgVe By V. (5.11)
pneP

We will prove this result in several steps. First we note some properties of endomorphisms of operators
on graded Hilbert spaces and the Cuntz algebra.

Proposition 5.4. Let H be a Hilbert space with a self-adjoint unitary I that gives a grading for B(H).
Let M be a finite type I von Neumann subalgebra of B(JH) with matrix units {E, , }, vep C M spanning
M. Assume that

Adr(Euy) = (-DHFYE, . pve? (5.12)

and set Ty := X ep(—1) "“EW. Let p : B(H) — B(H) be a graded, unital x-endomorphism such that
p(a)b — (=1)94%pp(a) = 0 for a € B(H) b € M with homogeneous grading. Suppose further that
B(H) = p(B(H)) vV M. Then there exist isometries {S, } e on I with the property that

SySu=0unl,  p(x) =) 8,xS], (5.13)
M

for all u,v € P and x € B(H). The operators S,, have homogeneous parity and are such that
Adr (S,) = (—1)"““’05,, with some uniform o € {0, 1}. Furthermore, setting B, := (FOF)“"S,,,for
1 € P, we have B,B,, = 6,1,

o(x) = Z Adg, o Adpu (x), x € B(H), (5.14)
uneP

and

N k-1
N % (el 3 11 . .
EpoviP(Epy ) - P (Epg ) = (=1 0 By Buy By - By, (5.15)

forall N e NU {0} and po, ..., un, Vo, ..., vNn € P. The operators B, have homogeneous parity such
that Adr (B,) = (=1)lul+oo By, with the same o as above. If there are isometries {T,}, ep such that

T3Ty =8l Tyl =Eyuy, p(x)= ) Adg, o Adpa(x),  x € B(30), (5.16)
pueP

then there is some ¢ € T such that T, = cB,, for all yp € P.
To study the situation, we note the following general property.

Lemma 5.5. Let H be a Hilbert space with a self-adjoint unitary I that gives a grading for B(J). Let
M, My be Adr-invariant von Neumann subalgebras of B(H) with M| v My = B(H). Suppose that
M, is a type I factor with a self-adjoint unitary I'y € My such that Adr, (x) = Adr(x) for all x € M.
Suppose further that

ab — (-1)949%pg = 0, for homogeneous a € My, b € M. (5.17)
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Then there are Hilbert spaces H |, H, and a unitary V : H — H| @ H, such that
Ady (M) = B(H) ® Clyg,. (5.18)
Furthermore, there are self-adjoint unitaries T'; on 3{; with i = 1,2 such that
Ady (D) =T1®T,, Ady () =T ®I,. (5.19)
The commutant of M is given by
My =M+ T (5.20)

If p is an even minimal projection in My, then My - p = B(pH).

We note that if M is a type I factor, Wigner’s theorem guarantees the existence of a self-adjoint
unitary Iy € M, such that Adr, (x) = Adr(x) for all x € M.

Proof. Because M is a type I factor, by [38, Chapter V, Theorem 1.31] there are Hilbert spaces H;, H,
and a unitary V : H — H; ® H; satisfying (5.18). Because I'j € M; and I'T} € J\/[i, there are self-
adjoint unitaries I; on H; withi = 1,2 satisfying (5.19). Clearly, Adr, (I'}) = I'; and so I'; is an even
element of M.

Note that N := M;O) + M;l) I'y is a von Neumann subalgebra of M| by (5.17). Therefore, Ady (N)
is a von Neumann subalgebra of I3¢, ® B(J(;). Because

My = M + MUy M VN, My cM; VN, My v M, = B(H),
we have M; vV N = B(H). Combining with (5.18), this means
Ady (M + MVTy) = Ady (N) = Clyg, ® B(I0). (5.21)
Now we associate the grading given by I to B(J;) for i = 1,2, and regard B(H{Nl) ® B(H,)
as B(H;) & B(H,), the graded tensor product of (B(H;),H;,I'1) and (B(FH,), H,,13). Because

Ady (T') =T @1, Ady : B(H) — B(H;) & B(I(,) is a graded *-isomorphism. Considering the even
and odd subspaces of (5.21), we obtain

Ady (M) = Cly, @ B(F) @, Ady (MV) Ady () = Clge, ® B(Ha) (5.22)
and so

Ady (M2) = Ady (M + MV) = Clye, ® B(H) @ +CTy © B(H)
= Clye, & B(H2), (5.23)

where Clg, ® B(3(,) is a graded tensor product of (Cly¢,, 1, T1) and (B(Hy), Ha, I3).
We now consider the commutant of M,. Applying Lemma A .4, we see that

Ady (M) = B(H)© @ Clyg, + BNV @l = Ady (MY + M), (5.24)

Hence, we obtain (5.20).

Let p be a minimal projection in M and suppose that it is even. Then Ady (p) is a minimal projection
in B(H) ® Clg,. Therefore, there is a rank 1 projection r on J{(; such that Ady (p) = r ®Iy,. Because
p is even and Ady is a graded *-isomorphism, we have Adg, (r) = r. Because r is rank 1, this means
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that I'yr = +r. Therefore, using (5.23), we have

Ady (Myp) = Cr @ B(H,) @ + CIyr @ B(Hy)
=Cr® (B(H2)? + B(3H,) V) = Cr © B(3) = Ady (pB(H)p). (5.25)

Hence, we obtain Myp = pB(H)p = B(pH). O

Lemma 5.6. Consider the setting of Proposition 5.4. Then the following hold:

i) p(B(H)) =M + MOT,T.
(ii) Let Eﬂ’y =E, ,(Iol) I+ Then {Eﬂ,y}ﬂ’vey are matrix units in p(B(H))’ spanning p(B(H))’,
(iii) For all u € P, the map

Pu:BI) x> p(X)E, 4 € B(E,  H) (5.26)

is a x-isomorphism.

Proof. Note that Adr(x) = Adr, (x) for x € M. Applying Lemma 5.5 with M; = M, M, = p(B(FH))
and I' = Iy, we immediately obtain (i). Because {E, ,}, ep are matrix units spanning M and
satisfying (5.12), we see from (i) that

o(B(H)) = MO + MDr,r = span,, ,cp {E,“, (FOF)|“|+|V|} = span,, ,cp {Eﬂ,v} . (5.27)

Because I')I" commutes with E,, ,, it is straightforward to check that {E #,V}H,Vgp are matrix units.
Hence, we obtain (ii).

For part (iii), we first note that because E,, , is even, [p(x), E, ,] = 0 for all x € B(J). Therefore,
there is a well-defined *-homomorphism

Put B(H) = B(E, ,H), Pu(x) =p(X)E, 4, x € B(H).

Because B(X) is a factor, p,, is injective. To see that p,, is surjective, we note that E,,, is a minimal
projection of M and it is even. Then applying Lemma 5.5 with M; = M and M, = p(B(H)), we obtain
P(B(H)) - Eyy = B(E L, H) and so p,, is surjective. O

We now prove Proposition 5.4, which we split into two lemmas. We recall the matrix units {E,, , } . vep C
Mand E,,,, = E,,(ToD) #*P! from Lemma 5.6.

Lemma 5.7 (First part of Proposition 5.4). Consider the setting of Proposition 5.4. Then there exist
isometries {S,} ep on I with the property that for all y1,v € P and x € B(J),

S:8,y =0, SuSt=E,,, p(xX)Eu,= SuxSy, p(x) = Z SuxS),. (5.28)
HeP

The operators S, have homogeneous parity and are such that Adr (S,,) = (—1)|”|+0"’Sﬂ, with some
uniform o € {0, 1}. They also satisfy I'0S, = (—1)|”|S,,.

Proof. By part (iii) of Lemma 5.6, p,, in (5.26) is a *-isomorphism B () LR B(E,,H). Therefore,
we can apply Wigner’s theorem to obtain a unitary w,, : H — E}, ,3{ such that p,, = Ad,,,. Note that

* *
wWuWy = W’uE/l,/.lEV,VWV = 5;4,\/}11}(, u, vewP
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We also see that, because Z” Ey =1
p(x) = Zp(x)Eﬂ,M = Zpﬂ(x) = Z Wuxw,, x € B(H).
M H H

We use the above property to compute that for any x € B(H),

wuwyp(x) = waw)( Z Waxwh) = wuxw), = (Z Waxw ) wws, = p(xX)wws,.
1 1

Therefore, w,w}, € p(B(H))’ for any p, v € P.
Summarising our results so far, we have obtained a collection of operators {w w3}, vep in p(B(H))’
such that

E ywuwiEy, =w,wh. (5.29)
From (5.29) and (ii) of Lemma 5.6, there is some c,, € C such that

. L
wuw, = CuvEyy.

Note that ¢, = ¢,,. Because of the definition, we have w,w}, = E,,, and we see that ¢, = 1. On the
other hand, because of w}w, = I5¢, we have

Cuabyr=wuw' = wwiw,wt = el
pALp A = WuWy = WuWyWyWa = Cuvtyvaltip,a

and so ¢y = cuycya. In particular, 1 = ¢y = cuvCyp = |c,,,,|2 and so ¢, € T. Now set ug :=0 € P
and define S, = ¢, W, for every u € P. Then because of the above properties of ¢, , the collection
{8} uep has the same algebraic properties as {w, } as well as that S, S}, = E u,v as required. Hence, we
obtain (5.28).

Next, we recall the grading operator I’y = }; M(—l)'” |E,,,,1 of M. Because S, is an isometry onto
Ep 3t

[0Sy =ToEu Sy = (-)ME, .S, = (-1)¥s,.
We now consider the grading of S,,, Adr(S,). We compute that for any x € B(H),
S,xS,U'=Tp(xX)Ey T =Tp(x)TE, , = p(TxD)Ey, , = S,Ix[S), (5.30)

because E, , is even and p commutes with the grading. Multiplying (5.30) I'S}, from the left and
'S, from the right, we see that I'S;I'S;, € B(H)" = Clg. Note that I'S,, IS, is unitary because
Adr(Euy) = Eyy. So SIS, = ¢'#T" with some e'¥ € T. Multiplying this identity by S, from the left
an(.i by I" from the right, we obtain 'S, I" = E,,,I'S,I" = 5,5, 'S, " = €'#S,,. But because (Adr)? = id,
(e'*)? = 1 and Adr(S,) = (-1)?#S,, with some b, =0, 1.
Let us further examine the grading of the operator S,,. We compute that
TE, [ =TE,,(ToD) M0 =TE, ,0(T,0) i+
— (—1)"‘|+|V|Eﬂ V(FOF)IuIHVI — (_1)|#|+|V|EM N
and we also find
TE, [ =TS, TS, = (-1)P(-1)bS,8% = (-1)2«E,, .

Therefore, |u| + |v| = by, + b, € Z,. By setting ug := 0 € P and oy := by, we have that I'S,I" =
(=1)lul+oos, forall u € P. o
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Lemma 5.8 (Second half of Proposition 5.4). Consider the setting of Proposition 5.4. For S,, of Lemma
5.7, set B, == (ToD) WIS, for u € P. Then BB, = 6,,.,1, BuB%, = E,.,,

p(x) = " Adp, 0 Adp(x) = D" Adpi 0 Adp, (), x € B(H),
pneP uneP

N k-1
2 (lpk l+ v ) 2 vl
k=1 j=0

EﬂOaVOP(E/Jl,Vl)“'pN(EﬂNJlN) =(-1) Bllo"'BﬂNBT/N "'BT/O’ (3.31)

forall N €e NU{0} and po, ... un,vo, ...,vn € P. The operators B, have homogeneous parity and are
such that Adr (By) = (=1) |f"‘“"OBﬂ, with the same o € {0, 1} as in Lemma 5.7. If there are isometries
{Ty}uep satisfying (5.16), then there is some ¢ € T such that T, = c¢B,, for all u € P.

Proof. From Lemma 5.7, we check that
BB, = (Do)t ls, = §* 5, Pkl gy (rleoo) Qulelvh ) Makelvh = 5, (5.32)
We also have from Lemma 5.7 that
BB, = (LoD)#ls, st (Tor) ! = (TyD) M E,, , (TeD) WM (meD) M = E, (5.33)

because I')I" commutes with M. Because S, has homogenous parity and I'I" is even, B, has the
same homogeneous parity as S,. In particular, Adr (B,) = (—1)|”|+"°B,1, with the same oy € {0, 1}
as in Lemma 5.7. This implies that the endomorphism Adp, respects the grading on B(H); that is,
Adr oAdp, = Adg, o Adr. Furthermore, using that [,S,, = (=1)/#IS,,, Ads, = Adpip, = Adg,ri-
We therefore see that for x € B(H),

p(x) = Z SuxS,, = Z Adp, o Adpi (x).
ueP ueP

A simple induction argument using that Adg, commutes with Adr gives that

PN = Y Adpyey | © Adpigei (0). (5.34)

We now consider p(E, ). Recalling (5.33) and that Adr(E,,,,) = (—1)|“|+|V|Eﬂ,,,, we see that
p(Euy) = > BaTWIE, ,TBy = 3 () UIHMD B, B B2 .
A 2
From this, (5.33) and (5.32), we have
Vo

E/to,V()p(E,,l,vl) = ByoBT/O Z(_l)lll(\m [+ DB/!BMBT/I B; — (_l)lvol(lm [+1v1 I)B,u(,B,llBT,l B
1

This proves Equation (5.31) in the case of N = 1. We now assume that the equality is true for N and
consider N + 1. Using Equations (5.32), (5.33), (5.34), we compute that

https://doi.org/10.1017/fms.2021.19 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.19

Forum of Mathemetics, Sigma 25

E,UOsVOp(Elll,Vl) o 'pN (EIIN,VN )pN+1 (E/»lN+IsVN+1)

N k=1
2 (pcl+vie) 2 vyl
k=1 Jj=0

= (_l) B,uo "'BﬂNBT/N "'BT/O pN+1(EHN+1»VN+l)
N k-1
2 (achelvl) % 11 . .
= (-1)F 50 By By B, ~~-Bv0( > Adg,.,, ©Ad AZ/W_‘(E#NH,VN“))
AQsenes AN Fj:O
N k-1 N
% (1) S vy (v [+ v ) 3 11 L .
= (_1)k7 =0 B:“O T BHN ((_1) =0 BHN+]BVN+1)BVN T BV()
N+1 k-1
2 llelvi) 3 1] o .
:(—1) - = BllO'”BIlNBIJNHBVNHBVN'”BVO

as required.
To show the last statement, suppose that {7}, },cp C B(H) satisty (5.16). Because

Z Adr, o Adpa (x) = p(x) = Z Adg, o Adpa (x), x € B(H), (5.35)
AP AP

multiplying (5.35) by T from the left and by B, from the right, we obtain
Adpyi (x) - T,B, =T, B, - Adpiwi(x), x € B(H). (5.36)
Hence, we obtain T, B, € Cls; that is, we have T}, B, = ¢, Iy for some ¢, € C. We then have
B, =E,,B, =T,T,B, =c¢,T). (5.37)

By B} B, = T,T, = Iy, we see that ¢, € T. Furthermore, from BB = T,T, = E,,, we see that
cu=cy,=1c€eT. O

Lemmas 5.7 and 5.8 complete the proof of Proposition 5.4. We are ready to show Theorem 5.3.

Proof of Theorem 5.3. We fix a W*-(G, p)-dynamical system (Ro, %, Adr,., Ady, ) € Sp that is equiva-
lent to (7., (AR)”, Adr,,, &) and the endomorphism p of Lemma 5.1. Then the Hilbert space K ® C2,
self-adjoint unitary I'x, finite type I factor ¢ o 7, (A{oy) with matrix units {¢ o 7, o (E f,o)v)} wvep C
B(K ® C?) and p satisfy the hypothesis of Proposition 5.4. Applying Proposition 5.4, we obtain the
isometries {B,} such that B;BV = 0y, and that satisfy (5.8) and (5.9) from the statement of the
theorem.

To show (5.10), set Iy := t 0 1, (F(<1)) = X, (-DHleo ﬂw(E/(BL). We claim for a homogeneous
x € Ro,% and N € N that

Ty (x) =T§ p(Tg™) - pNHTFH)PN (x). (5.38)

First set 'y = 3, Fflcht o mw(E ,(IOL), which is a self-adjoint unitary. Because of (5.9) with N = 0, we
have ¢ o 71, (E\) = By, B;,. Therefore, we have

potomy,(A) = E Adr‘“‘B otomy(A) =Adr, olgotom,(A), Ae€Ag. (5.39)
KM
HeP
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Hence, we obtain for any homogeneous x € Ry «,

Tg(x) = Adr, op(x) = ZF'”' (L o nw(E(?L)) p(x)l";él (L o nw(E‘(,O,),)) (5.40)
= ZLOﬂ'w E(O) Flﬂlp(x)l“ygl.

Z Lo e E(O) )p o Adrw (x).
M

= 3 o ma (EL) (-DP%p(x) = T8p (),
u

where in the third equality we used that ¢ o 7, (Ey, (0 ») commutes with I'y and elements from p(Rg % ).
This proves (5.38) for the case N = 1. Now we proceed by induction and suppose that (5.38) holds for
N. Then using (5.40) and the induction assumption, for any homogeneous x € Ry x,

TéVH(X) — TB (Faxp(rax) N 1(F¢9X)pN (x))

A(IG (I --pN 1IN (x)
1—*0( 0 0 0 )p(FgX)pZ(FgX) . 'PN (rgX)pNH (x)

=T ()P (TF) - pN (TN (). (5.41)
Hence, (5.38) holds for N + 1 and proves the claim.

Now we show (5.10). Because «,, = 0, m,(Agr)” is a factor. Therefore, for any homogeneous
x € m,(AR)"”, the sequence

Ty ou(x) =T p(TY) - pN (TN 0 u(x)
= o (70 (F(—I[)a"ﬁs] (CDP) - Bsy (D)) Bsy () (5.42)

converges to (Q,,, xQ )5 ec2 in the o-weak topology by Lemma 5.2. This proves (5.10).
To prove (5.11) set

T,:= ) Wa LU,y VBV, ve?. (5.43)

AeP

Recall that for ¢ € C, 2@ = ¢ for p(g) 0 and ¢ if p(g) = 1. We claim that {7}, },c satisfies (5.16)
with E,,,, and I replaced by ¢ o 7, (E ,,) and 'y respectively. We compute

" " p(g)+1 - p(g) " "
T;T, = Z W LW Wy W DU Uy VeBiBV;
p(g)
= Z (C(Ug) Y 023 W2, T (Ug) ") Sy 1
To see the second property of (5.16), note that
p(g)

T(Ug) EAT(Ug) = Y W, WUy (Was T(Ug) W) ELL.

A,LeP
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Using this, we obtain

p(g)

T,T; = Z Wa DU U (TUg) Wy thg) * VgBaBV;

= Z W DU U C U i) 10 o (MU ET(Uy)")

= 1oy 0 Adr(u ( D W T(Ue) YN T(Ug) bt ELY)
L
=107, o Adr(y,) ([(Ug)* E<0) yI(Ug)) =10 ﬂw(E(O)

To check the third property of (5.16), note that (¥ ,,T'(Ug)*¥,) = 0 if |u| # |v|, because I'(Uy)
commutes with I'(—Ic«). Using this, we check that

Z Adg, o Adl_\m (tomy,(A))
ueP

- Z Z (<¢/l’ F(Ug)*'ﬁﬂ)p(g) W, D(Ug)"Yp)

TS

X Olul 11 Ve BaVgToe (1o ﬂw)(A)F'”‘VgBZVg)

= ZZ G U U T U Uyt )

p(g)+1

Ve BAV,Ti (1o o) (AT, BV

= Z Ve BAViT i (1o o) (AT AWV, BV,
A

= z/,: Vq(Adg, o Adr\j/y) (tomyo a;l (A))Vy

and, recalling (5.14),

D Adr, 0 Adpu (101, (4)) = Ady, 0 plio 1y 0 ay'(4))
HEDP

= Ady, otom,(Bs, © a;l(A))
=107 0 ag o Bs, oagl(A) =poromy(A),

for all A € Ag. Hence, we have proven that {7}, } ,e» satisfies (5.16). Applying Proposition 5.4, there is
some ¢, € T such that B, = c¢,T}, for all u € P. Therefore,

— YWRE T TR »
D W TWU By = > W TWU e Y TUg) ) Ve BaVy
H A
" ——P(8) *
= > W) s U)W, T W) Vi BaVg
A,p
= VB, V;.
Hence, 2, (Y, U'(Ug)y) By = cgVg B, Vg, which completes the proof. ]
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5.2. Case: k, =1

We now consider endomorphisms on W*-(G,p)-dynamical systems that are equivalent to
(R1,%, Adr,., Ady,) € 8 from Example 2.5. Recall that I'(U,) denotes the second quantisation of
U, on F(C9). Our aim is to prove the following.

Theorem 5.9. Let w be a pure a-invariant and translation-invariant split state on A. Suppose
that the graded W*-(G, p)-dynamical system (7., (AR)”,Adr,,, &) associated to w is equivalent to
(le,gc,Adrx,Advg) € 81 via a x-isomorphism v : n(AR)” — Ry x. Let p be the x-endomorphism
on Ry g given in Lemma 5.1. Then there is some oy € {0,1} such that p (Ix ® ox) = (=1)7% 0
7o (T(=D) (Ix ® o) and a set of isometries {S, } ep on K such that S,S,, = 6, Ix,

poLomy(A)= Z Adg orom,(A), A €A, (5.44)
HEDP

with S, = S, ® o7 ana

© () ()
Loy (E.UO,VOEMM T E,uN,/tN)
k-1 N
S (v S, (oot vj 1) 2 41
= (1) o Spo -+ Sun Sty -+ S5y ® T4 (5.45)

forall N e NU {0} and po, . .. UN, V0, - - -, VN € P. Furthermore, we have

o-weak Allim TSN 0t(x) =(Qu,xQu) Ixge2, x € mu(Agr)”. (5.46)
For each g € G, there is some c, € T such that

(DY W, TUW S = Ve Sy (V) (5.47)
pneP

where Vg(o) is given in Lemma 2.7.

We again will prove this theorem in several steps. Parts of the proof follow the same argument as the
case K, = 0, so some details will be omitted.

Proposition 5.10. Let X be a Hilbert space and set Ty = Iy ® o, on K ® C2. We give a grading
to Rix = B(K) ® € by Adr,.. Suppose that N is a type I subfactor of R g with matrix units
{Euv}u,ver C N spanning N. Assume that

Adry (Epy) = (“DHEVIE, o for u,v e . (5.48)
Set Ty := Y yep(—1) |/“Em,. Let p : Ry 5 — Ry x be an injective graded, unital *-endomorphism such
that p(a)b — (=1)%29%pp(a) = 0 for b € N, a € Ry 5 with homogeneous grading. Suppose further that
Rix =pRix) VN.

Then there is some oy € {0,1} such that p (Ix ® o) = (=1)7°T (I5c ® o) and there exist
isometries {Sy}uep on X with the property that

S58u =6,y s,  p(b)= Z Ad g i (B) (5.49)
- :
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forall u,v € Pand b € Ry . Furthermore, for N € N, uo, ..., Un—1,V0, ..., VN-1 € P, the identity

E[.lo,Vop(Eﬂl > V1 )pz(E/lz,Vz) e pN_l (E/IN,] »VN—I)

N-1 j-1 N-1
T (T (oo+IviD) (s 11y ) , 3 il
= (=1) & Suy Sun S St ® O (5.50)

PuUN-1PvN_

holds.
If there are isometries {T}, } e on K such that

Tl = 6unloc, Ty @™ =By p(b)= > AdL  u(b), beRix, (551
P H z
HE

then there is some ¢ € T such that T, = ¢Sy, for all u € P.
To study the situation, we note the following general property.

Lemma 5.11. Let K be a Hilbert space and set Ty := Iy ® o, on K ® C2. We give a grading
to Rix = B(K) ® € by Adr,.. Let N and M be Adr, -invariant von Neumann subalgebras of
Ri.x = B(K) ® € satisfying

ab — (—1)‘9“‘9bba =0, for homogeneous a €N, beM. (5.52)

Suppose that N is a type I factor with a self-adjoint unitary I'y € N satisfying Adr, (a) = Adr,. (a), for
all a € N. Suppose that Z(M)V) # {0} and N v M = B(K) ® . Then the following hold:

(i) There are Hilbert spaces H,H,, a unitary U : X ® C? 5 H 1 H,®C? and a self-adjoint
unitary 'y on 3| such that

Ady(N)=B(H))® Cly¢, ® Cle, Ady(B(K)®€) =B(H; 9 H,) ® €,
AdU(Fg{)Zf|®I}(2®UZ, AdU(F])=f1®H}(2®HC2,
Adu(ﬂj{ ® Oy) :H‘J-Cl ®]Ig{2 ® Ox (5.53)
and
Ady (M) = Cly, ® B(IH,) ® Cl + Cf] ® B(H,) ® Coy. (5.54)

(i) M’ =NO (Clx ® €) + NV (Clx ® €) I' .

(iii) For any minimal projection p of N that is even, we have M - p = B(¢gX) ® € with q a projection
on X satisfying p = q ® Ic2. (Note that even p is always of this form.)

(iv) Z(M) = Clx ® Ic2 + CTI'y (Ix ® 0y).

Proof. (i) Because N is a type I factor, there are Hilbert spaces (1, 7(> and a unitary U : K ® C? —
Hi® j:fg such that Adg(N) = B(H;) ® Cl[jfz. Because I'} € N, there is a self-adjoint unitary I
on H; such that Ady(Ty) = [} ® Ly,- Let D := spanc{L, I'T'x, (Ix ® ox), 'k (Ix ® 0x)}, a
x-subalgebra of N’. Let I'; ' = egp — €11 be a spectral decomposition of the self-adjoint unitary I'jT'y.
Sete; 1 := e;i(Ix®0x)ei—i1-i,i =0, 1. Then because I'1 'x and I ® oy anti-commute, we can check
that {e;;}; j=0,1 are matrix units in D spanning D. Hence, D is a type I, factor in N’ generated by the
matrix units {e;;}; j-o,1. Therefore, there is a type I, factor D; on J{; such that Adg (D) = Clg¢, ® D,
and the generating matrix units {f;;}; j=0,1 such that Adg(e;;) = I3, ® fij. Then there is a Hilbert
space J(, and a unitary W : TJ:CZ — H, ® C2 such that

Adw (f”) = ]Ij-(z ® éij, Adw (D]) = Cl[g-(z QR M> . (5.55)

https://doi.org/10.1017/fms.2021.19 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.19

30 Chris Bourne and Yoshiko Ogata

Here é;; denotes the matrix unit of 2 X 2 matrices M, with respect to the standard basis of C?. Setting
U:= (]Ij{l ® W) U:K®C? - 3 ®H, ®C2, we may check directly that U, H, H,, I} satisfy (5.53).

We now prove (5.54). Because M?) is a von Neumann subalgebra of N’ N (B(K) ® §), Ady (M(O))
is a von Neumann subalgebra of

Ady(N) N Ady (B(X) ® €) =Clg, ® B(H2) ® €. (5.56)
Furthermore, because elements in MO are even with respect to Adr, , elements in Ady (M(O)) are even

with respect to Adagy, () = Adg, 8y, 80 Therefore, we have Ady (M(?) c Cly, ® B(32) ® Clea.
Hence, there is a von Neumann subalgebra M of B(H,) such that

Ady (M?) = ClIy¢, ® M ® Cla. (5.57)

Next we consider Ady (MV). We claim (I ® o)1 € Z(M)(V. To see this, let b € Z(M)D
be a nonzero element, which exists because of the assumption, and set b= (I ® o )I'1b. Because
beZMW, Ix ® o € Z(B(K) ® €) and I'; is an even element in N implementing the grading on
N, we see that

beN' nM N{Tx} = (B(K)®€) N{Tx} =Clyge. (5.58)

Hence, (Ix ® oI} is proportional to b € Z(M)1; that is, it belongs to Z(M)!, proving the claim.
From this and (5.57) we have

Ady (MY) = Ady (MO (Iy ® o)1) = CT @ M ® Cory (5.59)

for JC/E in (5.57). From (5.57) and (5.59), to show (5.54), it suffices to show that M = B(%H,). For any
aeM,
Ady: (I, ® a ® 1) € (M) n (MD) NN N {Tgc )’
= (B(K)® €)' N{I'x} =Clygc.

Hence, we obtain a € Clg,. This proves that M = B(H>).

(ii) We associate a spatial grading to Cll¢, and B(H,) ® € by [} and I3, ® o, respectively. From (5.54),
we see that Ady (M) is equal to the graded tensor product Cly¢, ® (B(H,) ® €) of (Clyc,, Hy, ) and
(B(H,) ® €, Ha ® C2, I3, ® 0;). By Lemma A 4, its commutant Ady (M) is equal to

Ady (M) = B(H) O @ Clye, ® € +B(H) VY @ Cly, ® € 0,
= Ady (N (Clx ® €) + NV (Clx ® €) [T, (5.60)

where B(F;) is given a grading by I';. This proves the claim.

(iii) Let p be a minimal projection N that is even and hence of the form p = g ® I» with g a projection
on X. Then because p € N is minimal, we have Ady (p) = r ® I3, ® I with a rank 1 projection r
on J{;. Because p is even, r is even with respect to Adf]. Therefore, there is a o € {0, 1} such that
I'yr = (=1)“r. Substituting (5.54), we then obtain

Ady (Mp) = Cr ® B(H,) ® Clz + CT'yr © B(H,) ® Coy
=Cr ® B(H,) ® Cle + C(-1)7r @ B(H;,) ® Coy
=Ady (p (B(X) ® €) p) = Ady (B(¢X) ® €) (5.61)
as required.
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(iv) From (5.54) and (5.60), we have

Ady (2(W0)©)
= (Clg¢, ® B(Hz) ® Clez) N (B(H1) @ ® Clye, ® Cler + B(H) Y ® Cly, ® Coyoy)

=CI
and
Ady (z(v)(V)
= (CI ® B(H2) ® Cay) N (B(H1)? ® Clyg, ® Coy + B(H1)V ® Clye, ® Cory)
= CI' ® Cly, ® Coy = Ady (CT (I ® 0y)) -
This proves the claim. o

We introduce some notation. Given a self-adjoint unitary T on some Hilbert space, we write the +1
eigenspace projections as

I+ (-1)°T

Bo(T) = —5-—. ee{0.1}. (5.62)

Note that because we use the presentation of Z; as an additive group, P;(7') is the projection onto the
negative eigenspace. We also have that TP (T) = (=1)°P.(T) = P.(T)T.

Proof of Proposition 5.10. Because Iy ® o, belongs to Z(Ry 5)") and p is graded, p(Ix ® o7y)
belongs to Z(p(ﬂ{l,x))“). In particular, because p is injective, Z(p(:Rl’g())(l) is not zero. Therefore,
we satisfy the hypothesis of Lemma 5.11 with M and T} replaced by p(R; ) and Iy, respectively.
Applying the lemma, we have that

(i) Z (p(R1,x)) = CI+CIp (Ixc ® o).
(ii) Forany u € P, E,y = e,y ® L2 with ey, a projection on K, p (Ry, %) Epp = BleuuK) @ €.
(i) p (R1,x%) =N (Clx ® €) + N (Clx ® €) Tol.

Because of (i), p(Ix ® o), an odd self-adjoint unitary in Z (p(R,x)) should be either I'y (I ® o)
or —Ty (Isc ® o). Therefore, there is oy € {0, 1} such that

p(Ix ®0y) =(-1)7To (Ix ® o) . (5.63)
By (ii), (5.63) and the fact that E,,, € N© commutes with p(Ry,%), for each u € P we have

P ((B(X) ® Cle2) - Py (Ic ® o)) Eyu=p (RI,KPO (Ix ® O—X)) Eup
= B(epuX) ® CPuyru| (0x) - (5.64)

Therefore, there is a *-isomorphism p,, : B(X) — B(e,XK) such that
p((a®l) Py (I ® o)) Epp = pu(@) ® Poyyipi(0x), a € B(XK). (5.65)
Applying Adr,., we also get that
p((@®) Pi (Ix ®02)) Epye = pul@) ® Poappuper (o), a € B(K). (5.66)
From (5.65) and (5.66), we obtain
p@®)E,, =pua) ®l=2, acB(K). (5.67)
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Furthermore, by (5.63), we have
p (I ® o) Epye = (=17 (e, ® 7y) . (5.68)
By Wigner’s theorem, for each u € P, there is a unitary 7, : X — e,,,, X such that
T;Tv = 0 lx, T#T; =eu, H,vEP, Adg, (a) = pula), acB(X). (5.69)
From this, (5.67) and (5.68), we obtain

P(B)Ey, = AdT;,@(TgOﬂ”l (b), beRix. (5.70)
Summing this over y, we obtain

p(b)= Y Ady o (B), b€ Rix. (5.71)
pueP

Multiplying 7,7, ® 0'Z|” #! from the left or right of (5.71), we obtain the same value for any b € R, .
Therefore, T, T,; ® 0'2” #1 pelongs to p(Ry.5)’". By (iii), we then have

7,7, ® o € p(Ry 5)" = N (Clx ® €) + N (Clx ® €) [l (5.72)

Hence, if |u| = [v|. T, T; ® I2 € N and if || # |v]|, this means IT,;,®lx € ND (Ix ® ). From
(5.69), {T T; ®Po(0x) },vep are matrix units in N (Ic ® Po(o7x)) withe,, T, T, ey, @Po(0x) =T, T, ®
Po(0). Then as in the proof of Proposition 5.4, there are ¢, € T suchthat S, S} ®Po(0x) = E;, Po(Iac®
o) for S, = ¢, T,. Applying Adr,., we also obtain S,S; ® P(oy) = (-D)HFVIE, P (Ix ® o),
which then implies that

(Su® O')lcﬂl)(Sv ® O')L"l)* = 5,55 ® ol
=SSy, ® (Bo(0r) + (=1 MRy (0)) = Epy. (5.73)

It is clear that {S, },,cp are isometries satisfying (5.49). The proof of (5.50) comes from an induction
argument using (5.49) and (5.73). Because the argument is the same as in the proof of Proposition 5.4, we
omit the details. Similarly, the proof that the isometries {S, },,ep are unique up to scalar multiplication
in T is the same as in Proposition 5.4. O

Proof of Theorem 5.9. The Hilbert space X, finite type I factor ¢ o 7, (A {9y) with matrix units {¢om, o
(E f,?z,)}y,ygga c B(X) ® € and p satisfy the conditions of Proposition 5.10. Applying the proposition,
we obtain o € {0, 1} and {S,} satisfying (5.44) and (5.45) from the statement of the theorem. The
property (5.46) follows from (5.44) and parts (i) and (iii) of Lemma 5.2. For the proof of (5.47), we set

7, = ()OS G T Oe)™ (V) s,V (5.74)
HeP

Asin the proof of Theorem 5.3, we then can check that T}, satisfies (5.51) for E,,, replaced by tomr, (E ,(ﬂ,) .
Applying the last statement of Proposition 5.10, there is some ¢, € T such that S, = ¢, T}, forall u € P.

The proof of (5.47) is given by the same argument as in the proof of Theorem 5.3. O
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6. Fermionic matrix product states

Using our results from Section 5, in this section we consider a translation-invariant split state w of A
whose density matrices have uniformly bounded rank on finite intervals. Our main result is that such
states can be written as the thermodynamic limit of an even or odd fermionic MPS depending on the
value k,, € Zy. See [11, 20] for the basic properties of fermionic MPS in the finite setting. The idea
of the proof is the same as quantum spin case (cf. [6, 21, 32]), although anti-commutativity results in
richer structures. We start with some preliminary results.

The following lemma is immediate because each Ao,y -1} is isomorphic to a matrix algebra.

Lemma 6.1. Let w be a O-invariant state of A. For each N € N, let Qn be the support projection of
the density matrix ofu)lﬂ[onyl], the restriction of w to Ao, n-1]. Then Qn is even.
We consider the situation where the matrices Q 5 have uniformly bounded rank.

Lemma 6.2. Let {Qn} be a sequence of orthogonal projections with Qn € A%g)N_l

that the rank of Qn is uniformly bounded; that is, supy ¢y rank(Qn) < oo. Let m be an irreducible

representation of Ar or Ag)) on a Hilbert space H. Set Ho = (n(QN)J{). Then dim Hy < oo.

) We suppose

Proof. Because the statement is trivial if Hy = {0}, assume that Hy # {0}. We fix a unit vector
n € Ho and let {¢; }5:1 C Hp be an orthonormal system. We let A denote either Agr or Ag)) with
7 A — B(H) irreducible and let o denote local elements in A. We similarly write W n_1] to
denote either Ao y—1] or its even subalgebra. Note that the / X [ matrix ((£;,£;));,j=1,...,7 is an identity.
Because r is irreducible, approximating &; with elements in ()7, there exists an N € N and
elements a; v € OnWjo,nv-11Qn such that for the [ X [-matrix Xy = ((m(a; n)n, w(a; n)m))i,j=1,....15

1
IxXn =Ty [| < 5 ©.1)

holds.
We now claim that {a; y }j.: , are linearly independent within O N (o, x-1]ON - So we suppose that

2jdjajN =0 for {a’j}i.:1 C C. Then taking the vector d = (dy, ..., d;),
I . i ,
(d,Xnd) = Z (n(ain)n,n(ajN)n)did; = ||7T(Z diajn)n|” =0.
i,j=1 7=

Therefore,

1 1
0= (d, Xnd) = ||d|I> + {d, (Xn = Dd) > ||d||* - Elldll2 = Elldll2

andsod =0and {a; v }5:1 are linearly independent.

By the assumption, we have dim(QN‘II[OyN_l]QN) < C?, for C := SuUpy e rank(Qn) < oo. This
tells us that / < C? and so dim ¥y < C2. ]

We now consider the case of even and odd fermionic MPS separately.

6.1. Case: k., =0 (even fermionic MPS)

Theorem 6.3. Let w be a pure, split, translation-invariant and a-invariant state on A with index
Ind(w) = (0,q, [v]). For each N € N, let Qn be the support projection of the density matrix of
W|A -y, and assume supy g rank(Qn) < oo. Then there is some m € N, a faithful density matrix
D € M, a self-adjoint unitary ® € My, and a set of matrices {v, }uep in My, satisfying the following:
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() For all x € M, limy e TY (x) = Tr (Dx) Ly, in the norm topology.
(ii) There is some oo = 0, 1 such that Ade (v,) = (=1) W1+, for all u € P.
(iii) Ade(D) = D.
(iv) Foranyl € NU {0} and po, ... u;, vo,...vi € P,

%

! k-1
2 (e +viel) 2 vyl .
1) J=0 r(Dvﬂou-vmvw ~~VVO). (6.2)

0 1 1
(‘)(E/So),voEl(ll),Vl e Ef(ll),vl) = (_

(v) There is a projective unitary/anti-unitary representation W on C™ relative to p and c € T such that

D Wi TWW vy = cWev, W (6.3)
pueP

The second cohomology class associated to W is [v] and
Adw; (D) =D, Adw, (©) = (-1)"®0, gecG. (6.4)

Remark 6.4 (Comparison with index for even fermionic MPS). Given an even fermionic MPS with
on-site G-symmetry, H! (G,2Z,) % H2(G, U(1)p)-valued indices are defined in [11, 20, 39]. Briefly, an
irreducible even fermionic MPS is specified by matrices {a,}, e C M,, spanning a simple algebra that
is Z,-graded by the adjoint action of a self-adjoint unitary ® € M,,. The on-site group action is given by
Ade on the generators up to a U(1)-phase, where W is a projective unitary/anti-unitary representation
of G. The indices (§, []) defined in [11, 20, 39] are given by the grading of the representation and its
second cohomology class,

Ady, (©) = (-1)'®®, W, Wy, = 5(g, )W
It is therefore clear from part (v) of Theorem 6.3 that the the indices (q, [v]) defined for w coincide
with the indices defined from the corresponding fermionic MPS.
To prove Theorem 6.3 we start with a preparatory lemma.

Lemma 6.5. Consider the setting of Theorem 6.3. Suppose that the graded W*-(G, p)-dynamical system
(7w (AR)", Adr,,, @) associated to w is equivalent to (Ro 5, Adr,., Ady,) € 8, via a x-isomorphism
1: 7o (AR)” — B(K ® C?). Then the following hold:

(i) There is a finite rank density operator D on X ® C? such that
Adr, (D) =D, and Tryge (D(tom,(A))) = w(A) (6.5)

forall A € Ag. For Psupp(p), the support projection of D, Adr,. (Psupp(p)) = Psupp(D)-
(ii) Let {Bu}uep be the set of isometries given in Theorem 5.3. Then we have
Vi = Psupp(D) By = Psupp(D) BuPsupp(D)>, 1 € P. (6.6)
(iii) Psupp(D)Ve = Vg Psupp(p) and DVy = VoD for any g € G.

Proof. (i) Given the cyclic vector Q,,, (Q,¢ ' (x)Q,,) defines a normal state on B(K ® C2). Let D
be a density operator on K ® C? such that Try g2 (Dx) = (Qq, 71 (x)Q,,). We then see that

Tr9<®<cl (D(L © ﬂw)(A)) =(Qu, 1, (A)Qy) =w(A), AcAg.

Because w 0 ® = w and t o, 0 Blyg, = Adr, ot o0 my|Aa,, it follows that Trocge2 (Adr, (D)(¢ o
Tw)(A)) = Trocgee(D(1 o my,)(A)) for all A € Ag. As such, Adr,. (D) = D. From this, we have
Adr, (PSupp(D)) = Psupp(D)-
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Let Hop= ) (tomy,(On)) (fK ® Cz). Because ¢ o 7, is an irreducible representation of Ag, from
N_

Lemma 6.2, Hy is finite-dimensional. Because w(I—Qn) = 0, we have Tryc g2 (D(tom,)(I-0n)) =
w(I-Qp) = 0. This means that Psypp(p), the support projection of D, satisfies Psypp(p) < o7, (On)
for all N € N. Hence, we have Pgypp(p) (X ® C?) C Ho. Therefore, D is finite rank.

(ii) Recall the endomorphism p satisfying (5.1) from Lemma 5.1. Because w(A) = w(Bs, (A)) for all
A € AR, the set of isometries {B,,},ep given in Theorem 5.3 are such that

Tryge2 (D(1o7,)(A)) = Trocgee (D(p o Lo my,)(A))

= Z TrﬂC@Cz (AdB; o Adr\j;é\ (D)(to ﬂ'w)(A))
m

for all A € Ag. This implies that D = 3}, Adg;, 0 Adu (D) = X, Adg;, (D) and so
X

Z (I = Psupp(p)) B,DB, (I = Psupp(p)) = (L= Psupp(p)) D (I = Psupp(p)) = 0.
M

Hence, we obtain Psypp(p) By (I = Psupp(p)) = 0.

(iii) For an element A € Ag and p(g) € Z,, we set AP(®)* as A if p(g) = 0and A* if p(g) = 1. Because
w(ag(A”(g)*)) =w(A) =Tr(D(tomy,)(A)), A € Ag, we have that

Trycpc? (D(to 1) (A)) = Trggee (D(1o my) (a/g(Ap(g)*)) ) = Tracgee (DVe((co ﬂw)(Ap(g)*))V;).
Given an orthonormal basis {£;}; of X ® C2, we see that for any A € Ag,

Trocgee (D(tomew)(A)) = Trope2 (DVg ((to nw)(Ap(g)*))Vg*)

= Z(ngj, DVg(L © ”w)(Ap(g)*)fﬁ
J

p(2)

= D (&7 VDV (o my) (AP©1)¢))
J
= Tryge2 (VaDVg (Lo m,)(A)),

where for the second equality we used that {V,&;}; is an orthonormal basis of X ® C2. Therefore,
V;DVg = D and so PSupp(D)Vg = VgPSupp(D)~ m}

Proof of Theorem 6.3. We use the notation of Theorem 5.3 and Lemma 6.5. Let m € N be the rank
of D from Lemma 6.5. We naturally identify Pgyppp)B(K ® CZ)PSupp(D) and M,,. Then we may
regard D as a faithful density matrix in My, and {v, } ,cp matrices in M,,. Because I'yc commutes with
Psupp(D)» © := I'sc Psypp(p) defines a self-adjoint unitary in M,,. Similarly, because of (iii) of Lemma
6.5, Wg := Vg Psypp(p) defines a projective unitary/anti-unitary representation of G on Pgypp(p) relative
to p. Clearly, the second cohomology class associated to W is the same of that of V; that is, [v]. From
Ady, (T'x) = (=1)%&) Tk, we have that Ady, (©) = (-1)%&)@.
Now we check the properties (i)—(v).

Parts (ii) and (v) are immediate from the definition of v,, ®, W, and the corresponding properties of
By, T'sc, V. Part (iii) follows from Lemma 6.5 (i), (iii). For part (i), using (5.10), (6.6) and that Psypp(p)
is of finite rank, we have

TY (x) = Psupp(p) Ty’ (X) Psupp(D) ~ (Qu, 71 (¥)Q0) Psupp(p) = Tracgez (DX) Psupp(p)  (6.7)
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for x € Psupp(p)Ro,5%Psupp(p) = M and convergence in the norm topology. For part (iv), (5.9) and
(6.6) imply that

W (BB, -+ B ) = Trcoca (D (1070 (Efo Efiy, - B v )))

Ho,Y0 ™ H1,V1 HNHUN Ho>Y0 ™ H1,V1 HN >HUN

N k-1
S (e 'S 1| ) )
= 0 Trge g (DBﬂ0~~~B B! -~~B')

HN ZvN Vo

= (-1)

N k-1
2 (pl+vie) 2 vyl
k=1 J=0

= (=1

Try,, (DvﬂO VN Vo -v’f,o) (6.8)

for all N € NU {0} and uo, ... un,vo, ..., vn € P. This proves (iv). O

6.2. Case: k., = 1 (odd fermionic MPS)

Theorem 6.6. Let w be a pure, split, translation-invariant and a-invariant state on A with index
Ind(w) = (1,q, [v]). For each N € N, let Qn be the support projection of the density matrix of
W[ Ay and assume supy oy rank(Qn) < oo. Then there is some m € N, a faithful density matrix
D € My, a set of matrices {v,}uep in My, and o € {0, 1} satisfying the following:

(i) Setd, :=v,® a-f°+|”| on C" ® C2. Then limy _, TGN (b) =Tr ((D ® %}Icz) b) Iy, ® L2 in norm
forallb e M), ® Q.
(ii) Foranyl € NU {0} and o, ...u;,vo,...vi € P,

0 1 1
w(Ef(lo),VoEf(ll),Vl e E,L(tl),w)

1 k-1
2 (uilebcl) 3 (ovslv; ) .
=(-D* ” Oy (lul+hal), 0 TF (D (Vﬂo SV, 'Vvo)) . (69
(iii) There is a projective unitary/anti-unitary representation W of G on C™ relative to p and cg € T
such that forall g € G and v € P,

(=DM (, DU )vy = cgWevy Wy, Adw, (D) = D. (6.10)
pneP

The second cohomology class associated to W is [v].

Remark 6.7 (Comparison with index for fermionic MPS). Like Remark 6.4, we briefly compare
our results with the H'(G,Z,) x H*(G,U(1),)-valued indices for fermionic MPS in [11, 20, 39]. An
irreducible odd fermionic MPS is specified by matrices spanning a simple Z,-graded algebra with an odd
central element. Like the even case, the group action is implemented by the adjoint action on generators by
a projective unitary/anti-unitary representation, giving a second cohomology class. The representation
will commute or anti-commute with the odd central element, giving a homomorphism G — Z,.
Considering w as a fermionic MPS, part (iii) of Theorem 6.6 shows that the second cohomology classes
coincide and (6.10) shows that the commutation of the projective unitary/anti-unitary representation
with the odd central element is specified by q. Hence, in this setting the indices for fermionic MPS agree
with the indices defined in Section 2.

Lemma 6.8. Consider the setting of Theorem 6.6. Suppose that the graded W*-(G, p)-dynamical system
(mw(AR)”, Adr,,, @) associated to w is equivalent to (R 5, Adr,., Advg) € 81, via a *-isomorphism
L7, (AR)” — Ry x. Then the following hold:
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(i) There is a finite rank density operator D on X such that for all A € Ag,
Tryc g ((D ® 1) (o ﬂw(A))) = w(A). 6.11)
(ii) Let {Syu}uep be the set of isometries given in Theorem 5.9. Then we have
w = Psupp(0)Sp = Psupp(0) SpPsupp(p), 1 € P. (6.12)
(iii) P5upp<D)V(0) Vg(O)PSupp(D) and Advg«)) (D) =D forany g € G.

Proof. (i) Given the cyclic vector Q,,, (R, ™! (x)Q4), x € Ry 5, defines a normal state on Ry 4. Let
D be a density operator on X ® C2 such that Trycge2 (Dx) = (Q, ¢ (x)Q) for x € Ry 5. Because
Ri.% = B(X) ® € and recalling the notation P from (5.62), we may assume that D is of the form
D = Dy®Py(0y) + D; ® Pi(0y). Because w 0o ® = w and t o 7y, 0 Oy, = Adr, ot omylag, it
follows that Tracgc2 (Adry (D) (¢t 0 7)) (A)) = Tryege2 (D(t 0 m,,)(A)) for all A € Ag. Therefore, we
have Adr,, (D) = D, which implies Dy = D. We set D := 2D and see that D is a density operator on
X satisfying (6.11).
Let m( be the irreducible representation of A;QO) on X given by

tomy(a) =mp(a) =, ac Ag)). (6.13)

Let Hy = ﬂ (mo(QnN)XK). Because n is an irreducible representation of A fHo is finite-dimensional
=1

by Lemma 6.2. Because w(I — Qn) = 0, we have

Trocpcz (D ® 31e2) (mo(I- On) ® 1)) = w(I-Qpn) =0

This means that Psypp(p) satisfies Psupp(p) < m0(Qn) forall N € N. Hence, we have Pgypp(p) K € Ho
and D is finite rank.

(ii) Recall the endomorphism p satisfying (5.1) from Lemma 5.1. Because w(A) = w(Bs, (A)) for all
A € AR, the set of isometries {S, },ep given in Theorem 5.9 and o7, (5.44) gives that

Tryc g2 ((D ® %Ecz) (to nw)(A)) = Tryc g2 ((D ® %ch) (poto nw)(A))

= Trgec (Ad (S10070) (D ® %JICZ) (Lo ﬂw)(A)) : (6.14)
u

which implies that D = ), " Ad5; (D). We then obtain (6.12) by the same proof as in Lemma 6.5.

(iii) By the same argument as in the proof of Lemma 6.5, we obtain (Véo))*DV;O) = D and so
0 0
Psupp(0) Vs = Ve Psupp()- o

Proof of Theorem 6.6. 'We use the notation of Theorem 5.9 and Lemma 6.8. Let m € N be the rank
of D from Lemma 6.8. We naturally identify Pgypp(p)B(K) Psupp(p) and M,,. Then we may regard D
as a faithful density matrix in M,, and {v,},cp matrices in M,,. Because of part (iii) of Lemma 6.8,
W, = Vg(o) Psupp(p) defines a projective unitary/anti-unitary representation of G on Psypp(p) X relative

to p whose cohomology class is the same as V(©); that is, [v]. Now we check the properties (i)—(iii) of
Theorem 6.6.
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Part (iii) is immediate from the definition of v,,, W, and the corresponding properties of S, and Vg(o).
For part (i), using (5.46), (6.12) and that Psypp(p) is finite rank, we have

TQ{V (x) = PSupp(D)TsN (x)PSupp(D) m Qo L_l(x)gw>PSupp(D) =Tr ((D ® %I[Cz)x) PSupp(D)

for x € (Psupp(p) ® I) Ri,% (Psupp(p) ® I) = My ® € and convergence in the norm topology.
Part (ii) follows from (5.45) and (6.12), as in the proof of Theorem 6.3. |

Appendix A. Graded von Neumann algebras

For convenience, we collect some facts about graded von Neumann algebras and linear/anti-linear group
actions. See Subsections 2.1 and 4.1 for basic definitions.

Lemma A.1. Let (M, 0) be a balanced graded von Neumann algebra. Assume that M is of type u
and M9 is of type A, with some u, A = LI 1L and that both of M and M©) have finite-dimensional
centers. Then 1 = p.

Proof. Let U € M) be a self-adjoint unitary. Let E : M — M be the conditional expectation
1
E(x) := z(x +6(x)), xeM. (A.1)

If M has a faithful normal semifinite trace o (.e., MO jg semifinite), then 7 := (19 + 19 0 Ady) o E
defines a faithful normal semifinite trace on M. Hence, if M(?) is semifinite, then M is semifinite.

Let us denote by P(M), P(M ) the set of all orthogonal projections in M, M(?). Because TIvo
is a faithful normal semifinite trace on M), if A = II, then we have 7 ((P(M(O))) = [0,7(1)]. Because
7(P(M)) contains T (TP(M(O))) and M is a finite direct sum of type u-factors, this means that g = II.

If 2 = 1, then there is a nonzero abelian projection p of M(?. We claim that there is a nonzero
abelian projection  in M such that r < p. If pMp = {0}, then pMp = Cp and p itself is abelian
in M. If pMMp # {0}, then there is a self-adjoint odd element b € M) such that pbp # 0.
Because (pbp)* = pbpbp € pM© p = Cp, we may assume that pbp is a nonzero self-adjoint unitary
in pMp. For any x € M, we also have pxppbp € pM©p = Cp. By the unitarity of pbp, we
have pxp € Cpbp and pMVp = Cpbp. Because pbp is self-adjoint unitary, we have a spectral
decomposition pbp = r, — r_, with mutually orthogonal projections r. in M and at least one of r. is
nonzero. From pM p = Cpbp = C(ry —r_) and pM @ p = Cp, r, are abelian in M and r. < p,
proving the claim. Hence, M is type I as well, u = 1.

Conversely, if M has a faithful normal semifinite trace 7 (i.e., if M is semifinite), then 7|y is a
faithful normal semfinite trace on M (9, Therefore, p =1 if and only if A = III.

If u =1, then A cannot be IT or II and so is type L. If u = II, then A cannot be I or III and so is type II.

m|

Lemma A.2. Let (M, 0) be a central graded von Neumann algebra. Then either Z(M) = CI or Z(M)
has a self-adjoint unitary b € Z(M) N MW such that
Z(M) n MY = Cb. (A2)

Proof. Let us assume that M is not a factor. By the condition of centrality, Z(M) N M = CI, there is
a nonzero self-adjoint element b € Z(M) N M. Because b? € Z(M) N M© = CI, we may assume
that b is unitary. For any x € Z(M) N M, xb also belongs to Z(M) N M@ = CI, and by the unitarity
of b, we obtain (A.2). O
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When (M, 0) is spatially graded, an analogous result holds for M N M'T".

Lemma A.3. Let (M, Adr) be a central graded von Neumann algebra on H, spatially graded by a
self-adjoint untiary T'. Then the following hold:

(i) If M is not a factor, M N M'T = {0}.
(i) IfMNM'T # {0}, then there is a self-adjoint unitary b € M N M'T such that M N M'T" = Cb. In
particular, if T' € M, then M N M'T" = CT.

Proof.

(i) If M is not a factor, from Lemma A.2, Z(M) has a self-adjoint unitary b € Z(M) N M) such that
Z(M) N MWD = Ch. For any a € M N M'T, we have

ba=ab=al'TbIT =al' (-b)T" = —(al")bI' = —=b(al')T" = —ba. (A.3)

The first equality is because b € Z(M), and the fifth equality is because aI" € M’. Because b is
unitary, this means a = 0.
(i) Note that for any a,b € M N M'T, ab € Z(M). From this observation and (i), the same proof as
Lemma A.2 gives the claim. If ' € M, as I' = IT", we have I' € M N M'T.
O

Recall the graded tensor product product defined in Subsection 4.1.

Lemma A4. Fori = 1,2, let (M;, Adr,) be a graded von Neumann algebra on J; spatially graded
by a self-adjoint unitary T; on H;. Let M| & My be the graded tensor product of (My,H1,TI'1) and
(My, Hs, ). Then commutant of the graded tensor product (M| & M»)’ is generated by

M@ oeonm;, (MY oM. (A.4)

Proof. The proof is given by a modification of the corresponding result for ungraded tensor products.
Let M := M; &M, and N be a von Neumann algebra generated by (A.4). We would like to show
N =M. A brief computation gives the inclusion M c N’.

We let o € {0,1} and denote by R"-(?) the set of all self-adjoint elements with grading o in a
graded von Neumann algebra R. For a complex Hilbert space X and its real subspace V, Vz is the
orthogonal complement of V in X regarding X as a real Hilbert space, with respect to the inner product
<" '>R = %<’ >

First we assume that M;, j = 1,2, has a cyclic vector &; which is homogeneous in the sense that
Q= (-1)Q; for some €; € {0, 1}.

Because Q := Q) ® Q, is cyclic for M in H; @ Hj, to show M’ = N, it suffices to show that
MEQ + iIN"Q is dense in H; ® Hy by [38, Chapter 1V, Lemma 5.7]. For o; = 0,1, j = 1,2, set
L) = (1+ (=1)%T))H;, j = 1,2. Then by the cyclicity of Q; and T;Q; = (-1)9Q;, M\, is

. We also note (M;.)(O'I)Qj C L(O{;?+Ej. By [38, Chapter IV, Lemma 5.7],
i(Jv[})th is dense in (M?Qj)ﬁ. Therefore, i(M})h’(‘Tf"ff)Qj is dense in (M) (7i*€) Q)L N L([ﬁl)
SetY,, = (M))-(o1+e) Q) and Zy, = (My)(2t€) ) By the above observation, i(Mi)h’("‘“‘)Ql
is dense in (Y)z N Lg]) and i(Mé)h’("'z“Z)Qg is dense in (Z,)z N ng) Because Y, + iY,, and
Zs, +iZ, are dense in LETII) and [/((32) , respectively, by [38, Chapter IV, Lemma 5.8], Y, © Z4, +
i(Yo)g 0 LETII)) O ((Zoy)z N L%)) is dense in Lfrll) ® LETZZ) Hence, we conclude that

a dense subspace of ng)m

(M) TFa Q) @ (My) (0¥ Qy + (M) T Q) 0 (M) Qy = VY, o, (AS)

is dense in L(Ull) ®L 532) Using the homogeneity of Q;, I';Q; = (=1)¥Q;, we can prove that M'Q+iN"Q
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includes

(O1t+€)(ort+e
jlore(mra)y

(A.6)

lea} ,0’2=0, 1

By the density of V., ., in £ ETII) L 5722), M"Q+iN"Q is dense in H; ® H, and this completes the proof
for the case with cyclic vectors.

Now we drop the assumption of the existence of the cyclic vectors. Let {E/}, be a family of
mutually orthogonal projections in M such that each E, is an orthogonal projection onto M, &,, with
a homogeneous &, € 3y, and 3, E;, = Ig,. Let {F, }; be a family of mutually orthogonal projections

in M, such that each F, is an orthogonal projection onto M>7;, with a homogeneous 1, € H,, and
>b F, l; = Ig¢,. Note that because &,, i1, are homogeneous, E;, and F l; are even with respect to Adr,, Adr,,
respectively. Because E;, and F, are even, the argument in [18, Lemma 11.2.14] shows that the central
support of £/, ® F; € N c M’ with respect to N and the central support of E;, ® F;, € N ¢ M’ with
respect to M’ coincide. We denote the common central support by P, 5. By the first part of the proof, we
know that (E/, ® F)) N (E,, ® F}) = (E,, ® F)) M’ (E,, ® F,). We also have }’,, ,, E/, ® F; = l3( g,
Therefore, applying [18, Lemma 11.2.15], we get N = M’. O

Lemma A.5. Let (M;,Adr,) , (N;,Adw,), i = 1,2, be spatially graded von Neumann algebras
on H; and XK;, respectively, with grading operators T'; and W;. Let a; : M; — N;, i = 1,2 be
graded *-isomorphisms. Suppose that M, (hence Ny as well) is either balanced or trivially graded.
Let My ® My be the graded tensor product of (M1, H1,T1) and (Ma, H,,T3). Let Ny ® Ny be the
graded tensor product of (N, XK1, Wy) and (Np, Ky, Ws). Then there exists a unique *-isomorphism
a1 ®ar : M @My — Ny &N, such that

(@1 ® ) (a®b) = ai(a) ®az(b), (A7)

Jor all a € My and homogeneous b € M,.

Proof. Because cyéo) = az|M(0) is a normal *-isomorphism from M;O) onto Néo), by [38, Chapter IV,
2

Corollary 5.3] there is a unique *-isomorphism © from M; ® Méo) onto N1 ® Néo) such that

a(a®b)=ai(@)®a(b), aeM, bedM”. (A.8)

If M, is trivially graded, then we set a3 ® @, := @O If M, is balanced, let U be a self-adjoint unitary
element in Mél). Because we have M = (M; ® Méo)) & (M; @ M\”) (' ® U), we may define a linear
map a; ® ap : M — N by

(@1 @) (x+y([10U)) =a?@) +2Q(G) (W, ® 2(U)), x,yeM;® Mé()). (A.9)

It is straightforward to check that a1 ® @, is a normal *-homomorphism. Similarly, we may define a
normal *-homomorphism (a;)”' & (@2)™' : N — M, which turns out to be the inverse of @ & a».
Hence, @1 ® @, is a x-isomorphism satisfying (A.7). The uniqueness is trivial from (A.7). O

Lemma A.6. Let (M;, Adr,), i = 1,2, be balanced and spatially graded von Neumann algebras on
H; with a grading operator T;. Let M1 &® My be the graded tensor product of (My,H1,T1) and
(My, H,, T). For any graded *-automorphism 8; on M; implemented by a unitary V; on H; satisfying
Vil; = (=1)";V;, v; € {0,1} for each i = 1,2, the automorphism 31 & B2 on My ® My defined in
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Lemma A.5 satisfies
(B1®B2) (a®b) = Ad(vl®v21“2”‘) (a®Db), (A.10)

Jor all a € My and homogeneous b € M.

Proof. 'We compute that

(818 2) (a&b) = 1 (T © Bo(b) = Advyevey (al PP (-1 © b)
= Ad(v,ev,) Ad(mrz"l) (aF?b ®b),

from which (A.10) follows. m]

We also consider anti-linear *-automorphisms.

Lemma A.7. Let (M;, Adr,), i = 1,2, be balanced and spatially graded von Neumann algebras on
H; with a grading operator T;. Let M ® My be the graded tensor product of (My,H1,T') and
(My, H,o, Tz) Suppose that M; has a faithful normal representation (X;, n;) with a self-adjoint unitary
W; on K; satisfying Adw, om;(x) = m; o Adr,(x), x € M; and a complex conjugation C; on X;
satisfying Ade, (m;(M;)) = m;(M;) and C;W; = W;C;, for i = 1,2. Then for any graded anti-linear *-
automorphism B; on M;, i = 1, 2, there exists a unique anti-linear x-automorphism 1 ® 82 on My & M,
such that

(B1&B2) (a®b) = Bi(a) & Ba(b), (A.11)

for all a € M| and homogeneous b € M.
If B; is implemented by an anti-unitary V; on H; satisfying V;I'; = (=1)"I;V;, v; € {0, 1} for each
i=1,2, then

A

(B1®pB2) (a®b) = Ad(y, gy, (a®D). (A.12)

Proof. Let m(M;)®my(M>) be the graded tensor product of the (m1(M;),%;,W;) and
(m3(M5), Ko, W). By Lemma A.5, there is a *-isomorphism 7 := m ® 7, from M; & M, onto
11 (M) @ mp (M) satisfying (71 ®m2) (a®b) = mi(a) ®ma(b) for a € M; and homogeneous
b € M,. Because B;, Ade, and m; preserve the grading, @; = Adeg, om; o §; o 7Tl._1 is a graded
(linear) *-automorphism on 7;(M;). By Lemma A.5, there is a #-automorphism « := a1 ® a
on 711 (M) ® 12(M) such that (a; ® @) (a®b) = @(a) ®ar(b) for a € m;(M;) and homoge-
neous b € my(M>). Furthermore, for C := €; ® C,, Ade preserves (M) ® m2(M>). Therefore,
B1®By = 77" o Ade oa o 7 defines an anti-linear x-automorphism on M; ® M and it satisfies (A.11).

The proof for the second half of the lemma is the same as in Lemma A.6. O

Lemma A.8. Let G be a finite group and p : G — Zy be a group homomorphism. Let (M, Adr,, a1),
(M, Adr,, a2) be graded W*-(G,p)-dynamical systems such that, for i = 1,2, M; is a balanced,
central, spatially graded and type I von Neumann algebra with grading operator T';. Let M; & M, be
the graded tensor product of (M, H1, 1) and (My, Hy, ). Then for every g € G, there exists a linear
s-automorphism (p(g) = 0) or anti-linear automorphism (p(g) = 1), (a1 & az), on My & My such that

() ®a'2)g (a®b) =a)4(a)®arg(b), (A.13)
for all homogeneous a € M| and b € M,.
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Proof. By Lemma 2.9, there are graded *-isomorphisms ¢; : M; — R, 5, with some (R, x;,
Adrxi s AdVi,g) € §,, foreach i = 1,2. Hence, (X; ® 2, t;) is a faithful normal representation with a
self-adjoint unitary 'y, implementing Adr, on X; ® C2. Let C be a complex conjugation with respect
to the standard basis of C? and C; be any complex conjugation on X;. Then €; ® C is a complex
conjugation on X; ® C?> commuting with 'y, = Iy, ® o, preserving R, 5, = t; (M;). Hence, we may
apply Lemma A.5 and Lemma A.7, which gives the result. O

Appendix B. Lieb-Robinson bound for lattice fermion systems

In this section, prove the Lieb-Robinson bound for one-dimensional lattice fermion systems. Though
this result is not new (see [10, 27]), our method of using an odd self-adjoint unitary to derive the
Lieb-Robinson bound for odd elements from even elements is new.

The result holds for more general metric graphs, but to avoid the introduction of further notation,
we restrict ourselves to the one-dimensional case. Let us recall the basic setting for the Lieb-Robinson
bound; see [3, 27, 28] for details.

Definition B.1. An F-function F on Z is a non-increasing function F : [0, c0) — (0, c0) such that

() 1FI| = 5upy ez (Zyez F (d(x, 1)) < 0 and

i — F(d(x,2))F(d(z.,y))

(i) Cr =sup, yez (ZzEZ I)E(ZTW”) < 0.

Definition B.2. Let F be an F-function on Z and I an interval in R. We denote by B¢.(I) the set of

all norm-continuous paths of even interactions on A defined on an interval / such that the function
||®||f : I — R defined by

@[l (¢) := sup Ie(Z:oll, tel, (B.1)

1
X,y€Z F(d(x,)’)) ZEGZ

7,2 3X,y

is uniformly bounded; that is, sup,; ||®||r (f) < co.

For the rest of this Appendix, we fix some ® € B¢, (). For each s € I, we define a local Hamiltonian
by (1.6). We denote by Uy o(t; s) the solution of

d
S Uno(t:s) = —iHro(OUno(t:5),  t.s €l Unolsis) =L (B.2)
We define the corresponding automorphisms Tt(’/;)’q) on Az by
Tz(,/:)’d)(A) = Up,0(t;5)"AUp 0 (15 5) (B.3)
n),® n),®

is the inverse of 7,

with A € Az. Note that T

st . Because ®(s) is even, the proof of [28, Theorem

3.1] gives the following.
Lemma B.3. Let X,Y € Sz with X NY = 0. If either A € Ax or B € Ay is even, then

2 |1All ||B
[[recar. | « EHEL (evist 1) pycxm, B.4)
where v > 0 is some constant and
Do(X.¥):= ) > F(lx=y). (B.5)
xeX yeYy

https://doi.org/10.1017/fms.2021.19 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.19

Forum of Mathemetics, Sigma 43

Using this lemma and because @ is even, the proof of [28, Theorem 3.4] guarantees the existence of
the limit

@ (A) = Jim VP4), Aed, 1sel01]. (B.6)

S

Clearly, the limit dynamics Ttd’)s satisfy the same Lieb-Robinson bound as in Lemma B.3. We would
like to have an analogous bound as Lemma B.3 for odd A, B. To do this, fix an odd self-adjoint unitary
Uo € Aqoy. For each m € Z, Bs,, (Up) is a self-adjoint unitary in A ,,. Define an interaction ®,,(s) by

®D,,(Z;5) = Adgy () (D(Z;5)), Z€Sz, sel, meN. (B.7)

Note that ®,,,(Z; s) = ®(Z; s) if Z does not include m. Because ®,, and ® are even, Lemma B.3 and
the proof of [28, Theorem 3.4] imply the bound

; 41l .
-] < 2D /[ A9zl Dy, ) ("7 1)
Zom Y 1St

<allal [ (e =)0l (1) ) Flx—mD) =i g(m),  (BS)

[s.7] xeX

for any A € A , where the last inequality uses (i) and (ii) of Definition B.1 as well as Equation (B.1).
Note that lim,;,—,c g(m) = 0. Therefore, we have

{7240, Bs,, o} = e 4) = w2 ()| < o), B.9)
for any A € Ag(l) and X €e Sz withm ¢ X. Let X, Y e Sz with XNY =0, A € Ag), B € A;l) and

m ¢ X. Because Bs,, (Up) € A;Oa{m}, Lemma B.3 and (B.9) imply

[{z>.A), BY|| = ||[72(A), BBs,, (Uo)] Bs,. (Uo) + BBs,, (Uo) {t2:(A), Bs,, (U}
2|All 1Bl
< —

S (e = 1) Do(X. ¥ U {m)) + g (m) B (B.10)
F
Taking the limit m — co and using Lemma B.3, we obtain the following.

Lemma B.4. Let X,Y € Sz with X NY = 0. For homogeneous A € Ax and B € Ay, we have
2||A|l ||1B
|22, (A)B — (~1)749B B2 (A)|| < w (evlf—sl - 1) Do(X.Y). (B.11)
F

As in quantum spin systems, we can estimate the locality of the time-evolved observables from Lieb-
Robinson bounds. To do this, let {Ex : A — Ax, | N € N} be the family of conditional expectations
with respect to the trace on A; see [2]. By the same argument as [28, Corollary 4.4], if A € A© s such
that

I[A, Bl|| < clBIl, (B.12)

forall BelJ xes, Ax,then||[A—-Ey(A)|l < C. We extend this bound to odd elements.
XN[-N,N]=0
Suppose that A € A is such that

|AB - (-1)?BBA|| < C|IB| (B.13)
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for all homogeneous B € |J xes,, Ax.LetUp € AD pe g self-adjoint unitary. Then we have

XNn[-N,N1=0 {0y
AUy € A(O) and
(AU, Bl|| = ||(AB - (-1)?2BA)U|| < C ||B|| (B.14)
for all homogeneous B € |J xes,, Ax. Hence, we have that [|[[AUy, B]|| < 2C||B|| for any
XN[-N,N]=0
BelJ) xes, Ax.Therefore, by the even case, we obtain that
XN[-N,N]1=0
IA =En (A)ll = [I(A - En (A)) Uoll = [|AUy — En (AU || < 2C, (B.15)

where we used the fact that Up € Ay, . From this and Lemma B.4, we have shown the following.

Lemma B.5. Forany N € N, X € Sz with X C [-N,N] and A € Ay, we have

En (7)) - 7 (A < = 8”A” (e 1) Do(X. [N, N, (B.16)

Having Lemma B.4 and Lemma B.5 as input, we can carry out all of the arguments in [25, Theorem
1.3] and [29, Proposition 3.5].
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