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Abstract

In the current work, the effects of design (groove depth and groove width) and operational
(temperature and velocity) parameters on aerodynamic performance parameters (coefficient
of drag and coefficient of lift) of an isolated passenger car tire have been investigated. The
study is conducted by using neural network-based Monte-Carlo analysis on computational
fluid dynamics (CFD). The computer experiments are designed to obtain the causal relation-
ship between tire design, operational, and aerodynamic performance parameters. The
Reynolds-averaged Navier–Stokes equations-based Realizable K-ε model has been employed
to analyze the variations in flow patterns around an isolated tire. The design parameters
are varied over wide range and full factorial design, while considering temperature and velo-
city is completely explored to draw conclusive results. The multi-layer perceptron type neural
network with the back-propagation algorithm is trained to map any non-linearity in causal
relationships. The sensitivity analysis is performed to find the relationship between control
variables and performance indicators. The importance of control variable is determined by
both sensitivity and significance analyses and the paired interaction analysis is performed
between selected control variables to find the interactive behavior of corresponding variables.
The design parameter of groove width with 6.8% and 41% reduction in drag and lift coeffi-
cient, respectively, and conventionally overlooked operational parameter of velocity with 4%
and 35% impact on drag and lift coefficient, respectively, are found to be the most significant
variables. The air trapped between the longitudinal grooves and the road is found to follow the
beam theory. The interaction of the groove depth and width is found to be significant with
respect to coefficient of lift based on the air beam concept. The interaction of groove width
and velocity is found to be significant with respect to both coefficients of lifts and drag.

Introduction

In last two decades, the aerodynamics of a car gained much more importance with the intro-
duction of energy efficiency legislations, tougher global CO2 emissions standards, and legisla-
tions regarding acoustic levels. Lew et al. (2017) studied isolated rotating treaded tire effect on
wake plane. They have emphasized the importance of simulation as the test standards set by
Worldwide Harmonized Light Vehicles Test Procedures (WLTP). The need for the investiga-
tion of relationships between CO2 emissions and a very long list of vehicle design variables has
been recognized by the research community in automotive engineering. Considering every sin-
gle design variable renders the experimental wind tunnel experimentation to be both very
tedious and extremely expensive. Therefore, the WLTP approves the use of computer simula-
tions. Similarly, the standards of car noise level are becoming tougher and tougher every year.
The European Union has a scope of reducing car’s noise-level phase by phase up to 68 dB in
2024 (European Parliament and Council, 2014).

The research community, recently, has published extensive literature on simulation-based
investigations of relationships between vehicle aerodynamics and design variables of isolated
components of passenger cars like rims and tires (McManus and Zhang, 2005; Van Den
Berg and Zhang, 2009; Schütz, 2013; Haag et al., 2017). The wheels and their housing are
among the heavy contributors in car’s aerodynamic resistance, that is, ∼25% of aerodynamic
resistance comes from them (Wickern et al., 1997). Therefore, several research work studies
have been conducted to understand the effect of different types of rims, front wings, and
tire geometries on cars aerodynamics (Kellar et al., 1999; Mears et al., 2002; Modlinger
et al., 2008; Landström et al., 2009; Landström et al., 2010; Landström et al., 2011). The
wake plane study of an isolated wheel with translational movement of road using Laser
Doppler Anemometry was done by Knowles et al. (2002). A comprehensive study of wake
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vortices of an isolated wheel using unsteady Reynolds-averaged
Navier–Stokes equations (RANS) was done by McManus and
Zhang (2005). In the previous studies, it is shown that higher
levels of details like hub spokes, tire treads, etc., have an impact on
the aerodynamics of an isolated wheel (Saddington et al., 2007;
Issakhanian et al., 2010; Axerio-Cilies et al., 2012; Axerio-Cilies
and Iaccarino, 2012). However, the studies investigating the
impact of dimensions of tire profile and thread pattern (Sebben
and Landström, 2011; Landstrom et al., 2012; Hobeika et al.,
2013) are still very limited and need more focus. Furthermore,
scientific investigations on the causal relationship between aero-
dynamic performance variables and tire design variables in com-
bination with operational variables are almost non-existent in the
literature.

Machine learning and artificial intelligence tools like neural
networks have recently gained a lot of attention by both research
and industrial communities in engineering. Innovative ideas cou-
pling the computer-simulated experiments, machine learning
tools, and the statistical analysis techniques have been used suc-
cessfully and reported by research communities in the fields of
HVAC, thermodynamics, tooling and manufacturing, etc.
(Hughes, 1999; Liang and Du, 2007; Barberousse et al., 2009;
Tsanas and Xifara, 2012; Zhou et al., 2015).

This paper presents neural network-based Monte-Carlo analysis
of computational fluid dynamics (CFD) investigations of casual
relationships between aerodynamic performance parameter, design
parameters, and operational parameters of an isolated passenger car
tire. A design of experiment constituting various levels of design
parameters (tire tread groove depth and tire tread groove width)
and operational parameters (temperature of the surroundings and
velocity of tire) is constructed. CFD-based computer-simulated
experiments were performed to measure the aerodynamic perfor-
mance parameters, that is, coefficient of drag (Cd) and coefficient
of lift (Cl). A back propagation multi-layer perceptron-type neural
network is trained on the data to efficiently map any non-linearity
in the causal relationship. Monte-Carlo analysis was conducted on
the neural network models to conduct the sensitivity, significance,
and paired interaction analyses.

Computer-simulated experimentation

Geometry selection

Fackrell and Harvey reported experimental investigation of wind
tunnel-based aerodynamic analysis (Cd, Cl, pressure coefficient, vor-
tices) of an isolated tire geometry (Fackrell and Harvey, 1973, 1975;
Fackrell, 1974). Geometry used by Fackrell and Harvey was simpli-
fied for numerical analysis by Axon et al. (1998). Diasinos et al.
report that in order to better study the impact of factors like groove
dimensions and corner radii, etc., the simplification of model geom-
etry is very useful (Diasinos et al., 2015). Therefore, based on the
recommendations of Axon et al., a simplified tire geometry for cur-
rent experimentation has been deployed as shown in Figure 1. A
contact patch of 12.6° is used to simulate contact between tire
and road (Heo et al., 2014; Diasinos et al., 2015). The main dimen-
sions of tire model are given in Table 1. The origin point, axis orien-
tations, and symmetry plane used in this entire computer-simulated
experimentation is shown in Figure 1a. The groove depth and
groove width is shown in Figure 1b. The longitudinal grooves that
have been employed on the tire model and the contact patch are
shown in Figure 1c, d, respectively. The tire model is created in
the CAD software (Solidworks, 2017).

Computational domain

A computational domain (with x–y plane acting as a plane of
symmetry and cutting the domain in half) is made as shown in
Figure 2. The origin point, axis orientation, and symmetry
plane are same for the computational domain as shown in
Figure 1a. The dimensions of the computational domain (virtual
wind tunnel) are set based on recommendation in the literature
(Knowles, 2005; Lanfrit, 2005; Wang et al., 2018). Walls of the
domain are set far away from tire model and has no effect on
the flow around the geometry. Upstream dimension is X1/D =
5.5 and downstream dimension X2/D = 10.5. Height of domain
is Y1/D = 7 and Y2/D = 0. Width of domain is Z1/D = 5 and Z2/
D = 5 where D is the diameter of the tire model. Based on these
dimensions, the frontal area of the tire model is 0.65% of
domain’s frontal area in Y–Z plane. The accuracy of the results
depends upon the ratio of frontal area of tire model to frontal
area of the computational domain (Das et al., 2013; Blocken
and Toparlar, 2015; Collin et al., 2017; Haag et al., 2017). The
flow inlet and outlet definitions are given to front and back
walls as shown in Figure 2.

Meshing

The meshing of the computational domain is made in Ansys mesh-
ing module using the hybrid meshing approach. In order to control
the cell generation, refinement zones are introduced near the tire
model (Strumolo and Babu, 2000; Abohela et al., 2013). For
mesh generation, automatic meshing algorithm approach is applied
(Haag et al., 2017). Tetrahedral cells are used to fill the domain
including the region of refinement zones (Çengel, 2010).
Inflation layers are developed on tire boundary and road surface
to capture better flow characteristics (Grabowski et al., 2015;
Holder et al., 2018; Wang et al., 2018). Prism cells are used to con-
struct the inflation layers. Contact patch is introduced between the
tire geometry and road (Diasinos et al., 2015; Haag et al., 2017). A
growth rate of 1.2 (20%) is set at all the interfacing zones so that
adjacent cells grow gradually and the computation error is mini-
mized (Ahmad et al., 2010). The meshed computational domain
along with the zoomed view of tire model in the computational
domain and a zoomed view of inflation layer is shown in
Figure 3a. The treatment of tire grooves and the meshed tire geom-
etry before and after the computational domain is split into sym-
metrical halves that can be seen in Figure 3b.

A comprehensive mesh independence analysis is conducted
for both our measures, that is, Cd and Cl. At the start of the
mesh independence study, the total number of cells in the
whole computational domain (the tire model, the road, the five
refinement zones, and the rest of domain) were 1 million. The
number of cells in the refinement zones are systematically
increased by reducing the size of the cells to assess the percentage
relative error in the computed values of Cd and Cl. The systematic
increase in the number of cells was continued till the percentage
relative error is reduced below 3% (Ahmad et al., 2010; Diasinos
et al., 2015). The results with 8, 9, and 10 million cells in the mesh
independence analysis showed that the percentage relative error
for drag and lift was reduced to an acceptable range of below
2%. Further increase in the number of cells will lead to a high
computational cost without any significant improvement in the
computational accuracy. The final selected computational domain
after the mesh independence analysis constituted 9 million cells
with majority of the cells confined within the refinement zones.
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Numerical model configuration

Results from Shih et al. (1995) depict that the two-equation
Realizable K-ε model is a robust model and it has the ability to
accomplish high accuracy for rotating and separating flows. Both
the rotating and the separating flow phenomena occur in our
computer-simulated experiments. The comparison between differ-
ent turbulence models on tire model is given by Diasinos et al.
(2015). The Realizable K-ε RANS model is used to solve complex
flows by different studies (Doig and Barber, 2011; Blocken and
Toparlar, 2015; Diasinos et al., 2017). The significance of
Unsteady Reynolds-averaged Navier–Stokes equations (URANS)
cannot be undermined. However, previous research work has
reported that steady-state incompressible RANS model can be
used without compromising much accuracy (Hobeika et al.,
2013; Vdovin et al., 2013; Heo et al., 2014; Diasinos et al., 2015).
Furthermore, steady RANS has been reported as still being the
most used and accepted approach in vehicle industry (Diasinos
et al., 2015). Therefore, steady-state analysis is conducted in this
research work as this remains the preferred approach in academia
and in industry (Defraeye et al., 2010; Diasinos et al., 2014; Dang
et al., 2015; Diasinos et al., 2017). The solution is set as implicit
and a finite volume method is used to solve RANS equation
(McManus and Zhang, 2005). For pressure and velocity coupling,
the coupled algorithm is used as it is more robust and performs
well as compared with the segregated solution scheme (Hobeika
et al., 2013; Ansys, 2016). Equations are discretized as first-order
upwind scheme for the first 400 iterations so that the

computational domain can be filled with numbers. First-order
upwind scheme can converge in much less amount of time but
is less accurate than the second-order upwind scheme. Therefore,
after the first 400 iterations, the solution is further run with
second-order upwind scheme till the results obtained meet the con-
vergence criteria (McManus and Zhang, 2005; Gérardin et al.,
2014). The solution is considered as converged when residual of
energy terms reach the value of ≤10−6, residual of velocity (x, y,
and z) reach the value of ≤10−8, and residual of continuity reach
the value of ≤10−5 (Diasinos et al., 2015). All other solver settings
can be found in the guide lines of Ansys Fluent (Ansys, 2016).

Boundary conditions

The rotation of tire model is simulated by the moving wall
approach (McManus and Zhang, 2005). Turbulence intensity of
the freestream is set to 0.2% (Watkins et al., 1995). A linear
(translational velocity) is assigned to the inlet air flow (which is
velocity inlet boundary) in negative “x” direction. An angular
(rotational) velocity (ωz) is assigned to the tire in negative “z”
direction, as shown in Figure 4a. At the outlet wall (which is pres-
sure outlet boundary), a gauge pressure of zero is set. The road is
specified with a no slip boundary condition to simulate the con-
tact between the road and the tire (McManus and Zhang, 2005).
The result containing pressure contour plot on the tire model for
a selected computer-simulated experiment is shown in Figure 4b.

Process modeling

The design of experiments

The basic level of comparison between the slick and the grooved
tire’s coefficients of drag and lift has been reported in the previous
research work (Hobeika et al., 2013; Leśniewicz et al., 2014). But
there is a need of a detailed study which can give answers to

Fig. 1. (a) Tire model dimensions, origin axis, and sym-
metry plane. (b) Groove dimensions. (c) 3D tire model
with longitudinal grooves. (d) Tire contact patch
attached to road.

Table 1. The main dimensions of tire model

Diameter
(mm)

Width
(mm)

Shoulder radii
(mm)

Contact patch
angle (deg)

416 191 24 12.6
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questions like how lift and drag are affected by changing groove
depth or groove width. Furthermore, the effect of temperature and
velocity on coefficients of drag and coefficients of lift need to be
investigated alongside the varying groove width and groove depth.

A full factorial computer-simulated experimental study
answering the aforementioned questions is presented in this

research work. The main geometry of tire remains unchanged.
Four control variables are considered, that is, groove depth (x1),
groove width (x2), temperature (x3), and freestream velocity
(x4), maintaining all other conditions constant. The full factorial
design of experiments was constructed based on seven levels of
groove depth, seven levels of groove width, two levels of

Fig. 2. Computational domain (virtual wind tunnel) for the
computer-simulated experimentation.

Fig. 3. (a) Meshed computational domain, the zoomed view of tire model, and inflation layer at the interface of the tire model with immediate next zone of the
computational domain. (b) The treatment of tire grooves before and after symmetrical halves.
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temperature, and four levels of velocity. The configuration of the
input space of the full factorial design of experiment is shown in
Table 2. The design constituted 392 computer-simulated experi-
ments. Cd and Cl are two output variables.

Artificial neural network

Artificial neural networks (ANN) are well known for their ability to
map any extent of non-linearity in the data (Uddin et al., 2013;
Uddin et al., 2015a). Therefore, gradient descent back propagation
algorithm-based multi-layer perceptron (MLP)-type ANN are
deployed as process models for the computer-simulated design of
experiments shown in Table 2. The variables x1, x2, x3, and x4
are fed to ANN as inputs and variables Cd and Cl are fed as outputs
for the neural network training, testing, and validation. The config-
uration of 4-12-1 (input-hidden-output layer neurons) is employed
in the development of MLPs. A learning rate of 0.01 is set for the
MLP training. A tangent hyperbolic function is deployed for the
forward movement of signal at the nodes of hidden and output
layers and gradient decent algorithm is applied for error conver-
gence. The networks are set to train for 10,000 epochs and stopping
criterion of 0.0000001 as change in error or no change in error for
2,000 epochs are set. A split of 80%, 10%, and 10% is set for train-
ing, testing, and validation of the MLPs. Figure 5 presents a generic
diagram of MLPs employed in our study. The MLP-based ANN
configuration is summarized in Table 3.

Monte-Carlo experimentation

Monte-Carlo experiments are used to study the causal relation-
ship between the control variables and the output variables
using the trained MLP computer models (Uddin et al., 2013,
2015a, 2015b). In this research work, three types of MLP-assisted
Monte-Carlo analyses are being presented, that is, sensitivity

analysis, significance analysis, and paired interaction analysis.
The details of Monte-Carlo experiments for sensitivity, signifi-
cance, and paired interaction analyses are given below:

Monte-Carlo experiment 1: factor-wise sensitivity analysis
(1) Four control variables are selected in this experiment, that is,

groove depth, groove width, temperature, and velocity. Let xi
represent a control variable where i = 1,2,3,4. x1 = groove
depth, x2 = groove width, x3 = temperature, and x4 = velocity.
Two output variables which are performance variables are
represented by y1 and y2.

(2) xi is varied at regular intervals between its minimum value
and its maximum value and n experimental treatments are
created. Each varied value of xi is represented by xik where
k = 1,2,3 …, n. All other control variables are represented
by xj where j = 1,2,3,4 and j≠ i are kept constant at their
respective mid values. The kth input vector for first control
variable can be represented as (x1k, x2mid, x3mid, x4mid) and
respective output vector is represented by y1k and y2k.

(3) M replications are created for each treatment of k. For each sub-
set of M replications, xik is kept constant while all other control
variables (xj where j≠ i) are perturbed about their mean value.
The perturbations are created based on a Gaussian noise with
mean equal to zero and standard deviation equal to 1% of
xjmin and added to xjmid of each control variable xj.

(4) The ANN-based computer-simulated model is used to find
the response of xik for n experimental treatments where
each experimental treatment constitutes M replications. The
responses are obtained in the form of y1ikm and y2ikm where
k = 1,2,3,…,n and m = 1,2,3,…,M. A Gaussian noise is
added to the obtained responses to account for the error in
ANN-based computer-simulated model. This Gaussian
noise is obtained from N(μne, σne). The μne and σne are
mean and standard deviation of the ANN-based computer-
simulated model’s prediction error.

(5) From each y1ikm and y2ikm where m = 1,2,3,…,M mean (μ1ik
and μ2ik respectively) and standard deviation (σ1ik and σ2ik,
respectively) are calculated.

(6) The mean, upper control limit (UCL), and lower control limit
(LCL) trend lines for y1 are obtained from (μ1ik), (μ1ik +
3σ1ik), and (μ1ik – 3σ1ik), respectively. Similarly, the counter-
parts of y2 are used for its mean, UCL, and LCL trend lines.

Monte-Carlo experiment 2: significance analysis
Repeat the steps from 1 to 5 as discussed in “Monte-Carlo experi-
ment 1: factor-wise sensitivity analysis” with an exception in step
number 3 which is as follows:

Table 2. Variables and their corresponding levels for the full factorial design of
experiment

Variables Levels

Total number of
experiments in full
factorial design

aGroove depth (mm), x1 6, 7, 8, 9, 10, 11, 12 7 × 7 × 2 × 4 = 392

aGroove width (mm), x2 6, 7, 8, 9, 10, 11, 12

Temperature (°C), x3 15, 40

aVelocity (m/s) , x4 18.6, 24.2, 30.6, 33.3

a(Leśniewicz et al., 2016; Dieselnet, 2018, Maxxis, 2018).

Fig. 4. (a) The rotational motion of tire (ωz) and direction of air flow. (b) The pressure
contour plot on tire model.
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xik is kept constant for each k value while generating M repli-
cations of each kth treatment. All control variables xj are ran-
domly varied between their respective minimum and maximum
values for the whole data set.

Monte-Carlo experiment 2: paired interaction analysis
Repeat the steps from 1 to 5 as discussed in “Monte-Carlo experi-
ment 1: factor-wise sensitivity analysis” with an exception in step
number 3 which is as follows:

xik is kept constant for each k value while generating M repli-
cations of each kth treatment. Its pair control variable xj is ran-
domly varied between its minimum and maximum value and
remaining control variables xj are kept at their respective middle
value for whole data set.

Results and discussion

The results presented in this section are based on computer-
simulated experiments, MLP-based neural network process
model, and Monte-Carlo analysis.

Artificial neural network results

The data set constituting 392 data points each representing four
control variables and two output variables, that is, Cd and Cl is

used to prepare neural network computer models. Two separate
MLPs are trained for Cd and Cl. The effectiveness of the neural
network computer model was decided based on the
goodness-of-fit criteria (the R2 for training data subset, the R2

for testing data subset, and the R2 for validation data subset).
The R2 values (in case of Cd) for training, testing, and validation
are 0.922, 0.946, and 0.928, respectively. The R2 values (in case of
Cl) for training, testing, and validation are 0.962, 0.979, and 0.976,
respectively.

The trend line of error reduction in MLP with number of
training epochs is shown in Figure 6. Both Cd neural network
model shown in Figure 6a and Cl neural network model shown
in Figure 6b present a steady error convergence for 10,000 epochs.
The training and testing error of the MLP decrease significantly
for first 4000 epochs after which a steady decrease is observed.
Therefore, if both the networks are further trained, they will
only decrease error marginally.

Factor-wise sensitivity and significance analysis

In this section, the sensitivity and significance analyses present
the behavior and importance of a control variable with respect
to co-responding output variable. The sensitivity analysis studies
the trend of a particular output variable against a control variable
by varying the concerned control variable at regular intervals and
keeping all other variables at their mid values. Further in order to
test the robustness of the neural network computer models, 10
replications of each data points are created by adding 1%
Gaussian noise. The significance analysis studies the role played
by a particular variable in determining an output variable by
changing concerned control variable at regular intervals and all
other control variables randomly between their minimum and
maximum values, respectively. The graph of sensitivity trend of
a particular variable can be assessed based on the gradient of its
mean trend line. In case of significance trend; if the shape of
the corresponding sensitivity trend is retained in significance
graph (mean, UCL, and LCL) of a particular variable, then that

Fig. 5. Generic diagram of MLPs for Cd and Cl.

Table 3. Summary of ANN configuration

ANN configuration

Algorithm Gradient descent with back propagation
algorithm with multi-layer perceptron

Number of hidden layers 1

Input-hidden-output layer
neurons

4-12-1

Learning rate 0.01

Layer function Tangent hyperbolic
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particular variable has a stronger causal relationship with output
variable. Furthermore, the extent of widening of the confidence
interval of a particular variable in its significance trend reflects
its strength in comparison with its peer control variables.

Groove depth
The sensitivity trend of Cd with respect to the groove depth is
shown in Figure 7a. A steady and significant reduction (∼3.2%)
in Cd can be achieved by increasing the groove depth up to
11 mm. However, increasing the groove depth beyond that
point would not contribute any significant saving in the Cd.

The significance trend of Cd with respect to the groove depth is
shown in Figure 7b. The reduction gradient of the significance
trend of Cd between the groove depth up to 11 mm is ∼2.2%.
The random variations in the peer control variables of groove
depth (groove width, temperature, and velocity) appear to signif-
icantly reduce the gradient of the trend. Moreover, the confidence
interval, that is, the gap between UCL and LCL widens. This rein-
forces the possibility of some other control variables being more
significant than groove depth.

The sensitivity trend of Cl with respect to the groove depth is
shown in Figure 8a. A steady and significant reduction (∼21%) in
Cl can be achieved by increasing the depth of groove up to 11 mm.
However, increasing the groove depth beyond that point would
not contribute any significant reduction in the Cl. This behavior
of Cl with respect to groove depth is identical to the correspond-
ing behavior of Cd with respect to groove depth.

The significance trend of Cl with respect to the groove depth is
shown in Figure 8b. The random variations in the peer control
variables of groove depth (groove width, temperature, and velo-
city) appear to significantly reduce the gradient of the trend.
The confidence interval, that is, the gap between UCL and LCL
widens as the groove depth increases. Again the widening of the
UCL–LCL gap at higher values of groove depth for Cl is identical
to the corresponding behavior of the significance trend of Cd.

Groove width
The sensitivity trend of Cd with respect to the groove width is
shown in Figure 9a. A steady and significant reduction (∼6.8%)
in Cd can be achieved by increasing the width of groove from 7
to 12 mm. The sensitivity trend suggests that by increasing the

groove width beyond 12 mm may further reduce Cd and contrib-
ute in further savings.

The significance trend of Cd with respect to the groove width is
shown in Figure 9b. The reduction gradient of the significance
trend of Cd between the groove width of 7–12 mm is ∼5.4%. The ran-
dom variations in the peer control variables of groove width (groove
depth, temperature, and velocity) appear to have almost no effect on
the gradient of the trend. The gap between UCL and LCL tends to
retain its width from mean trend line throughout the range, that is,
from 6 to 12 mm. The comparison between Figures 7b, 9b confirms
that the groove width is significantly stronger variable.

The sensitivity trend of Cl with respect to the groove width is
shown in Figure 10a. A steady and significant reduction (∼41%)
in Cl can be achieved by increasing the width of groove from 6
to 12 mm. The sensitivity trend suggests that by increasing the
groove width beyond 12 mm may further reduce Cl.

The significance trend of Cl with respect to the groove width is
shown in Figure 10b. The random variations in the peer control
variables of groove width (groove depth, temperature, and velo-
city) appear to have no effect on the gradient of the trend. The
gap between UCL and LCL tends to retain its width with mean
throughout the experimental range. The comparison between
Figures 8b, 10b also confirms that the groove width is almost
twice as significant variable than the groove depth.

Temperature
The sensitivity trend of Cd with respect to the temperature is
shown in Figure 11a. A nearly constant reduction (∼0.7%) in
Cd can be observed by increasing the temperature between 15°C
and 40°C. The trend also depicts that increasing the temperature
to the range of 50°C–55°C may only reduce the Cd to 1%.

The significance trend of Cd with respect to the temperature is
shown in Figure 11b. The gradient of the mean line in Figure 11b
between 15°C and 40°C is ∼1.3%. The random variations in the
peer control variables of temperature (groove depth, groove
width, and velocity) appear to have no effect on the gradient of
the trend. The gap between upper UCL and LCL widens as the
temperature increases. Therefore, irrespective of the weak gradient
of temperature, its impact on the Cd remains.

The sensitivity trend of Cl with respect to the temperature is
shown in Figure 12a. A steady reduction (∼4.2%) in Cd can be
observed by increasing the temperature.

Fig. 6. (a) Training graph for (MLP 4-12-1) drag coefficient case. (b) Training graph for (MLP 4-12-1) lift coefficient case.
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The significance trend of Cl with respect to the temperature is
shown in Figure 12b. The gradient of the mean line in
Figure 12b between 15°C and 40°C is ∼10%. The random

variations in the peer control variables of temperature (groove
depth, groove width, and velocity) appear to have no effect on
the gradient of the trend. The gap between upper UCL and

Fig. 7. (a) Cd versus groove depth in sensitivity analysis and (b) Cd versus groove depth in significance analysis.

Fig. 8. (a) Cl versus groove depth in sensitivity analysis and (b) Cl versus groove depth in significance analysis.

Fig. 9. (a) Cd versus groove width in sensitivity analysis and (b) Cd versus groove width in significance analysis.
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LCL widens as the temperature increases. Therefore, irrespective
of the weak gradient of temperature, its impact on the Cl

remains.

Velocity
The sensitivity trend of Cd with respect to the velocity is shown in
Figure 13a. A steady and significant increase (∼3.9%) in Cd is

Fig. 10. (a) Cl versus groove width in sensitivity analysis and (b) Cl versus groove width in significance analysis.

Fig. 11. (a) Cd versus surrounding temperature in sensitivity analysis and (b) Cd versus surrounding temperature in significance analysis.

Fig. 12. (a) Cl versus surrounding temperature in sensitivity analysis and (b) Cl versus surrounding temperature in significance analysis.
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observed by increasing the velocity. The sensitivity trend suggests
that by increasing the velocity beyond 33 m/s, a further increase
Cd can be expected.

The significance trend of Cd with respect to the velocity is
shown in Figure 13b. The gradient increase of the significance
trend of Cd between the velocity values 18.6 and 33.3 m/s is
∼2.1%. The random variations in the peer control variables of
velocity (groove depth, temperature, and velocity) appear to
have some effect on the gradient of the trend.

The sensitivity trend of Cl with respect to the velocity is shown
in Figure 14a. A steady and significant increase (∼35%) in Cl is
observed by increasing the velocity. The sensitivity trend suggests
that by increasing the velocity beyond 33 m/s, a further increase Cl

can be expected.
The significance trend of Cl with respect to the velocity is

shown in Figure 14b. The reduction gradient of the significance
trend of Cd between the velocity values 18.6 and 33.3 m/s is
∼12% which is the half of the gradient of the significance trend.
The random variations in the peer control variables of velocity
(groove depth, temperature, and velocity) appear to have a signif-
icant effect on the gradient of the trend.

The sensitivity and the significance analyses give insightful
information about the aerodynamics of tire model. Hobeika
et al. (2013) studied tread style as a design parameter and showed
that treads are an important factor in aerodynamics of tires. A
more in-depth study (how tread dimension effect aerodynamics
of tire) is presented in this research work. These results show
that the coefficient of drag and coefficient of lift vary with the

Fig. 13. (a) Cd versus tire velocity in sensitivity analysis and (b) Cd versus tire velocity in significance analysis.

Fig. 14. (a) Cl versus tire velocity in sensitivity analysis and (b) Cl versus tire velocity in significance analysis.

Table 4. Summary of percentage approximation of changes in Cd and Cl values
in sensitivity trends

Control
variables

Percentage
change in Cd

(%)
Control
variables

Percentage
change in Cl

(%)

Groove
depth

3.2 Groove
depth

21

Groove width 6.8 Groove width 41

Temperature 0.7 Temperature 4.2

Velocity 3.9 Velocity 35
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change in velocity as confirmed by previous research (Vdovin,
2015; Leśniewicz et al., 2016). The reduction in Cd is expected
to reduce the overall contribution of tire geometry on vehicle
drag and in turn on fuel consumption. The reduction in Cl is
expected to reduce the overall contribution of tire geometry to
vehicle stability and in turn better steering and road safety. The
comparison of significance among the control variables is decided
based on a detailed study of sensitivity analysis and significance
analysis. A summary of approximate percentage change of output
variables with respect to the input variables in sensitivity analysis
is given in Table 4. The comparison between Figures 7b, 9b, 11b,
13b confirms that the order of significance of the control variables
with respect to coefficient of drag is (a) groove width, (b) velocity,
(c) groove depth, and (d) temperature. The comparison between
Figures 8b, 10b, 12b, 14b confirms that the order of significance
of the control variables with respect to coefficient of lift is (a)
groove width, (b) velocity, (c) groove depth, and (d) temperature.
Furthermore, in most of the previously reported literature, Cd and
Cl are considered to be constant at all velocities while testing for
variables like tire grooves, etc. This research reveals that the

velocity can have a significant impact on Cd and Cl, that is, 4%
and 35%, respectively, per tire. Therefore, it may not be consid-
ered insignificant for studies relating to contribution of tires in
aerodynamic drag and steering stability.

Paired interaction analysis

The paired interaction analyses of important pairs are discussed
in this section. In case of paired interaction trend; if the trend
lines of the particular variable’s corresponding sensitivity trend
are unchanged in paired interaction graph, then its paired variable
has no effect on the behavior of that particular variable. In this
paired interaction study, a qualitative assessment in the shift of
trend lines is made by considering the edges of both paired inter-
action graphs and its corresponding sensitivity graph. An approx-
imate percentage change in the value of edges is calculated and
mentioned to understand the extent of interaction between the
concerned interacting variable and the corresponding output vari-
able (Cd and Cl).

Fig. 15. Paired interaction analysis: (a) Cd versus groove depth with randomly varying groove width and (b) Cd versus groove depth with randomly varying groove
depth.

Fig. 16. Paired interaction analysis: (a) Cl versus groove depth with randomly varying groove width and (b) Cl versus groove depth with randomly varying groove
depth.
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Groove depth and groove width
The paired interaction analyses between groove depth and groove
width, with respect to Cd and Cl, respectively, are shown in
Figures 15, 16. The percentage increase or decrease values at the
extreme ends shown are calculated based on the corresponding
values from sensitivity trends in Figures 7a, 8a, 9a, 10a.

Nearly insignificant increase of 0.3% and 0.7% at the edges of
Figure 15b reveal that there is almost no interactive effect of
groove depth on the strong dependence of tire aerodynamic
drag (Cd) on groove width. However, a significant ∼11% increase
at the higher end of Figure 16b is observed. This shows strong
interaction between the control variables groove depth and groove
width in terms of Cl; consequently, having significant possible
impact on stability. The air entrapped between the groove of the
tire and the road acts as an air beam as shown in Figure 17.
This entrapped air acts like a typical beam as its impact on Cl (sta-
bility) increases as the groove depth/the air beam height increases.
A similar kind of higher strength behavior along the greater cross-

sectional dimension of general beams is observed in engineering
applications which is explained by the section modulus in beam
theory.

Groove width and velocity
The paired interaction analyses between groove width and velo-
city, with respect to Cd and Cl, respectively, are shown in
Figures 18, 19. The percentage increase or decrease values at the
extreme ends shown are calculated based on the corresponding
values from sensitivity trends in Figures 9a, 10a, 13a, 14a.

Again, the insignificant change of 0.16% and 0.18% at the
edges of Figure 18a and 1.4% and 1.2% at the edges of
Figure 19a reveals that there is almost no interactive effect of velo-
city on the strong dependence of tire aerodynamic drag (Cd) and
aerodynamic lift (Cl) on groove width. However, a significant
1.6%–3.4% and 9.3%–10% decrease at the extreme ends of
Figures 18b, 19b is observed. This shows strong interaction
between the control variables groove width and velocity in

Fig. 17. Section of single groove forming air beam in contact with the road surface.

Fig. 18. Paired interaction analysis: (a) Cd versus groove width with randomly varying velocity and (b) Cd versus velocity with randomly varying groove width.
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terms of Cd and Cl; consequently, having significant impact on
stability.

Conclusion
(i) Neural networks offer a very effective model to study any

non-linearity in causal relationships of tire aerodynamics.
(ii) The Monte-Carlo analysis on neural network process mod-

els can help conduct the parametric analysis.
(iii) The tight confidence interval of the sensitivity trends rein-

forces the robustness of the neural network model.
(iv) The order of the significance of the control variables for

both Cd and Cl is groove width > velocity > groove depth
> temperature. Therefore, the mixing of design parameters
and operational parameters is imperative for CFD studies
related to tire aerodynamics.

(v) This research also emphasizes that at different velocities the
coefficient of drag and the coefficient of lift cannot be con-
sidered as constant.

(vi) Increasing the groove depth can help reduce the Cd by ∼4%
and Cl by ∼20%. However, the possibility of reduction in
the coefficient of drag and coefficient of lift is very low
after 11 mm.

(vii) Increasing the groove width can help reduce the Cd by ∼7%
and Cl by ∼40%. The possibility of further reduction in Cd

appears to diminish beyond the range of 12–13 mm.
However, the possibility of reduction in the Cl is possible
beyond that range and may be considered for investigation
in future research.

(viii) The change in design parameters (groove depth and groove
width) has a considerable impact on both drag and lift and
in turn can have an impact on fuel savings and stability,
respectively.

(ix) The negligible significance of the control variable the tem-
perature reveals that the results may be considered indepen-
dent of the effect of seasonality.

(x) The groove width and the groove depth both have proven to
be a strongly interacting pair of control variables with
respect to both Cd and Cl.

(xi) The air trapped between the tire groove and the road acts as
a beam and exhibits the behavior similar to the concept of
section modulus in beam theory.

(xii) The effect of cross wind, different groove types, and number
of grooves still needs to be investigated. This work is limited
to straight air flow (entering air flow is 90° to z-axis) and
with only three longitudinal grooves.

Future work

For further research, design parameters and operational parame-
ters of an isolated tires with different configurations of treads
especially, longitudinal grooves with shoulder grooves may be
studied. A similar kind of study may be conducted for the inlet
air flow from a range of directions such that the angle between
the inlet air and z-axis is not equal to 90°.The computer-
simulated experiments, MLP-based neural network process
model, and Monte-Carlo analysis coupling may also be used to
study variable behavior in other components of cars like spoilers,
under-tray, and diffusers, etc. The change in Cd and Cl suggest
that a similar type of study should be conducted for acoustic anal-
ysis and aquaplaning of an isolated tire as well as acoustic analysis
and aquaplaning for tires in cars.
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