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1. Introduction
Let Vk denote the class of functions

... (1.1)

which map U = {| z | < 1} conformally onto an image domain/(t/) of boundary
rotation at most kn (see (7) for the definition and basic properties of the class
Vk). In this note we discuss the valency of functions in Vk, and also their
Maclaurin coefficients.

In (8) it was shown that functions in Vk are close-to-convex in U if 2 | f e ^ 4 .
Here we show that Vk is a subclass of the class K(<x) of close-to-convex functions
of order a (10) for a = $k— 1, and we give an upper bound for the valency of
functions in Vk for k>4.

In the third section we derive an upper bound for the integral means of
f'(z), and consequently for the coefficients of functions/(z) in Vk; this improves
a result in (3). We conclude with various estimates for the Maclaurin coeffi-
cients of functions in Vk when/(f/) is bounded or of finite area.

2. Valency
Theorem 2.1. Suppose that /(z) belongs to Vk, and assumes some value in

f(U)p times. Thenp = lifk = 2, andp<\k if k>2.
Proof. If k = 2, f(z) is convex in U, and so is univalent. Hence we need

only consider k>2.
Suppose that w = /(z) assumes some value v p times in U, at the distinct

points zuz2,...,zp. Then there is an r0 such that | zk \ <ro< 1 for 1 ^ k ^ p,
and f{z)^v on \z\ = r0. Let C(r0) = / ( | z | = r0). Then the winding
number of C(r0) round v is

2niJC(r0)W-v 27ti
\ p,

| z | = r o / ( z ) - u
since f'{z) ^ 0 in U. Consequently the tangent rotation round C(r0) is at
least 2pn, and so

2pn g \ | Re (l + z/"//') | dO = /(ro)< lim sup P* | Re (1 + z/"//') | dO g kn,
JO ro-»l Jo

| x | = r
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since, for some / between 0 and 1, I(r0) is strictly increasing on (/, 1). Thus
p<\k, as required.

Note. The function

{(£H
belongs to Vk (6), its valency is 1 if k = 2, [|fc] if k>2 and k is not an even
integer, and \k—\ if k is an even integer. This shows that the bounds of the
theorem cannot be improved in general.

Theorem 2.2. Suppose that f(z) belongs to Vk, where 2 | it g 4. Then
/ (z) belongs to KQk-1).

Proof. Choose any r, 0 < r < l , and let C(r) =f{\z\=r). It is clear,
geometrically, that, since the tangent to C(r) cannot turn through more than
kn radians, the tangent cannot bend back on itself more than Qk— \)n radians.
Since r is arbitrary, the result follows at once.

If we are given a bound for the rate of growth of the derivative of a function
in Vk, integration gives a bound for the rate of growth of the function itself.
However we now establish a result in the opposite direction, using Theorem 2.1
and the theory of multivalent functions.

Theorem 2.3. Suppose that /(z) belongs to Vk, and M(r) = max | / (z) | .

Then
| / ' (z) |g2fc( l - r 2 )" I{ l+M(r)} (| z [ = r). (2.2)

Proof. Since/'(z) ¥= 0 in U, it follows from (4, Theorem 217) that, unless
/(z) s z, there is a number w0, \ w0 |<1 , such that/(z) — w0 does not vanish
in U.

However f(z)—w0 is also at most \k valent in U. Consequently, by (2,
Theorem 5.1), we have

| f'(z) | g 2fe(l - r 2 ) " 1 | / ( z ) -w o \ , (2.3)

from which (2.2) follows at once.

3. The coefficient problem for Vk

One of our principal tools here will be

Theorem 3.1. The function f (z), of the form (1.1), belongs to Vk if and only
if there are two functions st(z) and s2{z), normalized and starlike in U, such that

Proof. This follows at once from Paatero's integral representation for
functions in Vk (7).
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From this we obtain

Theorem 3.2. Suppose thatfiz) belongs to Vk, and

a«». (3-2)
o

where 0<r<l, and(\k+\)\>\. Then
lim sup (1 - r)(i*~1)A" lh{r) ^ A(k, A), (3.3)

r-»l

wfcere

Furthermore the constant A(k, A) cannot be improved over the whole class Vk.

Proof. By Theorem 3.1, we may suppose that/ '(z) is given by (3.1). Then
| s2(z)/z | ̂  (1 +1 z |)2 by the Koebe distortion theorem, and s^/z is subordin-
ate to (1 - z )~ 2 in U (5). Consequently, on integrating (3.1), we have

f2"
Joh(r) ^

2n o
s ( l + r)^-1)AJ(ifc+1),(r),say. (3.5)

In fact, Pommerenke (9) has shown that

1 ( 3 . 6 )

)m"1

using the recurrence and duplication formulae for the Gamma function. Sub-
stituting (3.6) into (3.5) with m = (ik+ 1)A, we get (3.3) and (3.4).

The constant A(k,X). Choosing st(z) = z( l -z) 2, s2(z) = z(l+z) 2 (so
that /(z) is given by (2.1)), and any constant B(k, X)<A(k, A), it is easy to
show that

for r sufficiently near to 1 (intuitively because sy is large only near z = 1, where
s2 is near £).

Using the standard inequality (2, p. 11)

K|<ifl(.-i), (3.7,

we deduce
Corollary 3.3. Suppose that /(z) is of the form (1.1), a«rf belongs to Vk.

Then
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Since, for positive x,

log r(x) = {2n)±+(x-\)\ogx-x+6(x)l\2x,

where 0<6(x)<\ (6, p. 153), we see that

r(fe/4+l) . _ . ,
v ' ' ~'k * as fc-»oo.

In the opposite direction, we have

Theorem 3.4. Suppose that f{z) is given by (2.1). Then

a nik~l asn-^oo. (3.9)

This is verified by an argument similar to that of (4, p. 93), and improves the
estimate in (3).

Now let us observe that, with very little technical effort, it is possible to
obtain a coefficient estimate for functions in Vk. This is based on

Theorem 3.5. Suppose that j(z) belongs to Vk, M(r) = max \f(z)\,and

L(r) = f2"
Jo

is the length off(\ z\ = r). Then

2M(r) <Uf) < 2*(2k + \)M(r). (3.10)

Proof. The left inequality of (3.10) is a consequence of the fact that
/ ( | z | = r) is a closed curve round the origin, and the right inequality is
Theorem 3.3 of (1) (whose proof was totally elementary).

Corollary 3.6. A function in Vk is bounded if and only if its derivative belongs
to the Hardy class Hx.

We now have

Theorem 3.7. Suppose that f{z) is of the form (1.1), and belongs to Vk.
Then,ifM(r)= max | / ( z ) | ,

nn \ n)

This follows by applying (3.7) to (3.10), using the fact that Z-(r) = rlx(f).
It has been conjectured (7) that, if / (z) belongs to Vk, the moduli of its

coefficients do not exceed the corresponding coefficients of the function (2.1).
In this direction we have

Theorem 3.8. Suppose that / (z) is of the form (1.1), belongs to Vk, and is
given by (3.1). Then

an = o(ni*~1) as «-*•<», (3.12)
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unless
S l ( z ) = z ( l - tz)~2 for some \t\ = l. (3.13)

Proof. It follows from (10, Theorem 1) that, if 5t(z) is normalized and
starlike in U and is not of the form (3.13),

l im( l - r ) 2 max | s^z) I =0 .
r-H | z | = r

Then, from (3.1),
max

\z\ = r

Integrating (3.14) we get
max | / ( z ) | = 0{(l-r)-**},

\z\=r

so that, by Theorem 3.7,
a^oin*"-1).

Furthermore we observe that, if l/s2(z) is continuous near the point z = \ft,
the coefficient conjecture is certainly true for sufficiently large indices; this is
easily verified by applying the techniques of (4, p. 93) to Theorem 3.8.

Finally we note the following result, which seems rather interesting in view
of the conjecture.

Theorem 3.9. Suppose that g{z) belongs to Vk, f(z) is of the form (1.1),
and

for some m ^ 0. Thenf(z) belongs to Vk+2m.

Proof. For any z = re'9 and 0 g r < l , we have

J
2n 9 (

\ ^ , \ i \ Re
o 1 - z 2 ' - * J

z

Consequently

f2" | Re (l+z/7/#) | d0 ̂  f2" | Re (l + zg"lg') \ d9 + m f2" | Re - ^
Jo Jo Jo 1 —

^ kn + 2mn;
thus/(z) belongs to Ft+2m as required.

Note. This theorem can also be proved using Theorem 3.1.

4. More coefficient results
We now consider the connection between the coefficients of functions /(z)

in Vk, the area A(r) o f / ( | z | < r ) (taking account of multiplicity), and the
maximum modulus M(r) = max |/(z) |, 0 < r < 1.

\z\ = r
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Theorem 4.1. Suppose that /(z) belongs to Vk, and is of the form (1.1) and
that f{U) has finite area A {taking account of multiplicity). Then

Proof. By the Paatero representation theorem, we have

1 + zf'lf = {$k+$)Pl{z) - {ik - \)V2{z\ (4.2)

where ̂ j(O) = 1 and Rept{z)>0 in U, i = 1, 2. Then
f'+zf" = Qk+DpJ'-Qk-toPif'; (4.3)

hence, if z = reie, multiplying both sides of (4.3) by e~K"~1)B, integrating from
0 to 2n, and using the triangle inequality, we obtain

2nn2r"-1 \an\^ (*£+*) J | Pif' \ d9+{ik-i) j \ p2f \ d6. (4.4)

Applying Schwarz's inequality for i = 1, 2, we obtain

4
using the fact that each pt{z) is subordinate in *7 to — - , and that

1-z

J: l - r 2

Jo |1-«T"
(as the integrand is the Poisson kernel). From (4.4) and (4.5) we have

\f'\2d0. (4.6)
)o

Multiplying both sides of (4.6) by r(l — /•), and integrating from 0 to 1, we get
(4.1).

This leads at once to

Theorem 4.2. Suppose that f{z) belongs to Vk, and is of the form (1.1).
Then if A{r) is the area off {\z\<r), andM(r) = max |/(z) |,

ekrV'n))
n \ n /
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and

Proof. Applying Theorem 4.1 to the function -f(rz), we deduce that
r

Substituting r = 1 , we obtain (4.7).
n

Since the valency of/(2) is at most \k, by Theorem 2.1, we have

A(r)^nM\r).ik; (4.9)

then (4.8) follows from (4.7) and (4.9).

5. Special subclasses of Vk

We now examine the coefficient problem for functions in Vk which are
bounded or of finite area.

If /(I /) is bounded, then/'(z) belongs to Hu by Corollary 3.6; thus, if
/(z)isoftheform(l.l),

an = o(«-1) as M-*OO (5.1)

(see, for example, (11, p. 112)). Although we are unable to show that (5.1)
is best possible, we can at least show that the exponent of n cannot be reduced.

Theorem 5.1. Choose any e>0, and any k ^ 6+4e. Then there is a bounded
function f{z) in Vk, of the form (1.1), such that

aB~l/«(log n)1 + E as n-> ao. (5.2)

Note. In our proof, we use Theorem 3.1 and the fact that, if g(z) is normal-
ized and starlike in U, then so is z(g/z)' for 0<t< 1.

Proof. The function JX(Z) = z(l-z)~4/<*+2) is starlike in U; also, since
log (1 — z)"1 is starlike in U, so is

as 4(1+e) ^ k-2. Thus the function /(z), of the form (1.1), belongs to Vk,
where

by Theorem 3.1. Hence
«an~(log w)"1"' as n-»oo,

using the coefficient estimates in (4, p. 93).

https://doi.org/10.1017/S001309150001302X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001302X


346 D. A. BRANNAN

In the case that f(U) is not necessarily bounded, but does have finite area,
Theorem 4.1 shows that

an = O(n~1) as n-KX). (5.3)

We cannot show that (5.3) is best possible, but can establish

Theorem 5.2. Choose any e>0, and any k ^ 4+2e. Then there is a function
f{£) in Vk, of the form (1.1), such thatf(U) has finite area, and

nan~(log n)~*~ie as «->oo. (5.4)

Proof. The functions
- log - L )
z 1 - z /

are normalized starlike functions in U so long as k ^ 4+2e. Hence, by
Theorem 3.1, the function/(z), of the form (1.1), belongs to Vk, where

/'(z) = ( l -z ) x -log —
\z 1 —z

Then the area of/(£7) is

- l - e - 1

= f1 f2

Jo Jo

1-r

oo;

here we have used the results on integral means in (4, p. 96). (5.4) then follows
from the coefficient estimates in (4, p. 93).
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