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Introduction

One frequently encounters (real) semisimple graded Lie algebras in

various branches of differential geometry (e.g. [16], [9], [14], [18]). It is

therefore desirable to study semisimple graded Lie algebras, including

those which have been studied individually, in a unified way. One of

our concerns is to classify (finite-dimensional) semisimple graded Lie al-

gebras in a way that enables us to construct them. A graded Lie algebra

g of the form g = ΣSU-* 8* is said to be of the y-th kind. The classification

of semisimple graded Lie algebras of the p-th kind was done by Kobayashi-

Nagano [4] for v = 1, and by J.H. Cheng [3] for v = 2 and dimg_2 = 1.

The first aim of this paper is to obtain a classification theorem (Theorem

1.7) for semisimple graded Lie algebras, which establishes a bijective

correspondence between isomorphism classes of all gradations in a real

semisimple Lie algebra g and certain equivalence classes of partitions

(770, Πu , Πs) of a restricted fundamental root system Π of g. For

the complex semisimple case, a similar but weaker assertion has been

obtained by V.G. Kac [5]. Theorem 1.7 and its proof enable us to con-

struct all gradations in a semisimple Lie algebra. A graded Lie algebra

£ = Σ*--ooβ* ( n o t necessarily of finite dimension) is said to be of type α0,

if Σ*;<-i9fc a n ( i Σfc>i£fc a r e generated by g_t and Qί respectively. In Theo-

rem 2.6 we give a necessary and sufficient condition for a gradation to be

of type a0. By using this, we will construct explicitly (up to isomorphisms)

all gradations of the first and the second kind in each classical real

simple Lie algebra (§§2.3 and 4.2).

Our second concern is the problem of classifying a wider class of

triple systems, called generalized Jordan triple systems which contain all
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Jordan triple systems as a special case. To this problem we apply the
classification and construction of semisimple graded Lie algebras given in
§§ 1 and 2. To a Jordan triple system there associates a graded Lie al-
gebra of the first kind [9]. I.L. Kantor [7] considered a similar situation
in a more general setting to obtain: To a generalized Jordan triple system
(£/_!, B) there corresponds a graded Lie algebra &*{B) which is not neces-
sarily of finite dimension. If the graded Lie algebra J?(B) is of the y-th
kind (resp. classical), then we say that {U.u B) is of the ι>-th kind (resp.
classical). On the other hand, in our paper [1] we introduced the class
of compact generalized Jordan triple systems, as a natural generalization
of a similar concept for Jordan triple systems. Compact real simple Jordan
triple systems were classified by Loos [10]. The second aim of this paper
is to classify compact classical real simple generalized Jordan triple systems
of the y-th kind, where v — 1, 2 (Theorems 4.1 and 4.2). Our result covers
the above-mentioned result of Loos for classical ones. There are twelve
families of compact classical simple generalized Jordan triple systems of
the second kind. It turns out that the classification we are concerned is
equivalent to that of simple graded Lie algebras of the v-th kind endowed
with grade-reversing Cartan involutions (Theorem 3.14). In the course of
this reduction, we make use of a result on the equivalence of pairs of
an infinite-dimensional simple graded Lie algebra of type a0 and a grade-
reversing involution (Theorem 3.12). In §5 we will give a method of
constructing noncompact generalized Jordan triple systems, starting from
compact ones.

Throughout this paper, all objects are assumed to be defined over the
real number field R, unless otherwise stated. The complexification of a
vector space V (resp. a Lie algebra g) is denoted by Vc (resp. g*7). H de-
notes the field of quaternions. Z denotes the ring of integers.

§ 1. Gradations of real semisimple Lie algebras

1.1. Let g = ΣkezQk be a graded Lie algebra (or shortly GLA) over
R with finite or infinite dimension. We always assume that dim gfc < oo
for all k and that o>-xΦ (0). The family of the subspaces (gfc) is called
a gradation in the Lie algebra g. We say that an element Eeg is a
characteristic element of the GLA g, if each subspace gfc is the eigenspace
of the operator ad E for the eigenvalue k. Note that E e g0. Let (gfc) and
(gί) be two gradations in g. We say that (gfc) and (g£) are isomorphic, if
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the GLA's g = J] gfc and g = Σ g* are isomorphic, that is, there exists an
element αeAutg such that α(gfc) = gί for all k. A GLA g = 2fe6Zgfc is
said to be of the v-th kind (v > 0), if g±v ψ (0) and gfc = (0) for \k\ > v. A
finite-dimensional real semisimple GLA g has a grade-reversing Cartan in-
volution [17], and consequently g is of the v-th kind for some v. Note
that the GLAg has a unique characteristic element E.

1.2. Let g = 2] gfc be a real semisimple GLA of the n-th kind with
characteristic element E, and let τ be a grade-reversing Cartan involution
of g. Then we have τ(E) = — E. Let g = ϊ + p be the Cartan decompo-
sition by τ, where τ\t = 1 and r|p = —1. Let us choose a maximal abelian
subspace α of p containing E. We then have

(1.1) a c g0 n P .

Let J be the (restricted) root system of g with respect to α. We identify
J with a subset of α with respect to the inner product ( ,) on α induced
by the Killing form of g, and we denote by gα the root space for a e Δ in
g. As a direct consequence of the decomposition of g into root spaces,
we have the following

LEMMA 1.1. Each graded subspace gfc of g is expressed as

(1.2) βo = c(α)+ Σ ββ,

g * = Σ sα frφo, \k\<v),

where c(α) is the centralizer of a in g.

The above lemma shows that the gradation (gfc) of g gives rise to a
partition of the root system Δ:

(1.3) Δ = U 4 ,

Δk = {aeΔ: (a, E) = k}.
Also one has

(1.4) (Λ + 4) Π J c J ί + I

in particular Δo is a closed subsystem of Δ. Let us choose a linear order
in Δ in such a way that if a e Δ is positive then <α, i?> is non-negative.
Let 77 be a simple root system of Δ relative to this linear order. Then
we have

(1.5) 77 c U Δk.
k>0

https://doi.org/10.1017/S002776300000115X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000115X


84 SOJI KANEYUKI AND HIROSHI ASANO

Putting Πk = 77 Π Δk, we get a partition of 77:

(1.6) 77 = U 77fc,

where n is the number such that Πn Φ 0, 77fc = 0 for every k > n. Note

that 77j is not empty, since dimGi = dimG-i Φ 0. It is easy to see that

770 is a fundamental system for the root system Δo.

DEFINITION 1.2. Let 77 be a fundamental system of the root system Δ.

If 77 satisfies (1.5), then 77 is said to be compatible with the gradation

(Gfc)

Let W be the Weyl group of the root system Δ and WQ be the Weyl

group of the subsystem Jo. Since the subalgebra Go of G is stable under

the Cartan involution r, it is reductive; τ induces a Cartan involution of

the derived (semisimple) subalgebra [g0, g0]. We have the decomposition

(1.7) Go = ϊ Π Go + P Π Go.

Since a is a maximal abelian subspace of p Π Go> Λ is viewed as the

(restricted) root system of Go with respect to α. Let G = Ad G Let Go

and K* be the analytic subgroups of G generated by g0 and ϊ Π Go> respec-

tively. Then we have

(1.8) W0 = Nκ*

where Nκ*(ά) (resp. Cκ*(a)) is the normalizer (resp. centralizer) of a in K*.

LEMMA 1.3. Let 77 and 77' be two fundamental systems of Δ which are

compatible with the gradation (gfc) of g. Let 77 = U £=0 ̂ fc α ^ 77r = U f=Q Π]

be the partitions of 77 and 77' gίuen- in (1.6). TΛeτι ί/iere βxisίs s e Wo

s(77) = Π'; in this case we have n — m and s(U^) — 77̂  (1 < i <

Proof. For a fundamental system Ω of J, we denote by Δ+(Ω) (resp.

Δ~(Ω)) the set of positive (resp. negative) roots in Δ with respect to the

linear order determined by Ω. We claim first that U f c >iΛ c Δ+(Π). Let

77 = {<*!, , αrj. Choose a root a = 2 * m^i e Jfc ( έ > 1), where each m*

is assumed to be non-zero. Since a £ Δo, at least one at in the above ex-

pression are in 77 — 770. Suppose aeΔ~(Π). Then each mt is negative,

and hence we have k = (a, E) = Σjmj(aj> E} < 0. But this contradicts

the assumption k > 1. Therefore we get α e Δ+(Π), which proves our claim.

Similarly Uk>1Δk c Δ+{Πf) holds. Let us choose an element s eW0 which
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sends 770 to 77Q. By (1.8), s has a representative in Go and so it comes

from a grade-preserving inner automorphism of g. Consequently s(E) =

E. Therefore, for ak e 77, (0 < ί < ή)

(1.9) (s(ak\ E} = (s(ak), s(E)} = (ak, £> = i.

Thus we have seen $(77,) C Δt (0 < i < ή), which implies that the funda-

mental system s(77) of Δ is compatible with the gradation (gfc). The same

argument as for 77 shows that Uk>ίΔk c Δ+(s(Π)). Furthermore we see

s(77) (Ί Λ = 7Γ Π Jo. Therefore it follows that Δ+(s(Π)) = Δ+(Π% which

implies s(Π) = Π'. Since s is induced by a grade-preserving automorphism

of g, we get s(zQ = Δt (1 < ί <7i), and consequently s(77J = 77- (1< i<τι).

LEMMA 1.4. Lei ΓJ and τ2 be two grade-reversing Cartan involutions

of the GLA g = Σ f c βfc. Lei 9 = 1̂  + ^)^6^ ί/ie Cartan decomposition by τt

(i = 1, 2), zi /iere τ t | f < = 1 and τ\. = — 1. Γ/ιen ίΛβrβ exisίs an element Xo

€ g0 IΊ pi Π p2 swcΛ £/ια£

(1.10) (exp X0)τ2 (exp ( - Xo)) = τx,

where the exponentials are taken in G.

Proof. Let B be the Killing form of g. Put Bt(X9 Y) = - B{X, r,(Y)),

j = 1, 2. Then βj and B2 are Aut g-invariant inner products on g. Let

Pos (g, B2) (resp. Sym (g, B2)) be the totality of positive definite symmetric

(resp. symmetric) operators on g relative to B2. Since τλ and τ2 are in-

volutive, it follows that τxτ2 6 Pos (g, B2). Let C(E) be the algebraic sub-

group of Aut g consisting of all elements g e Aut g which commute with

ad 7?. Since τt is grade-reversing, we have Γi(adE) = — (ad 7?)^. There-

fore we have τxτ2 e C(E) (Ί Pos (g, B2). By a result of Neher [11], there

exists Xo e Lie C(E) Π Sym (g, B2) = g0 (Ί Sym (g, B2) such that

(1.11) r, (ad Xo)^ = - ad Xo, i = 1, 2,

(1.12) (expZ0)r2(exp ( - Xo)) = Γ l .

In view of (1.11), we get Xo e g0 n Pi Π t>2.

1.3. Let g be a real semisimple Lie algebra and 77 be a fundamental

system of a restricted root system of g. By a partition of 77 we mean a

disjoint union 77 = U £=0 77fc such that 77X and Πn are not empty. Some of

the subsets 77̂  may be empty. The partition is sometimes denoted by

(770,77,, •• ,77n).
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DEFINITION 1.5. Let g and g' be real semisimple Lie algebras, and

let 77 and 77' be fundamental systems of restricted root systems of g and

g', respectively. Partitions (770, , Πn) of 77 and (ΠΌ, , 77̂ ) of 77' are

said to be equivalent, if n = m and if there exists an isomorphism φ of

the Dynkin diagram of 77 to that of 77' sending Πi to 77£ (0 < i < n).

The following theorem is a criterion as to whether two real semi-

simple GLA's are isomorphic.

THEOREM 1.6. Let g = J^k gfc α îd g' = J^k $'k be real semisimple GLA's

of the v-th kind, and let 77 and Π' be, respectively, fundamental systems of

restricted root systems of g and g' compatible with the gradations. Let

(770, , Πn) and (77$, , 77 )̂ be the partitions of 77 and W given in (1.6).

// the two GLA9s are isomorphic, then the above two partitions are equivalent.

The converse is true, if the Lie algebras g and g' are isomorphic.

Proof. Let E (resp. E') be the characteristic element of the GLA g

(resp. gO Let Δ (resp. Δ') be the restricted root system of g (resp. g') with

77 (resp. 770 as a fundamental system. Since 77 and T77 are compatible

with the gradations, we can suppose that Δ (resp. Δf) is the root system

with respect to a maximal abelian subspace α (resp. a') of the (— l)-eigen-

space p (resp. pf) in g (resp. gθ under a grade-reversing Cartan involution

τ (resp. τ') of g (resp. gθ satisfying E e a (resp. E' e a'). Let ϊ and V be the

( + l)-eigenspaces in g and g7 under τ and τ\ respectively. Now let φ be

a grade-preserving isomorphism of g onto g'. φτφ~ι is a grade-reversing

Cartan involution of g7. By Lemma 1.4, one can find an element Xo e g£

such that φx: — (expX0)^ satisfies

(1.13) φ,τ = τVi,

where the exponential is taken in the adjoint group of g'. ψx is a grade-

preserving isomorphism, since XQ e gj. By (1.13) we have

(1.14) P i φ - f , Φ) = P'

Next we claim that there exists an element Xx el' Π gί such that <pr. =

satisfies

(1.15) φι(*) = cί.

The reductive subalgebra ĝ  of g' can be decomposed by r':

https://doi.org/10.1017/S002776300000115X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000115X


GENERALIZED JORDAN TRIPLE SYSTEMS 87

Since ψx is grade-preserving, both φ^a) and α' are maximal abelian sub-

spaces of })' (Ί go (cf. (1.1)). Therefore, for the decomposition (1.16), one

can find Xx e f ΓΊ g£ such that <p2(ά) = (exp X^(a) = α'. Note that 9?2 is

still grade-preserving. Let Δ — Όυ

k=-vΔk and Δf = USU-»4fc be the parti-

tions given by (1.3). By (1.15) we have φ2(Δ) = J ' and moreover

(1.17) P2(Λ) = 4;, | * | < v .

From this it follows that the fundamental system φ2(Π) of Δf is compatible

with the gradation (g£). By (1.8) and Lemma 1.3, there exists an element

JP26f IΊ gί! such that ^3: = (exp X2)φ2 sends 77 to W and 77̂  to U\ (0 < i <

7i = m).

To prove the converse, let ψ be an isomorphism of (770, , Πn) to

(77Q, , 770. Under the assumption, ψ extends to an isomorphism of g onto

g', denoted again by ψ. Let 77 = {au , α j and 77' = {̂ 1? , βt}. The

characteristic elements E and 2?' are uniquely determined by the equations

(1.18) <E,α <> = * , <£',&> = *

for αt e 77fc, 0 < & < n, 1 < i < Z, and for βά e Π'k, 0 < k < n, 1 < j <Z, where

< , > denotes the inner products defined by the Killing forms of g and g7.

We may assume ψ(aά = ^ (1 < ί < Z) by renumbering roots in 77;. Then

we have

(1.19) (ψ(E)9 βty = <Ψ(J5), ψfe)> - <JS, α i > = *

for at e 77fc, or equivalently βt e 77̂ . Comparing (1.19) with (1.18), we con-

clude ψ(E) = E'.

The following is a classification theorem for gradations in a semi-
simple Lie algebra.

THEOREM 1.7. Lei g 6e α reαZ semίsimple Lie algebra and Π be a fixed

fundamental system of a fixed restricted root system Δ of g. Let & be the

set of isomorphism classes of gradations in g and let & be the set of equi-

valence classes of partitions of 77 under the automorphism group of the

Dynkίn diagram of 77. Then there exists a bisection Φ of & to 0*.

Proof. Choose a gradation (gfc) of g. To this gradation one can as-

sociate a compatible fundamental system 77(1) (cf. Definition 1.2) and the

compatible partition (Π£\ , 77^) of 77(1) (cf. (1.6)). According to Satake

[13], there exists a e Ad g such that α(77(1)) = 77. Put 77fc = a(Π^). Then
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a gives an equivalence between the two partitions (77^, -"9Π^) and

(770, , 77n). Choose another gradation (g£) of g which is isomorphic to

(gfc) under ψ e Aut g. To (g£) there correspond a compatible fundamental

system 77(2) and the compatible partition (77£2), , 77^}). There exists b e

Ad g such that 6(77(2)) = 77. Let Π'k = &(77f). Then b gives an equivalence

of (77<2), •• ,77^)) to (/7ί, •• ,77/

m). From Theorem 1.6 and its proof it

follows that m = n and that ^ can be modified to give an isomorphism φ

(still contained in Autg) of 77(2) to 77(1) which sends (77<2), - -, Π™) to

(Π$\ , Π™). Therefore bφ^a'1 induces an automorphism of the Dynkin

diagram of 77 which sends (770, , 77n) to (77$, , 77Q. Thus we can

define the mapping Φ by putting

(1.20) Φ([(β*)]) = [(/70, , 77n)],

where [ ] denotes the isomorphism (or equivalence) class. That Φ is in-

jective follows from Theorem 1.6. We want to prove the surjectivity of

Φ. Let 77 = {al9 , at} and let (770, , 77n) be a partition of 77. We

write a eΔ in the form a = ΣΆ=ιmi(a)ai- ^OΪ the partition (770, , 77n),

let us define an integer-valued function hπ on Δ in the following way:

(1.21) hπ(a) - Σ ™t{a) + 2 Σ rnfa) + + n Σ mk(a).

Let a, β eΔ. If a + β e Δ, then

(1.22) hπ(a + β) = hπ{a) + hπ(β) .

Let us put

(1.23) βP= Σ β% pφO,peZ,

where α is the abelian subspace of g on which Δ is defined. Then we

have g = Σ gp. By (1.22), (gp) is a gradation of g. Put

(1.24) Δp = {ae Δ: hπ(a) - p}, p e Z .

Then we get Πp = Π f] Δr This implies that Φ([(gp)]) = [(770, , 77n)].

Remark 1.8. The partition (1.6) has been considered by Kac [5] for

the complex semisimple case and is called the characteristic of the grada-

tion (gfc). We will use this terminology for the real semisimple case.

DEFINITION 1.9. The gradation given in (1.23) is called the gradation
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defined by the partition (ΠQ, , Πn).

Remark 1.10. Let g = Σ gfc be a real semisimple GLA of the î -th kind

with characteristic element E, and let Π be a fundamental system com-

patible with the gradation (gfc). Let Π = U £=0 Π*, be the partition given

in (1.6). Then it follows easily that hπ(a) = {a, E) holds, and hence the

gradation (gfe) coincides with the gradation defined by the partition

(77 0, .- , Π n ) .

§ 2. Gradations of type aQ

2.1. DEFINITION 2.1. Let g = 2]fc6z3fc be a real GLA with dimg < oo.

We say that g is of type aQ if the following conditions are satisfied:

(2.1) β-fc-i = [fl-*> B-J > 9*+i = [fl*, Si] (k>ϊ).

LEMMA 2.2. Let Q = ΣQk be a real semisimple GLA of the v-th kind,

and let Π — U Lo Πk be the characteristic of the gradation (gfc). If (gfc) is

of type a0, then Πk = 0 /or £ > 2.

Proof Let i? be the characteristic element of the gradation (gfc). Note

that Πί Φ 0 (cf. 1.2). Choose a root at e Π — 770. Suppose that (au E} =

Since (gfc) is of type a0, we have

(2.2) β"« C gfc = [gfc_1? β l]

where the sum 27 ^s taken over the roots β and ϊ such that (β, E} = k

- 1, <r, S> = 1. If [fl̂ , gr] ^ (0), then β + r is a root. Taking account of

(1.2), we conclude that there exist two positive roots β, ΐ such that at =

β + r, <jS, E) = Λ - 1 and <r, -B> = 1. This contradicts the fact that at

is simple. Therefore we have k = 1, or equivalently α* 6 77^

LEMMA 2.3. Let Q be a complex semisimple Lie algebra, and Π be a

fundamental system of a root system Δ of g. Let (ΠQ, J7j) be a partition of

Π. Then the gradation (gfc) defined by (Πo, nx) (cf Definition 1.9) is of

type α0.

Proof Let Π = {«!, , αt} and /T̂  = {αfl, , α:is}. We write a e J in

the form 2]Ui mt(α)αt. Then the function hπ in (1.21) for the partition

(770, /7X) is given by

(2.3) hπ(a) = Σ mik(a) .
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We define the function h on Δ by

(2.4) h(a) = Σ mt(a).
i = l

Let Δ = U k Δk be the partition (1.3) induced by the gradation (gfc). If we
put Δp

k) — {a e Δv\ h(a) = k}, then we have a partition of Δp:

(2.5) Δp = U 4*> (p > 0).
Tc>Ί>

We claim

(2.6) β'clβ!, flp.J, β e J , ( p > 2 ) .

We want to prove this by induction on & in (2.5). Let us take β e Δ™
first. We have then h(β) = hπ(β) = p, which implies that πtiiβ) = 0 for
i φ iu -. } j s . Hence one can write β as

(2.7) β = ± mik(β)aίk.

Since /3 is in Δp (p > 2), β is positive but not simple. Consequently, there
exists a root aiβΠ such that /} — at is a root. Therefore, in view of the
expression (2.7), we have at & 770, that is, at coincides with one of au

(1< t < s), say aik. Set T = β - aίk e J. We have then hπ(ϊ) = /̂ (/3) - 1
= p — 1. This implies ϊ e Δp_1. Therefore we obtain tf = feffίfc, gr] c [QU a^-J,
which proves (2.6) for /3 e J^}.

Suppose next that (2.6) is valid for all a e Δp

m\ and choose β e Δ(

p

m+1).
By the same reason as above, β is positive but not simple. We have one
of the following two situations: a) There exists aίk e Π1 such that β — aik

e Δ, b) there exists a3 6 ΠQ such that β — as e Δ. In the case a) we pro-
ceed as above to get the assertion (2.6). Suppose that b) occurs. Let
γ = β — a. e Δ. Then we have hπ(ϊ) = hπ(β) = p and h(ϊ) = Λ(]8) — 1 = ro.
Hence ΓeJ^,m). By the assumption of the induction, we get a? c [gl5 βp-il
Therefore we obtain

(2.8) tf = [g% 8Γ] c [9% [βi, βp-J] c [g0, [g1? Bp-J] c [g,, flp.J .

Thus we have proved (2.6). The second equality of (2.1) is a direct con-
sequence of (2.6). The first one in (2.1) is immediately obtained from the
second by applying a grade-reversing Cartan involution.

2.2. Let a = Σlδfc be a real semisimple GLA of the v-th kind. We
come back to the situation in 1.2 and preserve notations there. Let ϊj be
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a Cartan subalgebra of g containing α. Then one can write ϊ) = ζ+ + α,

where ψ = I) Π ϊ. Let J be the root system of the complexification gc

of g with respect to the Cartan subalgebra ψ (= the complexification of

I)). ζ0: = j§+ + α is the real part of ξc. We identify J with a subset of

ή0 via the inner product < , ) defined by the Killing form of gc. Put Jφ

= Δ Π iϊ)+. Let σ be the conjugation of $c with respect to g, and let Π

be the σ-fundamental system of Δ [13]. Let ΌS be the orthogonal projec-

tion of ϊ)0 onto a with respect to < , >. Δ: = s*(2 — Jφ) is a restricted

root system (or the root system of g with respect to α). Let us consider

the complexified GLA of g:

(2.9) gc = Σ β? ,

where g£ is the complexification of gfc.

LEMMA 2.4. (i) ΓΛβ characteristic element E of g is αZso ίΛαί of %c.

(ii) Γ/ιe following partition is valid:

(2.10) J = U4,

where Δu — {aeΔ: <α, ̂ ) = A}, (iii) We Λαt e

(2.11) Jo = (pr\ΔΪ) n J ) U J | ,

(2.12) 2fc = tΰ'XΔj) Π 2 (Λ ^ 0) .

(iv) The subspace g£ are expressed as

(2.13) g? = ψ +• Σ f ,

(2.14) g£ - Σ 9α (* Φ 0),

w;/iere gα is the root space in gc corresponding to aeΔ.

Proof The assertions (i), (ii) are immediate. Let a e ΔQ. ΐϋ(a) = 0 if

and only if a e Jφ. If w(a) Φ 0, then w(a) e J. Hence <Qί(α:), E) = <α, E>

= 0, which implies #(#) e Δo. Thus the inclusion c in (2.11) was obtained.

Similarly we have the converse inclusion. (2.12) can be proved analo-

gously. By (1.2) we have

(2.15) go

c = c(a)c +
r€J0

From the expression of c(α) in terms of the roots in Δm (cf. [15]), we see
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that c(α)c = ψ + Σ«el. Qa- On the other hand we have (gr)c = Σ/&a> where

the sum Σ' is taken over the roots a eΔ satisfying w(a) = ϊ. Therefore,

from (2.11) and (2.15) we obtain (2.13). Similarly we have (2.14).

We can choose a ^-fundamental system 77 = {al9 , as} of Δ in such

a way that the relation

(2.16) <α4, E) > 0 (1 < ί < β)

is satisfied. 77 is compatible with the gradation (g£) of gc. Let 77# = 77

(Ί ϋφ. Then 77 = oί(77 — 77#) is a fundamental system of J. By (2.16) we

have (Jfi9 E} > 0 for each r* e 77, and so 77 is compatible with the grada-

tion (gfc) of g. Let 77, = 77 Π Δt and 77, = 77 Π Δt. Then the following

lemma is easily seen.

LEMMA 2.5. 770 = (w-\Π0) Π 77) U 77#,

77fc = t t f- 1 ^) ΓΊ 77 (fe φ 0).

Iλi particular, the number of Π/s in the partition Π — U, 77, is equal to

the number of Π/s in the partition 77 = U, 77,.

The next theorem gives a characterization of the gradations of type

a0 in terms of their characteristics.

THEOREM 2.6. Let g = 2] gfc be a real semίsίmple GLA of the v-th kind,

and 77 = U 2=0 Πk be the characteristic of the gradation (gfc). Then (gfc) is

of type a0 if and only if Πk = 0 /or every k > 2.

Proo/. Suppose that Πk = 0 (k> 2). Consider the GLA gc =

and let 77 = U^o^fc be the characteristic of the gradation (g£). Then, by

Lemma 2.5 and Theorem 1.6, we get Πk = 0 (k^ 2). Lemma 2.3 and

Remark 1.10 now imply that (g£) is of type a0. Hence, for k > 1, we

have g£+1 = [gf, g£] = [g^ gfc]
c, from which it follows that gfc+1 = [gt, gfc].

The converse assertion has been proved in Lemma 2.2.

Let 77 be a fundamental system of a restricted root system of a real

semisimple Lie algebra g. Two subsets Ωu Ω2 c 77 are said to be equivalent,

if there exists an automorphism a of the Dynkin diagram of 77 sending

Ωx to Ω2. The equivalence class of Ωx is denoted by [βj . Combining

Theorem 2.6 with Theorem 1.7 we have the following

THEOREM 2.7. Let g be a real semisimple Lie algebra, and let 77 be

a fundamental system of a restricted root system of g. Let %?aQ be the set
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of isomorphism classes of gradations of type a0 in g, and let 0>ao be the set

of equivalence classes of all non-empty subsets of 77. Then there exists a

bisection Φao of &ao to 0>ao.

Proof Let [(gfc)] denote the isomorphism class of the gradation (gfc)

of g. By Theorem 2.6, the characteristic of (gfc) is of the form 77 = 770

U Π1 (See also Theorem 1.6). By Theorem 1.6 we may define Φao to be

(2.17) Φββ([(β*)l)

Then Theorem 1.7 shows that Φao is bijective.

Now we will assume g to be real simple. Let & be the same as in

Theorem 1.7, and let ^ ( υ ) be the subset of ^ consisting of isomorphism

classes of all gradations of the y-th kind in g. Let ^] = @{v) (Ί ^«0.

LEMMA 2.8. ^ ( y ) = &% holds for v = 1, 2.

Proof. The case v — 1 is trivial. For v — 2, see Tanaka [16].

Let 77 = {au , at} be a fundamental system of a restricted root

system Δ of g, and -9 be the dominant root. We write # =

Let

(2.18)

^ ( 2 ) = {[K}]: m4(^) = 2

U {[{α<, ^}]: m ^ ) = m,(^) = 1 (1 < i Φ j < I)}.

The next theorem gives the classification of real simple GLA's of the y-th

kind (y = 1, 2).

THEOREM 2.9. For v = 1, 2, ίλere exists α bijection Φω of ^v) to ̂ ( v ) .

Proo/. We define the map Φ{v) to be the map Φao in (2.17). Choose

an element [(gfc)] e ^ ( v ), and let Π = ΠQ \J Π1 be the characteristic of (gfc)

(cf. Lemma 2.8). By a property of the dominant root, we see # e Δv.

Therefore <#, £J> = 2] =1 mjβ) = v, which implies that the cardinality of

/?! is less than or equal to v. So the theorem is a direct consequence of

Theorem 2.7.

2.3. Let [Π,] e &{v\ v = 1, 2 and put Πo = Π - Π,. For a partition

(7Z0, /Zi) of 77, the function /^ in (1.21) is given by hπ{a) = YΛaieπ1^i(oc)

for a eΔ. Let us put Δk = {a e Δ: hπ(a) = k}, ke Z. Then, by Theorem
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2.9, we have the partition Δ = UjU-v Δk. In this paragraph we will enu-

merate this kind of partitions for each irreducible classical root system Δ

which give rise to all gradations of the 2>th kind (v = 1, 2) of classical

real simple Lie algebras. We only give Δ_k (0 < k < v), since Δk = — J_fc

holds.

1. Type An_, (n > 2)

Δ = {+ (x€ - Xj): 1 < i < j < n},
77 = {«!, , αn_!}, α< = xi+1 — Xi (1 < ί < π, — 1),

-S = «! + + αn_j.

a) The sets {ap} (1 < p < [̂ /2]) are complete representatives of «^(1).

The partition of Δ for # ! = {ap} is given by

(2.19) Jo = {±0* - Xj): 1 < i < j < P or /? + 1 < i < j < ή],

J-i = {*< — Xjr: 1 < ί < p, p + 1 < y < n}.

b) The sets {αrp, < p̂+g} (1 < p < [n/2], 1 < q < w — 2p) are complete

repesentatives of ^ ( 2 ) . The partition of Δ for Zî  : = {αp, α^+ ĵ is given by

(2.20) Δo = {± (xt - Xj): 1 < i <j < p or p + 1 < i < j < p + q

or p + g + 1 < i < j < ^},

J_! = {#t - x, : 1 < i < p, p + 1 < < p + q

oτcp + l*ζi*ζp + q, p + q + Kj*ζή\,

Δ_2 = fa — Xj: 1 < i < p, p + q + 1 < j < n}.

2. Type B n ( τ ι > 2 )

J = {± (Xi ± Xj) (1 < i < j < n), ± x, (1 < i < n)},

77 = {au , απ}, α< = x ί + 1 — x€ (1 < i < n — 1), an = — Λn,

The automorphism group of 77 is trivial in this case.

c) ^ ( 1 ) consists of a single set {αj. The corresponding partition of J

is given by

(2.21) Δo = {± (xt ± Xj) (2 < i <j < n), ± ^ (2 < i < n)},

J-i = {Xi ± Xj (2 < j < 7l), Xj} .

d) ^ ( 2 ) consists of the sets {#2}, , {an}. The partition of Δ for 77!

= {̂ fc} (2 < ^ < τι) is given by

(2.22) Jo = {± (xt - x,) (1 < i < j < k\ ± (xt ± Xj) (k + 1 < i < j < n),

± xt (k + 1 < i < n)},
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Δ_x = fa ± Xj (1 < i < ft, ft + 1 < j < 72), X< (1 < £ < A)},

3. Type Cn (n > 3)

4 = {± (** ± Xj) (Ki<j <n), ± 2xt (1 < i < n)},

77 = {<*!, , #„}, at = xi+1 — Xi (1 < i < n — ΐ), an = — 2xny

& = 2fe + + α»-i) + <xn.
The automorphism group of Π is trivial in this case.

e) ^ ( 1 ) consists of a single set {<̂ re}. The corresponding partition of

Δ is given by

(2.23) Jo - {± (xt -x3): 1 < i < j < n},

f) ^ ( 2 ) consists of the sets {a^}, •• ,{αn-i} The partition of zl for

77i = {o£k} (1 < A < n — 1) is given by

(2.24) Jo - {± (^ - x,) (1 < ί<j < k), ± (χt ± x3) (k + 1 < i <j < Λ),

± 2x, (k + 1 < £ < n)},

Δ-i - {xt ± Xj (1 < i < Λ, * + 1 < i < 7i)},

4. Type JBCn (n > 1)

Δ = {± (x, ± ^ ) (1 < ί < i < τι), ± xi? ± 2xt ( 1 < £ < n)},

77 = {OΓJ, , αn}, ^ = xi+1 - xt (1 < £ < 72 — 1), αn = - xn,

The automorphism group of 77 is trivial in this case. ^ ( 1 ) is empty.

g) ^ ( 2 ) consists of the sets {αj, , {αΛ}. The partition of J for 77j

= {ak} (1 < /e < 72) is given by

(2.25) 4, = {±(x, - x,) (1 < £ < J < k\ ± (xt ± Xj)(k + 1 < ί <j < n),

± xu ± %Xi (k + 1 < i < n) 9

4-i = {Xi ± Xj (1 < i < A, ft + 1 < i < 72), x, (1 < £ < ft)},

Δ_2 = {Xi + Xj (1 < £ < y < ft), 2x, (1 < £ < ft)}.

5. Type Dn (72 > 4)

4 = {± (xt ± Xj): 1 < £ < i < 72},

77 = {«i, , αΛ}, α< = xi+i — xt (1 < i < 72 — 1), an = — xn-ι — xn>

The sets {αj, {α:Ώ} are complete representatives of ^ ( 1 ) for 72 Φ 4, while

https://doi.org/10.1017/S002776300000115X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000115X


96 SOJI KANEYUKI AND HIROSHI ASANO

{tfi} is for n = 4. The sets {a2}, , {an.2}9 {au

 an), {an-u ocn} are complete

representatives of ^ ( 2 ) for n Φ 4, while {a2}, {αr3, α4} are for n = 4.

h) The partition of J for Tlx = {αj is given by

(2.26) Jo = {± (χt ± Xj): 2 < i <j <n}, J M = {Xl ± Xj: 2 < j < n}.

i) The partition of Δ for 7^ = {an} is given by

(2.27) Δo = {±(x, - x,): 1 < i <j < Λ}, J . , = {x, + ^ . : 1 < i <j < n).

j) The partition of J for /Zi = {ak} (2 < ^ < n — 2) is given by

(2.28) Jo = {±(x, - x3) (1 < i <j < Λ), ± ( Λ < ± Xj) (k + 1 < i <j < Λ)},

Δ., = {xi±xj: 1 < i < k, k + 1 < j < 7i},

J_2 - {x, + ^ : 1 < i < j < ft}.

k) The partition of Δ for Π^ = {αw_!, αn} is given by

(2.29) Jo = {+ (Xi - Xj): 1 < i < j < n - 1},

4-! = {^ ± xw: 1 < / < n - 1},

Δ-2 = {Xi + Xji 1 < J < i < n — 1}.

1) The partition of J for Π1 = {au an) is given by

(2.30) Jo - {± (x, - x,): 2 < ί < j < n},

J_! = {x! - Xj (2 < < 7i), xέ + Xj (2 < i < j < 7z)},

4-2 = {*! + *, (2 < J < Λ)}.

Remark 2.10. Let g be a classical real simple Lie algebra, and let

(g, i7j) denote the gradation of the v-th kind iίi g corresponding to Πx.

By using a)-l) above, we see that (g, Π^ satisfies v = 2 and dimg_2 = 1,

if and only if (g, ΠJ is one of the followings: ($l(n, R), {au an-x}) (n ^ 3),

(δu(p, 9), {αi}) (1 < p < g), (go(/>, 9), {̂ 2}) (2 < p < g), (8p(n9 R), {a,}) (n > 3),

(3o*(2ft), {αj) (n > 4). This reproduces the Cheng's result stated in Intro-

duction for g classical.

§ 3. The Lie algebra J?(B) and GJTS's

3.1. For the later use we will mention some properties of a universal

graded Lie algebra and the GLAJS?(JB) both due to Kantor [6], [7]. For

convenience, we denote by aγ o α2 the commutator product [au a2] in a Lie

algebra, and define ax o o αm inductively by (ax o o am_1) o am. Let °U_X

be a finite-dimensional vector space, and °U. be the free Lie algebra
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generated by W^ [2]. Let %_m be the subspace of <2r_ which is spanned

by elements of the form ax<> > >. oam, where au , am e °tt-x. Then one can

write %. in the form of a GLA:

(3.1) ^_ =Σ#-<
i = l

Let ^ be the dual space of °ll_x and let

(3.2) ^rw = (®n+ί qttx) ® ^_! ,

whose elements are viewed as ^_Γvalued (n + l)-linear operators on %_x.

Put

(3.3) # + = Σ * , ,

Then it is known [6] that, with respect to suitably defined bracket re-

lations, °U becomes a GLA in which ^_ is a graded subalgebra. The

GLA is called the universal graded Lie algebra (or simply UGLA) gener-

ated by ^_!. The assignment ^_j >-* $r has a functorial property in the

following sense: Let φ be a linear isomorphism of <9l_x onto another vector

space f/'_1. Then it is easy to see that φ naturally extends to a grade-

preserving Lie isomorphism φ of the UGLA °tt generated by ^ onto the

UGLA "Γ generated by *Γ-ι. Here φ\^_ is the mapping, induced by φ,

between the free Lie algebras ^_ and f _ φ\^+ comes from the mapping,

induced by φ, between the tensor algebras over °U_X and over Ψ*-x.

DEFINITION 3.1. A GLA U = ΣΓ=-«, Ut is said to be of type a if it is

of type aQ and if U+ = Σ*>o ̂  contains no ideal of U expect (0) and

ί>2 U_i contains no graded ideal of U other than (0).Σ
Σf—« Vt be a GLA. The subspace V^ +

VQ + Vi is called the local part of V and is denoted by loc(V). Let U ~

Σί°=-°o Ut be another GLA. A linear map φ of loc(V) into Ioc(ί7) is

called a homomorphίsm between the local parts, if it satisfies

(3.4) φ([xi9 Xj]) = [φ(Xi), φ(Xj)] Xt 6 Vi9 Xs β V, ,

where (ί,j) = (0, 0), (— 1, 0), (— 1,1) and (0,1). Moreover, if φ is bijective,

then it is called an isomorphism.
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3.2. Let [/_! be a (finite-dimensional) vector space and B: C7_1 x

U.ί X t/_i —> C7_! be a trilinear mapping. Then the pair (U_u B) (some-

times denoted by B for brevity) is called a triple system. We shall often

write {xyz) instead of B(x, y9z). A triple system (U_UB) is called a

generalized Jordan triple system (or shortly GJTS), if the equality

(3.5) (uv(xyz)) = ((uvx)yz) — (x(vuy)z) + (xy(uvz))

is valid for u, v, x,y,ze J7_lβ Furthermore, if the additional condition

(3.6) (xyz) = (zyx) x,y, zeU^

is satisfied, then B is called a Jordan triple system (or simply JTS).

DEFINITION 3.3. Let (U.^B) and (V.u B;) be two GJTS's. We say

that a linear map ψ of U.t into V_! is a homomorphίsm if φ satisfies

(3.7) φ(B(x, y, z)) = B'(φ(x\ φ(y), φ(z)) x,y,ze U^ .

Moreover, if φ is bijective, then φ is called an isomorphism. In this case,

(£/_!, B) and (V_u Bf) are said to be isomorphic.

DEFINITION 3.4. Let (U.u B) be a GJTS. A subspace V of U.x is

called an ideal (resp. K-ίdeaΐ) if

(3.8) £(V, £/_!, [/_,) + B(U.U V, U_d + B(U_U U_u V) c V

(resp. B(V, U.ίy [/_,) + £([/_,, U_u V) c V)

is valid. (C7_i, β) is called simple (resp. K-sίmple), if JB is not a zero map

and if (£/_i, 23) has no non-trivial ideal (resp. if-ideal). We say that

(£/_!, B) satisfies the condition (A) if B(U,U a, i7_a) = 0 implies a = 0.

Obviously if-simplicity implies simplicity, but the converse is not

always true (cf. [8], [1]). It is known [1] that simplicity implies the con-

dition (A).

Now let (U_UB) be a GJTS and let ^==ΣΓ=-oo^t be the UGLA

generated by ^£^\ — U^^ We put

(3.9) Lab(x) = B(a, 6, x) = (abx),

Rab(x) = B(x, a, b) = (xab),

Ba(x, y) = B(x, a, y) = (xay).

Note that Lαδ, Rab e °lί^ and JBα e ^ . Let Ux be the subspace of ^ con-

sisting of all operators J3α, a e U_u and let £70 be the subspace of ^ 0
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spanned by operators Lab, where a, b e U_x. In the UGLA ty we have

(3.10) [Ba, b] = Lba a, be U.t,

(3.11) [Lat, Bβ] = - Blbac) ,

\O.LΔ) [Lab9 Lcd] ~ L(abc)d — ^c(bad)

Hence we get

(3.13) [U.u E7J = Uo, [UQ, UQ] c UQ, [UQ, C7J c U,.

Let ^Q(B) be the (graded) subalgebra of °U generated by the subspaces

Z7_i and C/̂  SfQ(B) can be written as

(3.14) <?IB) - ^_ + Σ Ut.

It is of type αr0. Furthermore it can be seen (Lemma 5 [6]) that Σi>o Ut

contains no ideal of &Q(B) other than zero. Let D be a maximal graded

ideal of ^Q(B) contained in 2 o 2 ^ - ί Note that such an ideal D is uni-

que. We define the GLA JSf(JB) = Σΐ— V, to be

(3.15) J?(B) = <?0(B)ID ,

which is of type a (not necessarily of finite dimension) [7]. J?(B) is uni-

quely determined by the given GJTS (U_u B). We call S?(B) the Kantor

algebra for B. By the definition, the subalgebra &(B)+ = Σz>o Vt is

canonically isomorphic to J£0(B)+ = Σi>o Ui. So, in the sequel, we will

regard ^f(B)+ as a subalgebra of °lί via the above isomorphism. We need

the following

THEOREM 3.5 ([7], [6]). (i) Let (U.u B) be a GJTS. If (U_u B) is

K-sίmple and if dim J£?(JB) < oo, then the Lie algebra ££{β) is simple.

(ii) Conversely, let V — Σΐ=-°> V* ^e a simple GLA of type a0 and let τ

be a grade-reversing ίnvolutίve automorphism of V. If we define a trίlinear

map Bτ by

(3.16) BT(y, x, z) = [[r(x), y], z], x, y, z e V_,,

then (V-uBr) is a K-sίmple GJTS.

3.3. In this paragraph, we construct a grade-reversing involutive

automorphism τB of Jίf(B). This was done originally by Kantor [7], but the

proof given there is rather sketchy; so we give it rigorously by relaxing

the condition "center-free" to the condition (A). Let (U.l9 B) be a GJTS
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satisfying the condition (A), and let <£f(B) = J]Γ=-oo U^ Consider the

mapping τ\ U_1-+U1:

(3.17) τ(α) = Ba .

The condition (A) implies that τ is a linear isomorphism of U.x onto Ux.

Let &'(B) = ΣΓ.-co V, be the GLA which is obtained from &{B) by re-

versing the gradation, that is, by putting Vt = !/_< for each ί. Let <% =

Σxϊ=-~®t and ψ* = Σΐ=-~^i be the UGLA's generated by <%_x = U.x and

*-x = V_! = C7"i, respectively. Let us consider the two subalgebras

= 2 o i Ui C -S?(B) and ^(JB)(1) = %t>1 V,. ^(B) ( 1 ) is viewed as a

graded subalgebra of °U (cf. the statement just before Theorem 3.5). Let

a e V, (i > 1) and let

(3.18) i<Xα)(*i, , xi+ι) = α o X l o . . . o χ.+ 1,

where X l , , xί+ί e V_x = y_1# Then F(α) is a V^-valued (i + l)-linear

form on V_t, and hence F(α) 6 ̂ . We extend F linearly to the whole

LEMMA 3.6. The mapping F is an injectίve grade-preserving homo-

morphίsm of ^ ( β ) ( 1 ) into rT+ = Σ w ^

Proof, It is known [6] that F is a grade-preserving homomorphism.

We claim first that F\Vl is injective. Let α e VΊ and suppose that F(a) — 0.

Then, from (3.10), (3.11), and (3.18), we have

(3.19) 0 = F(a)(τ(ul τ(υ)) = [[a, Bu], Bυ] = Biuaυ) = τ((uaυ))

for τ(u)9 τ(v) e ̂ _ i = V_, = J7le Since τ: ί7_x -> J7j is a linear isomorphism,

we have that (uav) — 0 for all u, v e C/_l3 and hence, by the condition (A),

a = 0. Therefore Ker F is contained in XJ02 Vt. It can be seen (cf. the

proof of Lemma 4 [6]) that Ker F is an ideal of the whole £?\B), that is,

Ker F is an ideal of <&(B) contained in X^-2 Ut. Since £?(B) is of type

a, we have Ker F = (0).

By Lemma 3.6, we may identify ^ / (S) ( 1 ) with its F-image in y + . The

linear isomorphism T of ^_! onto ir^ι naturally extends to a grade-pre-

serving isomorphism f of ^ onto Ψ* (cf. 3.1).

LEMMA 3.7. τ\Ul = τ"1 is valid. Furthermore £ sends J£?(JB)(1) ίo
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Proof. Choose BaeUιa %x (a e U_,) and let τ(Ba) = B' e y\. Then,

by the naturality of £ we have

(3.20) B\τ(u\ τ(v)) = τ(Ba(u, υ)) u,ve U.x,

from which it follows that

(3.21) B\Buy Bυ) = τ((uav)) = B{uav) = F(a)(Bu, Bυ) = a(Bu, Bv).

Bu and Bv being arbitrary, we get t(Ba) = Bf = a, which implies that

τ\Uχ = τ~\ Hence f(C70 - τ~\Uλ) = U., = Vx. Since J2?(J3) is of type α,

the subalgebra J*?CB)(1) (resp. Jδ?'(B)(1)) is generated by Ux (resp. Vi) in ^

(resp. ψ"). Therefore we conclude that τ sends ^f(J5)(1) to J2?'(B)(1).

Now we define r 5 as

(3.22) r = ί f o n

5 {f-1 on JS?(B)_ : = Σ ^i = ^ ' ( β ) ( I ) .

From Lemma 3.7, we have that τB is an involutive linear endomorphism

of J2?CB)_ + ^(S) ( 1 ) and that τB is a Lie homomorphism both on J£?(B)(1)

and on J5?(JB)_. We extend τ β to an involutive linear endomorphism

(denoted again by τB) of the whole ^(B) by putting

(3.23) τB(Lab) = - L 6 α L α δ e Uo.

The following proposition is a variation of Proposition & in Kantor

[7], in which we relax an assumption in the original one.

PROPOSITION 3.8. Let (U_u B) be a GJTS satisfying the condition (A).

Then the linear endomorphism τB defined by (3.22) and (3.23) is a grade-

reversing involutive automorphism of

Proof. By using (3.22) and (3.23), and by following Kantor [7] (p.

428), we can show that τB is a homomorphism.

τB is called the grade-reversing canonical involution of ^{B).

3.4. Let (£/_!, JB) be a GJTS satisfying the condition (A). If the GLA

££(Έ>) is of the v-th kind, then we say that (C7_1? B) is of the v-th kind.

Note that B is a JTS if and only if v = 1 [7]. The symmetric bilinear

form ΪB [19] on U_1 defined by

(3.24) γB(x, y) = i Tr (2Rxy + 2Ryx - Lxy - Lyx)

is called the trace form of the GJTS (U_u B). If ϊB is positive definite,
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then (Ϊ7_i, B) is said to be compact. When v = 1, our definition of

"compactness" is the same as that for JTS's. Suppose that (£7_1? B) is a

GJTS of the first or the second kind satisfying the condition (A). Then

it is known [1] that (Ϊ7_i, B) is compact if and only if J£?(5) is semisimple

and τB is a Cartan involution. Suppose that (U_u B) is compact of the

first or the second kind. Then (U_u B) is simple if and only if it is K~

simple ([1]).

3.5. In this paragraph we treat infinite-dimensional simple GLA's.

Let g = ΣΓ--ooβi be a simple GLA of type a0 and τ be a grade-reversing

involutive automorphism of g. Then (g_1? Bτ) is a i£-simple GJTS (cf.

Theorem 3.5), and hence it satisfies the condition (A) (cf. 3.2). Therefore

the Kantor algebra £?(Bt) admits the grade-reversing canonical involution

τBτ. Consider the UGLA % = Σi°=-~^t generated by %.λ = g_x and con-

sider the subalgebra ^fo(Bτ) of tyl given in (3.14). We then have

LEMMA 3.9. loc (g) ^ loc (£?0(BT)).

Proof. Let ^O(BT) = <%_ + J^i>0 Ut. Let ψ_x be the identity map of

g_j onto °U_λ. We define φx\ gx -• U1 be ^(τ(w)) = (Bτ)u for κeg. i . Then,

since τBr(u) = (Bτ)u (cf. (3.22)), we have φ1 = τBττ~\ τBτ is a bijection of

g_! = t . j to [/j, and so ^ is a linear isomorphism of qt onto Z71# Since

g is simple, we easily see [g_ly gj] = g0. We define φ0: g0-> ί70 by putting

φΰ([τ(u), v]) — LΌU (u, i eg-i). We claim that φQ is a bijection. First note

that the representation p: g0 -> adg,^ is faithful. Indeed, suppose the

contrary; choose a non-zero element xeg 0 such that [x, g_J = 0 . Then

Σk,ι>o (a (i δi)fc (ad g0)^ is a non-zero ideal of g. But this is impossible, since

g is simple. That φQ is surjective is trivial. Choose an element a =

Σί-i λi[τ(uz), Vi] e g0 (λt e R), and suppose φo(a) = 0. Then, for every x e g_!

= ty-u we have [α, x] = Σa h [WwO, î J, *] = Σ^ ^3X^, w<, x) = Σ< ^υtUt(x)

= φQ(ά)x = 0. Since ^ is faithful, we get α = 0. Thus <p0 is a bijection.

We shall prove that the linear bijection φ = φ^ X φ0 X φx is an isomorphism

of loc (g) onto loc (^fo(Bz)). Let x e g_! and y = [r(w), υ] e g0, where u,ve

g_i. Then we have

φ-ι([y, χ\) = [y, x] = [Ww), u], x] = ^X^, M, Λ) = L,M(x)

= [L,w, x] - [φo(y)9 φ-άx)].

Let u,ve g_i. Then, for Λ: e g_i = ^_i we get
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Mu))> φ-i(v)](x) = ί(BX, v](x) = Bτ(υ, u, x) = Lvu(x)

Let weg_i. Then we have

(w)]) = φi([[τ(u), υ], τ(w)]) = φi(τ([[u, τ(ϋ)]> w]))

On the other hand, by using (3.11), we get

O), ύ\), φι(τ(w))] = [Lvu, (Bτ)J

Furthermore — (uvw) = — Bτ(u, υ, w) = [[u, τ(v)], w]. Thus we have proved

ψiiίy, τ(u>)]) = W^X PiMw))]. Using the above equalities, one can show

that ψl[x,y]) = [φQ(x), φo(y)] for x jeGO-

LEMMA 3.10. Let g = 2Γ=-oo8ί be a real simple GLA of type aQ. Let

τ be a grade-reversing involutίve automorphism of g, and let ^f(Bτ) be the

Kantor algebra for the GJTS (g_1? Bτ). Then there exists a grade-preserv-

ing isomorphism φ of 8 onto <£f(Bτ) such that

(3.25) ψc = τBτφ .

Proof, Let % = ΣχT=--®t b e t h e UGLA such that %_, = g^. For a

GLA ή = Σ?L-«Λ, w e P u t 5+ = Σi>o5i and ^_ = Σ « - i § i W e define a

map F of 8+ to ^ + quite analogously as in (3.18). Note that (3.18) is

meaningful for ί = 0. Since 8 is simple of type aQ9 the map F is an in-

jective grade-preserving homomorphism [6]. An easy computation shows

that F coincides with φ0 X φx on 8o + 8i Let £f(Bτ) = 2Γ—« Ut. We

identify =Sf(J5r)+ with ^0(Bτ)+ C ^ + . Then, as is seen in the proof of

Lemma 3.9, we have F($o + 8i) = Uo + Ux. Considering that 8 and JSf(Bt)

are both of type a09 we conclude that the GLA's 8+ and J?(BT)+ are iso-

morphic under F. The map F/ : = τBτFτ is a grade-preserving isomorphism

of 8- onto «£?(J3r)_. We define a map ^ to be F on 8+ and to be F' on

8-. Then ψ is a grade-preserving linear isomorphism of 8 onto J?(Bτ). φ

is an isomorphism between loc(g) and loc (Jδf(JBΓ)), and it is also bracket-

preserving on 8+ and on g_. By using these properties we can conclude

inductively that φ is bracket-preserving on the whole g. In order to show

(3.25), it is enough to verify it for an element of loc (8). Let a = [τ(u), v]

e8o> where u, ueg_i. In view of (3.23) and the definition of φ, we have
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φτ([τ(u), v]) = —φ([τ(υ), u]) = -Luυ = τBτ{Lvu) = τBτφ([τ(ύ), v]). We can eas-

ily see (3.25) for the case αegi or αeg_i.

LEMMA 3.11. Let (U-u B) and (U'_u B
f) be two GJTS's satisfying the

condition (A). Then an isomorphism ψ of (U,u B) onto (U'_l9 B') induces a

grade-preserving isomorphism J£?(ψ) of ^(B) onto ^(Bf). Furthermore

(3.26) J?(ψ)τB = τB.&(ψ) ,

where τB and τB> are the grade-reversing canonical involutions of J?(B) and

respectively.

Proof. Let ^ = Σ Γ — - ^ and ^ ; = Σ Γ — » ^ be the UGLA's such

that ^_! = i7_! and ^ij. = U'_x. ψ extends to an isomorphism ψ of ^ onto

Φ ; (cf. 3.1). Let JS?O(B) = ^_ + χ;4>0 C7, and &ΰ(B') = VL + Σ o o t/J be the

subalgebras in (3.14). All objects in loc (Sf^B^)) are denoted by the same

notations as the corresponding ones in loc (Sf 0(B)) but with primes. Since

ψ is an isomorphism between the two GJTS's, we have (ψ(Ba))(ψ(u)9 ψ(v))

= ψ(Ba(u, v)) = B'Ha)(ψ(u), ψ<ϋ)), u, ve U_x. This implies ψ(Ba) = B'na).

Also we get ψ(Lα6) = Lψ(α)Ψ(6), a, b e U_x. These arguments show that ψ

sends loc (^0(B)) to loc (^Q(B% Noting that ££,($) and Jδf0(B0 are of type

a0, we have that ψ sends < f̂o(S) to &Jβr). Therefore ψ induces a grade-

preserving isomorphism «Sf(ψ) of Jδf(B) onto ^f(B0 (cf. (3.15)). To see (3.26)

it suffices to check it on loc (J?(B)). Let us identify loc (J?(B)) with

loc 0S?0(B)) etc. For Lab e Uo, we have J?(ψ)τB(Lab) = J?(ψ)(-L6 β) = - L;(6)+(α)

= τBf(Lf

Ψ(aH(b)) = τβ/^f(ψ)(Lαδ). The remaining cases are also easily derived.

THEOREM 3.12. Let g = ΣΓ=-ooflt «^d G7 = ΣlΓ—ooflί be two real simple

GLA's of type aQ. Let τ and τf be grade-reversing involutive automorphisms

of g and g', respectively. Then the GJTS's (g_ly Bτ) and (Q'_U Bτ,) are iso-

morphic if and only if there exists a grade-preserving isomorphism Θ of g

onto g' such that

(3.27) θτ = τ'θ .

Proof. As is seen from what was pointed out at the beginning of this

paragraph, J?(Bτ) and ̂ {Bτ) admit the grade-reversing canonical involu-

tions τBτ and τBτ,, respectively. Suppose that there exists an isomorphism

ψ of (g_1? Bτ) onto (g^, Bτ). By Lemma 3.11, we obtain the grade-pre-

serving isomorphism &{ψ) of ^(Bτ) onto ^(Bτ) satisfying

(3.28)

https://doi.org/10.1017/S002776300000115X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000115X


GENERALIZED JORDAN TRIPLE SYSTEMS 105

On the other hand, by Lemma 3.10, one can find grade-preserving iso-

morphisms φ: g -> ^(Bτ) and φ'\ g' -> <£f(Bτ) which satisfy the conditions

φτ = τBτφ and φ'τ1 = τBτ,φ''. Consequently the composite map θ — φf~x£?($)φ

is seen to be the desired one. The converse assertion is easily seen.

3.6. We apply the results in 3.5 to the finite-dimensional case.

DEFINITION 3.13. Let δ = 2 f c 9 f c bea real simple GLA of the first or the

second kind, and τ be a grade-reversing Cartan involution of g. The pair

(g, τ) is called an admissible pair. We say that two admissible pairs (g, τ)

and (g', τ') are isomorphic, if there exists a grade-preserving isomorphism

φ of g onto g' such that φτ = τ'φ.

We have the following classification theorem for compact GJTS's of

the first or the second kind.

THEOREM 3.14. Let @i be the set of isomorphism classes of compact real

simple GJTS's of the first or the second kind, and let J / be the set of iso-

morphism classes of admissible pairs. Then there exists a bίjectίon Ψ of

stf onto &.

Proof. As was mentioned in 3.4, for a compact real GJTS of the first

or the second kind, simplicity and if-simplicity are identical. Let (g, τ)

be an admissible pair, and let g = Σί=_yg< (v = 1> 2 ) The condition v = 1, 2

implies that g is of type a0 (cf. Lemma 2.8). Hence, by Theorem 3.5 and

Lemma 3.10, the pair (g_j, Bτ) is a simple GJTS of the y-th kind (v = 1, 2).

Furthermore, since τ is a Cartan involution, (g_1? Bτ) is compact (cf. 3.4).

We put

(3.29) ¥([(Q, r)]) = [(β.x, Bτ)],

where [ ] denotes an isomorphism class. From Theorem 3.12 it follows

that ¥: <$/—> 3? is well-defined and injective. Now choose an element

[(£/_!, B)] e SS. Since (C7_l5 B) is simple of the y-th kind, S?(B) is simple of

the ι̂ -th kind (cf. 3.4 and Theorem 3.5). ^(B) admits the grade-reversing

canonical involution τβ, which is a Cartan involution by the assumption

for (J7_l5 B). Consequently the pair (^(B), τB) is admissible. Furthermore,

for x, y, z e U^ we have

(3.30) B(y, x, z) = Bx(y, z) = [[Bx, y], z] = [[τB(x\ y], z],

which implies B = BτB. Therefore we get Ψ([(Sf(B), τB)]) = [(U.l9 B)].

https://doi.org/10.1017/S002776300000115X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000115X


106 SOJI KANEYUKI AND HIROSHI ASANO

§ 4. Classification of compact classical simple GJTS's

4.1. A real GJTS (C7_ly JB) is called classical simple, if ££{B) is clas-

sical simple. In order to classify all compact classical simple GJTS's of

the first or the second kind, we have to determine the set si (cf. Theorem

3.14). This will be carried out by

(4.1) finding all gradations of the y-th kind (y = 1, 2) in each real

simple Lie algebra g up to isomorphisms- and by

(4.2) classifying all grade-reversing Cartan involutions for each gra-

dation in g, up to conjugacy under automorphisms of the gradation.

(4.2) has been settled in Lemma 1.4; there exists a single conjugacy class

of grade-reversing Cartan involutions for each gradation. (4.1) will be

settled in 4.2 by using the results in 2.3. The next task is to determine

g_! explicitly for each gradation (gΛ) and to find explicitly a grade-revers-

ing Cartan involution. Thus we will be able to compute the GJTS's Bt

we are seeking (cf. (3.29)), by means of (3.16).

4.2. We refer to Takeuchi [15] for the realizations of classical real

simple Lie algebras g and the choices of the maximal abelian subspaces

a, on which the root systems Δ in 2.3 are defined. We can then compute

a root vector corresponding to each aed; by virtue of (1.23), (1.24) and
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2.3 one can find all the graded subspaces of g. It turns out by case-by-

case checking that, for classical real simple Lie algebras g, every grada-

tion of the first or the second kind falls into one of the six types given

in the page 106. For each diagram above the big square indicates an

element of g, a matrix. The integer k put in each divided portion indicates

that that portion lies in the graded subspace gfc. The number beside each

edge denotes the size of the portion. A shaded portion indicates that

that portion does not belong to g.

We use the following notations for the matrices: X* = ιX, where X

is a real or complex matrix. Et denotes the unit matrix of degree L

Jι = (dij) is the I X I matrix with atj = δitl+1.jt

(p < q)9 A'PiQ = APtq®E2.

We also use the following notations for the vector spaces: MPtq(K) denotes

the vector space of p X q matrices with entries in K, where K = R or C.

{XeM2pM(C): XJq = JvX}y

Sm(C) = {Xe.Ql(n, C): JnX*Jn = - X},

SH&H) = [XeMn,n(H): Jf

nX*J'n = - X],

Alt'n(K) = {Xe&(n, K): Jn

ιXJn = - X}, K = R or C,

HUH) - {Xe gί(2n, C): XJn = JnX, X*Kn + KnX = 0},

Sym'n(K) = {Xegftn, K): Jn

ιXJn = X}, K = R or C.

Table I (resp. Table II) is the list of all possible gradations of the

first (resp. second) kind (up to isomorphisms) in classical real simple Lie

algebras g and the corresponding graded subspaces g_1# Note that every

gradation of the first or the second kind is determined by Πί (cf. 2.3).

Let (gfc) be an arbitrary gradation in a real simple Lie algebra g

listed in Table I or II. It is easy to see that if we put τ(X) = — X*

(X e g), then τ is a grade-reversing Cartan involution of the GLA g = 2]fc gΛ.

Table ΠI (resp. Table IV) is the list of JTS's (resp. GJTS's of the second
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X X <> X x

g

1

V/

v/

1

v/
v/

(M

1
sί

v/
v/

î H τ~H OQ O3 (̂3

V/ V/ V/ I I I I I I

v/ v/ v/ v/ v/ v/ v/ v/ v/ v/ v/ v/ v/ v/

-i -i -i V/ V/ V/ V/ V/ V/ V/ V/ V/ V/ V/

Si

v/

V/

c o c o 0 0
V V V Λ\

c o c o ^ c o c o c g ^ ^ ^
Λ\ Λ\ Λ\ Q v/ Λ\ Λ\ Λ\ Λ\ Λ\ V/ V/ Λ\ Λ\ Λ\
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Table III

1

2

3

4

5

6

7

8

9

10

11

12

13

14

9-i

MPtn.p(C)

Mp>n.t{R)

Mp,n.p(H)

•Mi.»-i(C)

M1,p+q.2(R)

Sym'n(C)

Sym>n(R)

SH'JP)

SH'n(H)

H'n{H)

•̂ ,.,,,-,(0
Alt'lC)

MU2n.2{R)

Aim)

9-1

YX*Z +

Y'XZ +

YX*Z +

YX*Z +

Y'XZ +

YX*Z +

Y'XZ +

YX*Z +

YX*Z +

YX*Z +

YX*Z +

YX*Z +

TXZ +

Y'XZ +

Table

BT{Y,X,Z)

ZX*Y

Z'XY

ZX*Y

ZX* Y - ZJln_{YXJtn-! .
7eY"V 7 A ΎYΔ

ZX*Y

Z'XY

ZX*Y

ZX*Y

ZX*Y
'zv* v 7 T ίvy T
f-4s\ Σ — ZJU2n-2 •*• ** t*2n-2

ZX*Y

Z/ Λ.1 — Z/c/2n-2 J--A t '2π-2

Z'ZY

IV

BXY,X,Z)

2

3

M,,β(JΪ)

Vy» 71//" ^ / ^

X M , ^ . ^ ^

1 X Mq%n_p_q(h

{Y2XΪZ2
( \7 t V ^

1 vty ^
V •* 2 - ^ J L 2 " " 2

p,Ii^
ίyy*7
1 I2Λ2 £ι2

+ J
+ J

+ i

U2Λ.Ί I2

Z1X1Y1
7tγ γ
1/2 -Λ2 Jt 2
Ύ V* V
b\Λ.ι 11

7 Y* V
ί/2-Λ-2 - ί2

— Z/J22-Λ-2

- XfYiZ2

— Λ>ι I χΔ/2

4

5

6

7

8

9

10

+ Z'XY - ZAp^q-kΎXAp_k,q_k

YX*Z + ZX* Y + ZJn.kΎXJn.k

Y'XZ + Z'XY + ZJn.k

ιYXJΛ.k

YX*Z + ZX*Y- ZJ2π.2kY*XJ2n_2k

YX*Z + ZX*Y- ZJin.2kY*XJ'^u

YX*Z + ZX* Y + ZK2π.2kY*XK2n.2k

YX*Z + ZX*Y-
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12 Mk^q_2k{H) YX*Z + ZX*Y- ZAp_k

13 Mk,2n_2k+1(H) YX*Z + ZX*Y +

14 Mt,tn.Ά(C) YX*Z + ZX*Y-

15 MhUC) X AK-A- , , „ ^ ^ + z ^ γ ι _ χ ? γ A _

16 Mti2,_a(Λ) Y'XZ + Z'XY-

[Y2 X2Z2 + ^2X2X2 — Λ.iY1Z2 — Z2Jn_λ Y1XιJn_ι

kind) (g_i, βΓ) which are obtained from the gradations given in Table I

(resp. Table II). In Table IV, if g_t is a direct product of two vector spaces Vt

and V2, then an element Xe g.j is denoted by (X,, X2) or (Xlt where Xt e F4.
\χ*

From Table III we have the following

THEOREM 4.1. Compact classical real simple JTS's (J7_,, B) are classi-

fied (up to isomorphisms) as follows:

(1) *7_, = MPJK), K=R, C, H;p<q,

B(Y, X, Z) = YX*Z + ZX*Y.

(2) U.t = Sym'n(K), K=R,C;n>3,

B(Y, X, Z) = YX*Z + ZX*Y.

( 3) U-! = Alt'n (K), K= R, C; n> 5,

B(Y, X, Z) = YX*Z + ZX*Y.

(4) 17., = SH'n(K), K=C, H; n > 3 for K =C, n > 2 for K = H,

B(Y, X, Z) = YX*Z + ZX*Y.

(5) U_^H'n(H), n>3,

B(Y, X, Z) = YX*Z + ZX*Y.

(6) U.t = Mlιn(C), n > 3 , nΦ4,

B(Y, X, Z) = YX*Z + ZX* Y - ZJn

ι YXJn .

(7) [/.1 = M 1 , p t { ( i ) , 0 < p < g o r 3 < p = g,

B(Y, X, Z) = Y'XZ + ZιXY - ZAPJYXA,,t.

It is easy to see that the above result is essentially the same as the

https://doi.org/10.1017/S002776300000115X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000115X


112 SOJI KANEYUKI AND HIROSHI ASANO

one in Loos [10]. From Table IV we have

THEOREM 4.2. Compact classical real simple GJTS's (£/_„ B) of the

second kind are classified (up to isomorphisms) as follows:

,r(K), K = R,C, H,

P < [ ^ j , P < r , p + q + r = re,

B(Y, X, Z) = (Y.XfZ, + Z1XfY1 - Z,YtXt ,

Y.XfZ, + Z,XfY2 - XfYiZd ,

where

X=(XuXd, Y=(YuYd, Z = (ZuZd.

(2) I/_t = Mk>p+q.u(K), K=R,C,

2 < ^ < p < g or 2<k<p = q ( > 4) for K = R,

Kk<p <q o r l < ^ < p = <7(>4) for K = C,

B(Y, X, Z) = YX*Z + ZX*Y- Z A r M . t P X 4 p . M _ , .

(3) U.x = Mk^Q.a(H),

l < ^ < p < g or 1 < k <p = q,

B(Y, X, Z) = YX*Z +ZX*Y- ZAί.,,,.,7*]^.,,,.,.

(4) £7_, = Mtim.«(C),

2 < ̂  < n for m — In + 1,

2 < k < re - 1 for m = 2n (re > 4),

B(F, X, Z) = YZ*Z + ZX*Y - Z J m . « ( y ^ J m . » .

( 5 ) E7_, = MKm.u(H),

l<k<n for m = 2n + 1 (n > 2 ),

1 < ̂  < re - 1 /or /n = 2re (n > 3),

B( Y, x, z) = yχ*z + zx* Y

(6) I7_, = Mtit,_«(JO, iΓ=Λ,C,

l<£<re-l(re>3),

B(Y, X, Z) = YX*Z + ZX*Y+

( 7) U.x = MUn_lK) X Λ/Ct W, K = R,C;n>5,
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+ zxxtYx - zxγ2xt,
Y2XfZ2 + Z2X*Y- X*Y,Z2 -

where

X=(XUX2), Y=(YU Y2), Z = {ZUZ2).

§ 5. ©-modifications of compact simple GJTS's

We will give here a method of constructing noncompact simple

GJTS's, starting from compact simple GJTS's. Let (U.u B) be a compact

real simple GJTS of the y-th kind (v = 1, 2). Then we have the admis-

sible pair (JS?(B), τB) (cf. the proof of Theorem 3.14). ££(B) is a simple

GLA of type aQ of the v-th kind (v = 1,2). For brevity we put g = <&(B)

and τ = τB. Let g = Σ5U_υβfc

 a n ( i ^ E be its characteristic element.

Note that g_j = U-x. τ is a grade-reversing Cartan involution of g. We

choose a maximal abelian subspace a containing E satisfying (1.1). Let

Δ be the root system of g with respect to α. Now consider a signature

ε of roots in Δ in the sense of Oshima-Sekiguchi [12], and let τε be the

ε-modification of τ. τε is also an involutive automorphism of g.

PROPOSITION 5.1. Let

(5.1) JBε(F, X, Z) = [[τε(X\ Y], Z] X,Y,Ze £/_,.

Then (£/_!, Bε) is a noncompact simple GJTS of the v-th kind (v = 1, 2).

Proof. In view of the definition of τε [12], it follows that τε coincides

with τ on α. Hence we have τε(E) = — E and consequently τε is a

grade-reversing involutive automorphism of g. By Theorem 3.5, (U_lt Bε)

is a i£-simple GJTS and hence it is simple (cf. 3.4). Consequently (£/_!, Bε)

satisfies the condition (A). The G L A ^ ( J B S ) admits the grade-reversing

canonical involution τBε (cf. Proposition 3.8). By Lemma 3.10, there ex-

ists a grade-preserving isomorphism φ of g onto <&(Bε) such that ψτε =

τB&φ. Since τε is not a Cartan involution, τBt is not either. Therefore Bε

is not compact [1].

We say that (U.uBε) is an ε-modification of {U_UB).

Remark 5.2. Let g = Σ f c gfc be a simple GLA of type a0 of the y-th

kind (v — 1, 2). Let τ be a grade-reversing Cartan involution of g and

τε be an ε-modification of τ. The proof of the above theorem shows that

Bε in (5.1) is a noncompact simple GJTS of the v-th kind (v = 1, 2).
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EXAMPLE 5.3. Let us consider the gradation (Π2)2>4 of Q = 3u(4, 4) (cf.

Table II). In this case g_j = M2ti(C). A grade-reversing Cartan involu-

tion is given by r such that τ(X) = — X*, X e 3u(4, 4). The correspond-

ing compact simple GJTS is found in Table IV. Let Π = {au a2, a39 <*4} be

a fundamental system for Δ compatible with the gradation. We define

a signature e by e(at) = — 1 and e{at) = 1 for ί = 2, 3, 4 ([12]). By easy

computations we can verify that τε(X) = Aτ(X)A for X e 3u(4, 4), where

A = diag(— 1, E6, — 1). By direct computations we see for X, Y, Z e

(5.2) B£(Y, X, Z) = YX*IlΛZ + ZX*IuιY - ZJJH

where / l t l = diag(— 1,1). The above B£ provides an example of non-

compact simple GJTS's.
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