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Abstract

Let X), X2,..., Xn be identically distributed independent random variables belonging to the domain of
attraction of the normal law, have zero means and Pr{A"r ¥= 0} > 0. Suppose a0, at,..., an are
non-zero real numbers and max 0 C r < n | a, | = kn, mino«;r<n| ar | = tn and cn is such that as n -» oo,
E,, -• 0, but En log n -> oo. If Nn be the number of real roots of the equation 2" = 0 "rXrx

r = 0 then for
n > n 0 , Nn > en log /i outside an exceptional set of measure at most / i / t n log n +
( * n / O " e x p ( - / i ' 0 / e , , ) , (0 < /3 < 2 - E, 0 < t < 2) provided l im n - 0 0 (<:„/(„) is finite.
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1. Introduction

Let Nn(u) be the number of real roots of a random algebraic equation
2" = 0 Xr(u)xr = 0 where Xr's are independent identically distributed random
variables. The problem of finding bounds for Nn(u) has been considered by
various authors. Samal (1972) has considered the general case when ^ ' s have
identical distribution with expectation zero, variance and third absolute moment
finite and non-zero. A stronger result has been obtained by Littlewood and
Of ford (1939) in the case where the coefficients are Gaussian variates. Dunnage
(1968, 1970, 1972) while dealing with general probability distribution has consid-
ered the lower bound of Nn(u). Almost all the previous workers have considered
the cases in which the random variables have finite moments of second and higher
orders. The exception to those are the studies of Samal and Mishra (1972a, 1972b,
1973) in which they have considered the identically distributed random variables
having characteristic function exp( — C\ t\") where C is a positive constant and
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[21 Real roots of a random algebraic polynomial 19

a > 1. The probability distribution in this case represents a symmetric stable

distribution with infinite variance when 1 < a < 2.

The lower bound for the number of real roots of a random algebraic equation

when Xr's belong to the domain of attraction of the normal law has not yet been

studied, though Ibragimov and Maslova (1971) have studied the expectation of

the number of real roots for this situation. The object of this paper is to find the

lower bound of #„(«) when the coefficients are not identically distributed and

belong to the domain of attraction of the normal law.

THEOREM l.Letf(x) = 2"= 0 arXrx
r be a polynomial of degree n where the X/s

are identically distributed independent random variables which belong to the domain
of attraction of the normal law, have zero means and Pr{Ar

r ¥= 0} > 0. Let a0, ax,
a2,...,an be non-zero real numbers. Then there exists a positive integer n0 such that
for n > n0, the number of real roots of the equations f{x) = 0 is at least enlog n
outside a set of measure at most

M/enlog n + (kjO'cKpi-p'P/e,,), (0 < fi < 2 - e, 0 < e < 2),

providedlimn^x(kn/tn) is finite, where kn = max O f 6 ( .« ; B \ar\,tn = r a i n Q ^ r ^ n \ ar \
and en -» 0, but en log n -» ooasn-> oo.

In the sequel we need the following definitions, notation and lemmas for the
proof of the theorem.

We shall denote n's for positive constants not necessarily the same in different
places of occurrence, [x] denotes the greatest integer < x. We take constants A
and D satisfying the relations

(2.1) 0 < D < l , and A>\.

Following the techniques of Samal and Mishra (1972a) we consider f(x) =
2"= 0 arXrx

r at the points

(2.2) xm = (\- M-^)x/\

f o r m = [fc/2] + 1, [k/2] + 2,...,k, where

(2.3) M = [x2
n(/2 + \)\Ae/D)(kn/tnf] + 1,

k is determined by

(2.4) M2k<n<M2k+2,

and Xn is a sequence tending to infinity with n.
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We express f{xm) for sufficiently large n as sum of three parts as follows:

1 2 3

where the index r ranges from Mlm~x + 1 to M 2 m + 1 in 2,, from 0 to M 2 m " ' in
22 and from M2m+' + 1 to n in 23.

We write

(2.5) i/M = 2 a , * , ( « ) * ; ,
i

and

(2.6) (
V 2 3

We say a function A: R+ -» R+ is slowly varying in the neighbourhood of zero
if

(2.7) ]imh(vx)/h(x) = I, (v>0).

LEMMA I. A slowly varying function h with property (2.7) can be represented in the
form

(2.8)

where limx_0 c(x) = c ¥= 0, l imx - 0 e(x) = 0 am/ a > 1.

The above lemma follows immediately if we put l/x for x in Karamata's
theorem (see Ibragimov and Linnik (1972), Appendix 1, page 394).

Since the random variables belong to the domain of attraction of the normal
law, their common characteristic function admits the representation

(see Ibragimov and Linnik (1972) Chapter 2 page 91), where, as t -> 0, L(t) is a
slowly varying function. Since L(\ 11) is positive we can write the characteristic
function <J> in the form

(2.9) *(/) = exp{-i/2*(0},

where h(t) — L(\ 11)(1 + o{\)) with the property that

(2.10) h(t) = Re/i(r)(l +

Obviously h(t) is a slowly varying function as f -» 0.
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(4] Real roots of a random algebraic polynomial 21

We know L(\/x) is given by the formula

L(\/x) = - fu2 dx^(u) = fu2 dG{u),
J0 J-x

where \p(x) — 1 — G{x) + G(—x), G(x) being the common distribution func-
tion of the random variables Xr's (see Ibragimov and Linnik (1972) Chapter 2,
page 90). Hence for infinite variance limx_o L(\/x) = oo which gives

(2.11) lim Reh(t) = oo.

Consider the function ht(t) determined by

nn j ( 0 (̂ )
t) [a2 iiV{Xr)=o2<oo.

Clearly A,(O is slowly varying in a neighbourhood of the origin. By (2.10),
h(t) = A,(0(1 + o(l)) in both cases as t -> 0.

We define normalising constants Vm starting from the relation

(2-12) 0/^2)2«»>,(i>«)=l,
l

where TJ = ctrx
r
m/Vm, and ^ is a small positive number whose final choice will be

dealt with later. Proceeding as Ibragimov and Maslova (1971) page 232, we can
show that such constants Vm always exist if 6 is sufficiently small.

LEMMA 2. For some constant b > 1 we have

u m < UAe/D)W2{Vm/otn) if V{Xr) = 02<<x>,

\ X / \ V m / t n ) i fK(A- r )=oo.

PROOF. If V(Xr) = a2 < oo, then

V2 = o22aWm > o2tlM2m{D/Ae).
I

Or

(2-13) Mm<(Ae/D)V2(Vm/atn).

Again let V(Xr) — oo. Then by (2.11), lim,_0 A,(0 = °°> s o w e c a n choose 60 > 0
such that for 7)0 < 00, ht(r]O) > b > 1 where fc is a constant and 0 < r < n. Then
we have

Km
2 > 6 2 a ? ^ ' > bt22x2

m
r > bt2M2m(D/Ae).

l l

Or

(2.14) Mm<b-^2{Ae/D)X/2{Vm/tn).
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LEMMA 3.

except for a set of measure at most ju/\2
B 'for e > 0, where

2

ij[ = arx
r
m/Wm and 6l has similar meaning to 6.

PROOF. Let ^m(x) and <#>m(O be respectively the distribution function and the
characteristic function of arXr(u)/Wm.

So <j>m(t) = exp ( - {t2hm{t)\ where

2

Since hx(t) = L{\ 11)(1 + o(l)) and L(\ 11) is a slowly varying function as f -> 0,
we have by Lemma 1, for 11 \ < 6,

*)/») du}{\+o{}))

e x p i , (•(-)/-)
where h'mu^0 c(«) = c =̂ 0, limu^0 K

u) ~ 0 and a > 0. Now since limu^0

= 0, we have for e > 0, there exists a positive t0 such that for 11 \ < 6X < t$',

e xP / „ ^ < e x P / Zdu = l ^ i l •

Since c(0 = (1 + o(l))c as f -̂  0, we get

which gives

(2.17)

Hence by virtue of (2.15), (2.16) and (2.17) we have Re hm{t) <\t/8x \~\ Again by
(3.10), we have

Therefore, for 111< JQ1 and e > 0, we have | hm(t) \<\ix\t \~\ whence

(2.18) |<U0 " 1|
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Now by Gnedenko and Kolmogorov (1968) Chapter 2, page 54, we have

= 1 - (UK) ~ U-K))

23

Pr{| 2arXrx
r
m

(K/2)fUm(t)dt (where d = 2/\n)

\
-d

Hence the result.

LEMMA 4.

except for a set of measure at most fi/}?~e for e > 0, where

(2.19) Zl=2a>2MriA),
3

TJ2 = arx
r
m/Zm and 02 has similar meaning to 6.

The proof of this lemma is exactly similar to that of Lemma 3.

LEMMA 5. For a given m, \ Rm | < Vm except for a set of measure at most
for m = [k/2] + 1, [k/2] + 2,...,k.

Case I. Let V(Xr) = oo. Now we choose 6 so that for 0 < / - < « , (7)6) <
min(i7,0,, T]262) by which

1 <hx{r\xex) ^b and 1 < /I ,(T)202) < b.

Now the choice of 0 is final and by this choice it follows from Lemma 3 and
Lemma 4 that

/ ' / 2 / \ ' / 2 \

( 2 £ ) )) (

except for a set of measure at most n/\2~e.
Proceeding as Samal and Mishra (1972a) page 527 and using Lemma 3, we can

show that | Rm\< Vm except for a set of measure at most n/X2'".

Case II. Let V(Xr) = a2 < oo. Then

l / 2
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As in Case I, we can show that | Rm | < Vm except for a set of measure at most

3. Proof of the theorem

By (2.5) we have

'
arXrx

r
m and U2m+l= 2 arXrx

r
rXrxm.

M4m'[+\ Mrm+' + \

So A '̂s in U2m do not occur in U2m+X. Therefore U2m and U2m+l are independent
random variables.

We define sets Em and Fm as follows:

En,= {U2m>V2m,U2m+l<-V2m+i},

Fm={U2m<-V2m,U2m+l>V2m+,}.

Let Gm{x) and gm(t) be respectively the distribution function and the characteris-
tic function of (Um/Vm). Then

(3.1) gM(0

Let

(3.2) F{x) = ( l / v ^ ) f exp(-M
2/2) <fe.

From Lemma 2 it follows that Vm -> oo as w -> oo and so TJ/ -> 0 as w -> oo. Then
h(r}t) = /I,(TJO(1 + o(l)). By Lemma 1, we have in a neighbourhood of the origin,

So when m -» oo,

= exp{-^2-°(I)(?o<1)(l + o(l))} (by definition of Vm).

Therefore as m -» oo, gm(0 -» exp(— ^/2) in any bounded interval of /-values.
Hence

(3.3) sup |Gm(*) - F(*)| = o(l).

So for e > 0, we have

(3-4) | G 2 m ( - l ) - F ( - l ) | < £ ,
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[8 ] Real roots of a random algebraic polynomial 25

and

(3-5) \G2m+l(-\)-F(-l)\<e.

Now since U2m and U2m+X are independent, we have

Pr(£m U F J = Pr([/2m > V2J?r(U2m+i < -V2m+l)

+ Pr(t/2m < -V2JPr(U2m+] ^ F2m+1)

By (3.4) and (3.5), we have G2m(-1) > F(-l) - e, G2m+I(-1) > F(-\) - e, and
1 - G2m(\) > 1 - F(l) - e, 1 - G2m+I(l) > 1 - F(l) - e. Hence Pr(£m U FJ
> 2(F(-1) - e)(l - F{\) - e). Thus Pr(£m U F J is greater than a quantity
which tends to 2F(-1)(1 — F(l)) as m -» oo with n. This limit being positive we
conclude that for large m, Pr(£m U FJ > S > 0 where 5 is an absolute constant.
Hence Pr(£m U FJ = Sm > 8 > 0.

Let us define random variables ym such that it takes value 1 on Em U Fm and 0
elsewhere. Define

z " l , l * < 2mm | / ? 2 m + l l < 2 m + "
[ 1 otherwise.

Proceeding as in Samal and Mishra (1972b) page 560, we can show that the
number of roots in the interval (x2mo, x2k+l) must exceed 2* =mo(ym ~ ymzj,
where m0 — [k/2] + 1 and also

< (A: + l)(ju/X2
n~e) (by Lemma 5).

Hence for 0 < j8 < 2 - e,

Therefore,

(3-6) I >-mzm < (A: + l ) ( / iA 2
B - ' ) ^ <

As in Samal and Mishra (1972a) page 525, we can show here that 2^ , = m 7m > ju/c
outside a set of measure at most fi'/k. Therefore

m0

outside an exceptional set of measure at most \i/k + 1/X£. From (2.3) we have

(3-7) ^{Kikjtjf < M 2
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and from (2.4), we have

t-i Q\ log" ^ , ^ logn(3.8) /x3i ° < k < u 4 r ~ ^ 7 •v 7 r3logAf r 4 l ogM

Now from (3.7) and (3.8) we have

Ms tog"
\og(\n(kn/tn))

Set

(3-10) J ;

where e'n has the same meaning as en. Obviously An->ooasw->oo. From (3.10) it
follows that

(3.11) /i5e;iog«<A:</i6e;iog«.

Therefore k -> oo as n -> oo. Again by (3.11), we have

Nn > j^X log n = en log «, where /x7e; = en.

If G is the exceptional set then

e^log n)

/ ^ K l o g * ) + (£„/ / , /exp(- (M7)SXeJ

n + (kn/tn)
P

Cxp(- (M'iS/eJ).

The authors wish to thank the referee for his valuable comments.
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