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FIELD THEORY FOR FUNCTION FIELDS OF
SINGULAR PLANE QUARTIC CURVES

K E I MIURA

We study the structure of function fields of plane quaxtic curves by using projec-
tions. Taking a point P e P2, we define the projection from a curve C to a line I
with the centre P. This projection induces an extension field k(C)/k(F1). By using
this fact, we study the field extension k(C)/k(H'1) from a geometrical point of view.
In this note, we take up quaxtic curves with singular points.

1. INTRODUCTION

Let k be an algebraically closed field of characteristic zero. We fix fc as the ground
field of our discussion. Let K be an algebraic function field in one variable over k. We
would like to look into K, in particular to see what intermediate fields exist. For this
purpose we develop a field theory for K.

Let C be an irreducible plane curve of degree d (d > 1) and k(C) be a rational
function field of C. Then K is expressed as K = k(C). In this paper we study K = k(C)
from a geometrical viewpoint as we have done in [3].

Let e : X -¥ C be the birational morphism from the smooth model X onto C. Then
K = k(C) = k(X). Take a point P e P2. The morphism irP : X -> P1 is the rational
function on X defined by

where Pe(R) is the line passing through P and e{R), P1 is the one-dimensional projective
space of all lines in P2 passing through P. The degree of TTP is clearly d - mP, where mP

is the multiplicity of C at P. (We put mP = 0, if P $ C.) Then we have a field extension
•Kp : fc(P') <-)• K. This field extension depends only on the point P. So we denote the
function field ^(P1) by KP, that is,

TT'P : KP --> K.
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194 K. Miura [2]

REMARK 1. The above function field Kp is not necessarily a maximal rational subfield
of K. However if C is a smooth plane curve of degree d (d ^ 2) and P € P2 is a point,
then Kp is a maximal rational subfield (see [3]).

Note that every subfield K' satisfying k ^ K' c KP is rational by Liiroth's theorem.
We are interested in the structure of the field extension K/KP. For example,

(1) When is the extension Galois ?

(2) Let Lp be the Galois closure of K/KP. What can we say about LP ?

(3) What is the Galois group Ga\(LP/KP) ?

(4) How many fields do there exist between K and KP ?

DEFINITION 1. The point P e P2 is called a Galois point \iK/Kp is a Galois extension.

Let Cp be the smooth curve with the function field LP and TTP : CP ->• X be the
covering map induced by Lp D K. We denote the composite map np o nP by Op, that is,
Op : Cp —» P1. It is clear that Op is Galois. We call Cp the minimal splitting curve of
•nP : X ->• P \ after Tokunaga [8].

DEFINITION 2. We denote by GP the Galois group Gal(LP/KP) and by g(P) the genus

of Cp.

When C is smooth, we have studied questions (1), (2), (3) and (4) for the case d = 4
and quintic Fermat curve (see [3, 4]). In what follows we assume that C has at least one
singular point. In the case d = 1, 2 or 3, the above questions are trivial. In this paper
we study the questions in the case d = 4. So henceforth we denote by C a plane quartic
curve which is not smooth.

REMARK 2. For a singular point P £ C, we have that deg7i> = 1 or 2. Hence we see
that a singular point of C becomes a Galois point. We call this a non-smooth Galois
point. In particular, we call the Galois point P € P2 with mP = 0 or 1 a smooth Galois
point.

DEFINITION 3. We denote the number of smooth Galois points by S(C).

We use the following notation:

f{x,y) = 0 : the defining equation of (the affine part of) C.

fi(x, y) : the homogeneous part of degree i of f(x, y).

g — g(X) : the genus of X.

mP{C) = mp : the multiplicity of C at P. (We put mP = 0, if P £ C.)

sp(C) = sp : the number of the analytic branches of C at P .

Ip(Ci,C2) : the intersection number of Cx and C2 at P.

W = W{C) : the sum of order of flex of C, that is,

Qec
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[3] Singular plane quartic curves 195

where TQ denotes the tangent line to C at Q € C.

Let Op : Cp —> P1 be the Galois covering. Then we define a branch type of dp as
follows (see [6]). Let BBp = m-iQi + • • • + tridQd (2 ^ m\ ^ • • • < md) be the branch
locus of dp. Here m* is called the ramification index of 9P at Q,. That is, if R is a point
of Opl(Qi), then there are local coordinate systems C and n around R and Qi respectively
with C(R) = 0 and rj(Qi) - 0 such that 6P is locally given as: C |-* V = Cmi- We say 0P

has branch type ( m i , . . . ,md) if Bnp = miQi H 1- mdQA.

2. STATEMENT OF RESULTS

Under the situation above the main results are as follows. We state our results
separately according to the case P € C or P £ C.

In the case P 6 C, we have the following:

THEOREM 1 . Suppose C has a triple point. Then we have g(P) = 0 or 1 for ajiy
P € C. IfC has a tacnode-cusp, then C has no smooth Galois point.

THEOREM 2 . Suppose the singularities ofC are at most double points. Then for
any C and for any P € C, we have that g(P) = g or 3g + 1 - o, (0 ^ a ^ g + 1). HP is
a general point ofC, then Gp is isomorphic to S3; the symmetric group on three letters,
and g(P) = 3g + l.

In the case P £ C, we have the following:

THEOREM 3 . For any plane quartic C and any point P € P 2 \ C , Gp is isomorphic
to one of the following: (1) £4; the symmetric group on four letters, (2) Aj; t ie alternating
group on four letters, (3) D4; the dihedral group of order eight, (4) C4; the cyclic group
of order four or (5) V4; Klein's four group. Furthermore, if C has no simple cusp of
multiplicity three and P € P2 \ C is a general point, then GP = 54 and g(P) - \2g + 13.

COROLLARY 4 . For a general point P e P2, there exists no field between K and
KP.

On Galois points, we have the following.

THEOREM 5 . IfC is a plane quartic curve of genus two {that is, g{X) = 2), then
there is no point P S P2 \ C satisfying GP = C4.

3. P R O O F O F T H E O R E M 1 AND 2

First, we consider the ramification points of TI> : X —> P1 (P € P2). From the

definition of 7]>, we see that the following assertions hold true,

(i) If Q is a smooth point of C:
Then there exist Q € X such that e(Q) = Q. Hence we have that the
ramification index of TI> at Q (which we denote by ex) equals IQ(C, PQ).
For example, if PQ is the tangent line at Q, then e^ ^ 2.
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(ii) If Q is a singular point of C:

Let C\, C2, ••• , Cs be the analytic branches at Q, and e~l(Q) = Qi, • •• , Qs,
where s — SQ(C). Then we have a one-to-one correspondence between Cj
and Qj.
If PQ is not a tangent line to Cj, then e^. = TTIQ{CJ) = IQ{CJ, PQ).
If PQ is a tangent line to some C*, then e ^ = /q(Ci , PQ).

R E M A R K 3. From the Riemann-Hurwitz formula for irP (P € P2), we have

R€X

We prove Theorems 1 and 2. For a singular point P e C, the above questions (1) ~
(4) are trivial (see Remark 2). So henceforth we assume that P € C is a non-singular
point of C, that is, mP = 1.

By taking a suitable set of coordinates, we can assume that

(i) P=(0 ,0) ,

(ii) y = 0 is the tangent line to C at P,
(iii) the singular points of C do not lie on x — 0,
(iv) i = 0 and C meet transversally,
(v) if / is a line passing through P and a point of C at infinity, then Z is not a

tangent line to C and / does not pass through the singular points of C.

Let It be the line y = tx. Then we may assume that the projection is defined as
•KP(C n /t) = t, if lt does not pass through the singular points of C. In the affine plane
(x, t) e A2, let C be the curve defined by

f(x, t) = f{x, tx)/x = <p4{t)x3 + <Pz{t)x2 + ip2(t)x + v»i(t),

where ipt(t) = fi(l,t) (1 < i ^ 4). Then K = k(x,t) and KP = k(t), the extension K/KP

is obtained by f(x, t) = 0. (When t = 00, we consider x = sy instead, where st — 1.
Indeed, C is an affine part of the blow-up of C.) Then we may study irP : X —• P1 by
considering a projection from C to the t-axis.

We can find the branch points of irP by using the discriminant of f(x,t). Let ip(t)
be the discriminant of f{x,t) € fc[£][z], that is,

where Xi are the roots of f(x,t) = 0 in k(t).

DEFINITION 4. The point Q 6 C is called a 1-flex [respectively 2-flex], if /Q(C, TQ) = 3
[respectively 4], where TQ is the tangent line to C at Q.
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Noting that IP(C, TP) = Ip{C, Tp) + 1, where TP is the tangent line to C at P 6 C,
we see that P is the intersection point of C and t = 0. We have the following lemmas by
copying the proof of [3, Lemma 3.2].

LEMMA 1 . The discriminant ip(t) is expressed as i>(t) = tl)0(t)i>i(t). If(t - a)n is
a factor ofip0(t), then we have n — 1,2. Suppose that a ^ 0. Then n = 2 [respectively
n = 1] if and only if the line la becomes a tangent line to C at a 1-flex [respectively not
a Bex]. On the contrary, suppose that a — 0. Tien n = 2 if and only if P is a 2-flex,
n = 1 if and only if P is a 1-flex or l0 is a bitangent line.

LEMMA 2 . Let Pt = (a*, bt) be the singular points ofC(l^i^r).If(t- 0)m is
a factor ofipi(t), then the line y — 0x passes through some P{.

REMARK 4. It is well-known that

-<p4(tMt) = Res(f,df/dx),

where Res(/, df/dx) is the resultant of / and df/dx with respect to x. By our coor-
dinates condition (v), if (p4 (a) — 0, then t = a is not a branch point. Hence we have
m = ^IQ.{C,CX), where {Qi, • • • ,Qq} = C(~\{t = 0}, and Cx denotes the curve defined
by df/dx.

We call il>o{t) the smooth part of ip(t), and ij)i{t) the singular part of ip(t). In
particular, we can find flexes and singular points of C by computing the resultant of
f(x,t) and df{x,t)/dx.

Next, suppose that P € C is not a Galois point. Then we consider the branch points
of 7Tp : Cp —> X. Referring to [8], we have the following proposition.

PROPOSITION 6 . Let A(X/P1) and A{CP/Pl) be the branch loci ofnP and 6P

respectively. Then we have A(X/fx) = A(C^/P 1 ) .

Hence we have the following lemma.

LEMMA 3 . A point Q € X is a branch point of TTP if and only if the following
conditions are satisfied:

(a) suppose TTP(Q) - a, then np^a) = {Q, Q'},

(b) 7i> has ramification index one at Q, two at Q'.

P R O O F : Note that the Galois covering has the same ramification indices at each
branch point. Suppose R is a branch point of Up such that the ramification index of
•Kp at R is three. Put TTP(R) = 0. Then 0P has ramification index six at t = 0. Since
S3 does not contain the cyclic group of order six as a subgroup, this is a contradiction.
Next, R' is a branch point of TTP such that the ramification index of np at R' is two. Put
TTP(R') = 7. Then 6P has ramification index four at t = 7. Since the degree of 9P is six,
this is a contradiction. Hence by Proposition 6, this proves the lemma. D

Furthermore we have the following.
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LEMMA 4 . If P is not a Galois point, then g(P) = 3g(X) + 1 - a, (0 ^ a ^

g(X) + l).

P R O O F : Let a and b be the numbers of ramification points of ftp whose ramification
indices are three and two respectively. By Lemma 3, the number of branch points of nP

: Cp —> X equals b. By the Riemann-Hurwitz formula for Up, we have that 2g(P) — 2 —
2(2g(X) -2)+b. By Remark 3, we have that 2a+ 6 = 2g(X) +4 . Hence we obtain that
g(P) = 3g(X) + 1 — a. However, if b — 0, then nP is a Galois covering by [8, Proposition
3.1]. Thus a can not be g{X) + 2. This proves the lemma. D

REMARK 5. Referring to [8], we have the following assertion. A point P is a smooth
Galois point if and only if b = 0. Hence Gp = S3 if and only if b ^ 0.

Suppose C has a tacnode-cusp Q. Then we have that TOQ = 3 and SQ = 2. Hence we
infer that TTP always has a ramification point with ramification index two for any P e C.
Indeed since the line PQ is not tangent at Q, we have

X ] (eR - 1) = ™-Q - SQ = 1.
Ree-HQ)

By the above remark, we see that C has no smooth Galois point.

If C has a simple cusp of multiplicity three, then for any P € C, there exist a line
passing through P which meets C at the cusp with intersection number three. Hence we
infer that np always has a ramification point with ramification index three. Therefore
we infer the following.

LEMMA 5 . Suppose C has no simple cusp of multiplicity three. Then a = 0 for a
general point P € C.

Combining the above results, we obtain the assertions in Theorem 1 and 2.

REMARK 6. Suppose C has an ordinary triple point Q and the line la passes through
P and Q. Then the line la passes through Q with the intersection number three, and
e~l(Q) consists of three points in X. So we see that irp is unramified over t = a.

Next, as an example, we consider the curve C defined by y + g{x,y) = 0, where
g(x, y) is a homogeneous polynomial of degree four and g{x, 0) / 0.

CLAIM 1. The curve C has a smooth Galois point P = (0,0).

P R O O F : Putting f(x,y) — y + g(x,y), we have f{x,t) = g(l,t)x3 + t. Since the field
extension K/KP is given by i 3 = —t/g(l,t), the claim is clear. D

Then the homogeneous equation of C is F(x, y, z) = yz3 + g(x, y), where x, y, z are
the homogeneous coordinates of P2.

CLAIM 2. The singular points of C C P2 exist only on the line z ~ 0, and satisfy
dg/dx = dg/dy = 0.
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P R O O F : Since C C P2 is defined by F(x, y, z) = 0, the claim is clear by considering
BF/dx = dF/dy = dF/dz = 0. D

Then we may assume that g(x, y) is the one of the following:

(i) g(x, y) = {y - ax)2(y - 0x)(y - yx),

(ii) g(x,y) = {y - ax)2(y - 0x)2,

(iii) g(x, y) = (y- ax)3(y - 0x),

(iv) g{x,y) = (y-ax)\

where a, 0, y are mutually distinct elements of k \ {0}. Then the singular points of C for
each case are the following:

(i) (1 : a : 0) is the only singular point and is a simple cusp of multiplicity

two,

(ii) (1 : a : 0) and (1 : 0 : 0) are the only singular points and are simple cusps

of multiplicity two,

(iii) (1 : a : 0) is the only singular point and is an ordinary triple point,

(iv) (1 : a : 0) is the only singular point and is a simple cusp of multiplicity
three.

In case (i), we see that (1 : 0 : 0) and (1 : 7 : 0) are 1-flexes, and the line y = 0x
[respectively y = yx] is the tangent line at (1 : 0 : 0) [respectively ( 1 : 7 : 0)]. Of course
P is a 2-flex. Furthermore the line y = ax is the tangent line at (1 : a : 0). Hence TI>
has branch type (3,3,3,3). Indeed nP has ramification index three at t — a, t = 0, t = 7
and t = 0.

In case (ii), we see that Kp has branch type (3,3,3) by an argument similar to (i). In
particular, in cases (i) and (ii), there are no more smooth Galois points (by considering
the branching data of the other points). Indeed for an other point Q € C {Q ^ P) and a
line lx passing through Q, we see that l\ meets C at (1 : a : 0) with intersection number
two and it intersects C transversally at the other point. Hence TTQ^A) is a two point, so
we see TTQ is not Galois.

In case (iii), we see that TXP has branch type (3,3). Indeed nP has ramification index
three at t = 0 and t = 0.

In case (iv), we see that irP has branch type (3,3). Referring to [1], we have W(C) —
2. Since P is a 2-flex, there is no more flex. Hence we have S(C) = 1 in cases (i), (ii) and
(iv).

4. PROOF OF THEOREM 3 AND 5

Next we consider the case P 6 P2 \ C. By taking a suitable set of coordinates, we
may assume

(i) p = (o,o)tc,
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(ii) the singular points of C do not lie on x = 0,

(iii) x = 0 and C meet transversally.

Let lt be the line y — tx. Then we may assume that the projection is defined as
7Tp(C n lt) = t, if lt does not pass through the singular points of C. In the affine plane
(x, () £ A2, let C be the curve defined by

/(x, t) = f{x, tx)/x = v?4(t)z
4 + ip3(t)x

3 + (^M*2 + Vi(t)x + c,

where <pi(t) = fi[l,t) (1 ̂  i ^ 4) and c is a non-zero element of /c. Then K — k(x,t)
and -ft"f> = k(t), the extension K/Kp is obtained by f(x,t) = 0. We can find flexes and
singular points of C by an argument similar to that in Lemmas 1 and 2. So we know the
ramification points of ftp : X —> P1. We use ip(t), i>o{t) and i>\{t) as in Lemmas 1 and 2.

LEMMA 6 . Suppose C has no simple cusp of multiplicity three. If P is a general
point, then nP has just 2g{X) + 6 ramification points, and its ramification indices are
two.

P R O O F : If P is a general point and I is a line passing through P, then one of the
following assertions holds true:

(a) The line I intersects C transversally.

(b) The line I touches at one point Q € C with IQ(C, I) = 2, and it intersects
C transversally at the other points.

(c) The line I is not a tangent line at singular points.

Hence we prove the lemma from the Riemann-Hurwitz formula for ftp. D

Let P be a general point and 6P : CP -> P1 be the Galois covering. If R e Cp is
a ramification point, then we infer that the ramification number of 9p at R is two by
the above lemma. Now the theorem is proved by copying after the proof of [7, Theorem
4.4.5]. Since 6p is unramified over t — oo and the inertia group at the ramification point
R is generated by a transposition, the latter part of the theorem is a consequence of [7,
Proposition 4.4.6 and Lemma 4.4.4]. From the Riemann-Hurwitz formula, we obtain that
2g(P) - 2 = 24(0 - 2) + U(2g{X) + 6). Hence we have g(P) = l2g(X) + 13. Corollary
4 is a general fact of Galois theory and the structure of S4.

Now we define the cubic resolvent p(z) of f(x, t) — 0 as follows:

~i \ _ 3 ^2 2 , 1i¥?3 ~ 4«p4

9\Z) — Z Z + iy Z ~r

<P V>
where ifi = <pi(t) (1 ̂  i ^ 4). Clearly 7j(z) e fc(i)[z]. Then we have the following facts
from field theory (see [2]).

FACT 7 . Let M be the splitting field ofg(z) = 0 over k(t). Then we have the
following.
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(i) Gp^S4<3- g(z) is irreducible over k{t) and

(ii) GP = A4 •& g{z) is irreducible over k(t) and y/ip(t) € k(t).

(iii) Gp = V4 <=> g(z) splits into linear factors over k(t).

(iv) Gp = C4 <=> g(z) has exactly one root a in k(t) and h(x):=(x2 — ax +

c/</?4)(x
2 + {fs/ipi)! + ipil<p\ - a) splits over M.

(v) Gp = £>4 «=> g(z) has exactly one root a in k(t) and h(x) does not split
over M.

Next, we would like to characterise the defining equations by the structure of GP.
First, we recall general facts in field theory.

FACT 8 . If Gp is isomorphic to S4 or Aj, then there exists no field between K
and Kp.

In the cases when Gp = V4, C4 or D4, we can find subfields between K and Kp by
considering the subgroups of Gp. The following lemma is clear.

LEMMA 7 . The following assertions are equivalent.

(a) K contains an intermediate subSeld K' with [K1 : KP] = 2.

(b) K is expressed as K — KP{£), where £ satisfies an irreducible polynomial
x4 +ax2 + b€ Kp\x\.

From the above lemma, we obtain that K = k(x,t), where x4 + ax2 + 6 = 0 . The

coefficients a and b are in k(t), so we denote these by a(t), b(t) respectively. By cancelling

the denominator, we obtain c(t)x4 + d(t)x2 + e(t) — 0, where c(t), d(t) and e(t) € k[t],
and they are assumed to be relatively prime. Putting y = tx, we obtain that

c(y/x)x4 + d{y/x)x2 + e{y/x) = 0.

In order to obtain a quartic equation, deg e(t) must be zero, deg d(t) ^ 2 and deg c(t) ^ 4.
Whence we infer the following assertion. The group Gp is isomorphic to V4, C4 or
D4 if and only if the quartic curve C is birationally equivalent to the curve defined by
/4(x,?/)+/2(x, ?/)+c = 0, where fi(x,y) is a homogeneous polynomial of degree i (i = 2,4),
and c is a non-zero element of k. Then we have that / (x , t) = f4(t)x4 + (p2(t)x

2 + c and
g(z) = (z - f2/<P4)(z2 - 4c/<p4). Applying Fact 1 to this case, we have the following:

(i) GP^V4& y/c/vl £ k(t).

(ii) GP a C4 & y/c/<p4 • {<p2
2/<p24 - Ac/ifi) 6 k(t).

(iii) GP = D4 <=> neither (i) nor (ii).

By using this fact, we present some examples.
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EXAMPLE 1. If C is the curve defined by x4-2x2y2+y4+x2+y2 +1 = 0 and P = (0,0),
then we have that Gp = V4 and g{X) = 1. Indeed we have

f(x, t) = (t4 - 2t2 + l)x4 + (t2 + l)x2 + 1,

- 3)2(3i2 - l)2(t + l)2{t - I)2 .

The singular points of C are (1 : —1 : 0) and ( 1 : 1 : 0 ) which are nodes. Since the lines
y = ±x are not tangent lines at these nodes, irP is unramified at t = ± 1 . Furthermore
the line y — ax, where a satisfies (a2 — 3)2(3a2 - I ) 2 = 0, is the bitangent line of C.
Hence 7i> has branch type (2 ,2 ,2 ,2) . By calculating the equation f(x,t) = 0, we have
that

K = k(x,t) = k{t,y/t2 - S,\/\ - Zt2).

Then we obtain three intermediate subfields between K and Kp by considering the sub-
groups of \\. Indeed we have

Kx = k(t, Vl-3t2), K2 = k(t, vV-3), and K3 = k(t, V-3 + 10t2 - 3t*).

Let d be the smooth curve defined by Kt (1 ^ i ^ 3). Then we have that <?(Ci) = 0,
g{C2) = 0 and g[Cz) — 1, where g(C() is the genus of Cj.

EXAMPLE 2. If C is the curve defined by y4 - xy3 + x2 + 1 = 0 and P = (0,0), then
we have that Gp = D± and g(X) — 2. Indeed we have

f(x,t) = (t4-t3)x4 + x2 + l,

rl>(t) = 16(t - l)(4t4 - At3 - \)2t3.

The point (1 : 0 : 0) is the only singular point of C and it is a simple cusp of multiplicity
two. Note that the line y — ax is the bitangent line of C, where a satisfies 4a4 - 4a3 - 1 =
0. Furthermore let x; (1 ^ i ^ 4) be the roots of the equation f(x, t) — 0. We have the
following diagram of Galois correspondences:

LP <—> {1}

= k(t,Xl) <—> ((34))

I I
k(t,x\) ^

I I
KP = k(t) ^ D4 (

Let C be the smooth curve defined by k(t, x2). Then we can check easily that the double
covering C" -* P1 branches at four points satisfying At4 — 4i3 — 1 = 0 , so g{C) = 1. Since
the function field Lp is isomorphic to k(t,Xi, y/ip(t)), we see that dp : Cp —t P1 has
branch type (2, 2,2, 2, 2,2), so g(P) = 5.
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Next, we present an example of a curve C satisfying Gp = A4 for some P $. C.
Then, from Fact 1, we infer the following.

REMARK 7. The group Gp = A± if and only if the field extension M/k(t) is a cubic
Galois extension.

Then we see that Lp = k(t,x,z). Let Rp be the smooth curve defined by
M = k(t,z). Since k[t,x, z] is a tensor product of k[t,x] and k[t, z] over k[t], Cp is
the desingularisation of the fibre product of X and Rp over P1.

EXAMPLE 3. If C is the curve defined by x4 + x3y + xy3 + y4 + 2x3 + 2y3 + 2x + 2y+l = 0
and P = (0,0), then we have that GP = A4 and g(X) — 2. Indeed we have

f(x, t) = (t4 + t3 + t + l)x4 + (2t3 + 2)x3 + (2 + 2t)x + 1,

tj){t) = -432(t2 - t + 1)2(2<2 + t + 2)2(t + I)4.

The point (1 : — 1 : 0) is the only singular point of C and it is a biflecnode. The line
y = ax, where a satisfies (a2 — a + l)2(2a2 + a + 2)2 = 0, becomes a tangent line at the
1-flex of C, and the line y — —x is a tangent line at the biflecnode. Therefore the number
of ramification points of TI> is five, and its ramification indices are three. Furthermore the
field extension M/k(t) is a Galois extension given by x3 = — <l(2t2+t+2)(t+l)2(t2 — t — l).
Hence GP = Aj. We obtain a triple Galois covering RP —¥ P1, its branch type is
(3,3,3,3,3). From the above consideration, we see that dp : Cp —> P1 has branch type
(3,3,3,3,3), so g(P) = 9.

Finally we prove Theorem 5. First we find the conditions when Gp = C4. Since
K/Kp is a Galois extension, its Galois group is isomorphic to C4. Hence K can be
expressed as k(x, t) where x4 = a(t)/b(t) € k(t) = KP. Putting y = tx, we have
b(y/x)x4 — a{y/x). In order to obtain a quartic equation, deg a{t) must be zero. Whence
we infer the following assertion. The covering TI> : X -» P1 is Galois with its Galois
group Gp = C4 if and only if the quartic curve C is birationally equivalent to the curve
defined by g(x, y) + c = 0, where g(x, y) is a homogeneous polynomial of degree four and
c is a non-zero element of k.

Then we study the curve defined by g(x, y) + c — 0 with g(x, y) and c as above.
The homogeneous equation of the curve is F(x,y,z) — cz4 + g{x,y), where x, y, z are
the homogeneous coordinates of P2. Then we may assume that g(x, y) is the one of the
following:

(i) g(x, y) = {y- ax)2(y - 0x)(y - 71),

(ii) g{x,y) = (y - ax)2(y - 0x)2,

(iii) g(x, y) = (y- ax)3(y - 0x),

(iv) g{x,y) = (y-ax)4,

where a, P, 7 are mutually distinct elements of k. Then the singular points of C for each
case are same as the case P G C. But we see that F(x, y, z) is not irreducible in cases
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(ii) and (iv). So we consider cases (i) and (iii).

In case (i), we see that the singular point (1 : a : 0) is locally defined by y2 = z4,
and the line y = ax is the tangent line at this point. Furthermore we see that (1 : 0 : 0)
and ( 1 : 7 : 0 ) are 2-flexes. Then we have g(X) = 1 and the branch type of TTP : X -> IP1

is (2,4,4). Indeed nP has ramification index two at t — a and four at t = 0 and t = 7.

In case (iii), we see that the singular point (1 : a : 0) is a simple cusp of multiplicity
three, and the line y = ax is the tangent line at this point. Furthermore we see that
(1 : 0 : 0) is a 2-flex. Then we have g(X) = 0 and the branch type of TTP : X -> P1 is
(4,4).

In particular, we obtain Theorem 5. Thus we complete the proofs.
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