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ON NONABELIAN H2 FOR PROFINITE GROUPS 

K.-H. ULBRICH 

Let G be a profinite group. We define an extension (EJ) of G by a group A to consist of 
an exact sequence of groups 

1 — > A — > E - ^ G — > 1 

together with a section j : G —• E of K satisfying: 

(*) Ksg) = j(s)j(gi j(gS) = j(g)j(s\ gecseS, 

for some open normal subgroup S of G, and the map 

(**) G x A-*A,(g,a) t->j(g)aj(g)-\ 

is continuous (A being discrete). 
This notion of extension of a profinite group appears to be new. It can be viewed (as 

pointed out in sec. 7) as an algebraization of the corresponding topological notion in 
Springer [6]. 

Let TG be the topos of continuous discrete G-sets. The aim of this paper is to interpret 
the cohomology set H2(TG,L) for a band L of TG (Giraud [21) by extensions of G as 
defined above. We shall associate with an extension E — (EJ) of G a gerbe FE over TG 

and show that any gerbe over TG is equivalent to a gerbe of the form FE. 
In [1], Eilenberg and MacLane defined G-kernels (later called abstract kernels) for 

a group G to be pairs (A, a) consisting of a group A and a homomorphism a: G —> 
Out(A). In [6], Springer extended this definition to topological groups G by demanding 
that a : G —•> Out(A) be continuous, Out(A) having the discrete topology. But if G is 
compact, it follows that a(G) is a compact, hence finite subset of Out(A), a restriction 
which makes little sense for infinite G. This shows that a different definition of abstract 
kernels for profinite groups is necessary. It is given in Sec. 4. We shall prove that the 
category of abstract kernels of G is equivalent to the category of bands of TG. 

As in the case of discrete groups, each extension (EJ) of a profinite group G yields 
naturally an abstract kernel (A, à) , and hence a band L(A, â) of TG. Let L = L(A, a)o p . 
Our main result, Theorem 6.1, states that £* i—• FE induces a bijection 

Ext(G,A,a)^/ /2(rG ,L) 
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214 K.-H. ULBRICH 

where the lefthand side is the set of isomorphism classes of extensions of G defining the 
same (A,a). If G happens to be finite, this is of course a special case of the result for 
discrete groups ([2], VIII, 7.4) originally due to Eilenberg and MacLane [1]. 

In an earlier version of this paper Theorem 6.1 was proved by using Giraud's interpre­
tation of H2 by topos extensions ([2], VIII, Theorem 6.2.5). I am grateful to P. Deligne 
for pointing out how to obtain a gerbe directly from a group extension, which led to the 
present simplified version of the paper. 

Part of this work was done under a grant from the Japan Society for the Promotion 
of Science while the author stayed at the Institute of Mathematics at the University of 
Tsukuba. He would like to thank the members of the Institute for their generous hospi­
tality. 

NOTATIONS. In the following G denotes a profinite group and S the set of open 
normal subgroups of G. We shall write E = (E,KJ) and E' = (£', K / , / ) for extensions 
of G as defined above; SE will denote the set of S £ S satisfying (*). 

TG denotes the topos of continuous discrete G-sets, i.e., (left) G-sets X such that X — 
UseS Xs- A family iff. X/ —• X, i £ I) of morphisms in TQ is a covering of X if and only 
if X = \Jifi(Xi). An important fact used throughout the following is that (G/ S,S £ S) is 
cofinal in TG (each X £ TG has a covering of the form (G/ Sx —> X, x £ X) with Sx £ S). 

For X £ TG, TG\X denotes the category with objects the rG-morphisms Y —• X. 
Given a category F and a functor/?: F —> TG, the category F(X) for X £ TG has objects 

z £ F with p(z) — X, and sets of morphisms Homx(z, zf) consisting of (3 : z —» z! with 
p(P) = idx. 

1. The localization TG\G/S -^ TG. We first show that the topos TG\G/S f° r S £ S 
may be identified with T$. For any morphism/: Y —-> G/ S in TG let 

Ye = {yeY\f(y)=l}. 

Obviously, Ye is an object of T$. 

PROPOSITION 1.1. The functor TG\G/s^Ts,Y^Ye is an equivalence. 

PROOF. Let /: Gj S —> G be a section of the natural projection G—+G/S and choose 
/(l) = 1. Let X £ Ts. The set X x Gj S admits a G-action 

g(x,h) = (sx,gh), s = i(gh)~]gi(h), 

for g £ G, x £ X, and h £ Gj S. This defines an object X x Gj S of TG \ G/ S a nd a functor 

(1) TS-^TG\G/S X ^ X K G/S. 

For if m: X —> X' is a morphism in 7^ then clearly m x 1 = m x 1 is a G-morphism over 
GIS. The map (X x Gj S)e —> X, (x, 1) i—• x, is an isomorphism in Ts. Also, for each 
morphism/: Yi—> Gj S in 7G the map 

F-+F,x G/S, ^ ( / ( / w r V , / W ) , 
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is an isomorphism of G-sets over Gj S. Thus (1) is a quasi-inverse for Y i—• Ye. • 
Consider now the diagram of topos morphisms 

Ts —> TG\G/S 

t \ / u 
TG 

where w*(Z) = Z x Gj S, and t*(Z) = Z with natural ^-action for Z G 7G; it is commu­
tative up to the (right adjoint of the) isomorphisms f(Z) = (Zx Gj S)e. We therefore 
obtain 

(TSJ)~(TG\G/S,u), 

i.e., (Ts, t) interprets as the localization of TG over Gj S. 

COROLLARY 1.2. Let Si be a sheaf on TG\G/S. Then 

A= lim &(QIS') 
s'cs 

is a representing object for the sheaf Sie on Ts obtained from A by composition with (J); 
A x GIS is a representing object for SI. 

PROOF. If F is any sheaf on Ts, then lim F(S/ Sf) is a representing object for F. But 
S^CS 

for S' C S we have a G-isomorphism 

G/S' -^S/S'\x G/S, h^(i(hrxKh\ 

which gives the result by Proposition 1.1. 

REMARK 1.3. Suppose that S is a normal subgroup of an arbitrary group G. Replac­
ing then TG by the topos BG of all G-sets, one obtains BG\G/S — Bs in the same way 
as above. For S = 1 this reduces to the well-known equivalence BG\G ~ Ens, (cf. [2], 
p. 113, Prop. 1.2.8.8). 

2. The gerbe FE for an extension E. Let E be an extension of G by A, and let SE be 
the set of S G S satisfying (*). We shall regard any X G TG as an £-set via ft : £ —> G, and 
any £-set as an S-set via the homomorphism^^: S —> E. We define a category FE — F 
as follows (after P. Deligne). The objects of F are the pairs (Z,/3) with Z an £-set and 
(3:Z—>X,X£ TG, an £-map subject to the following conditions: 

(i) A operates freely on Z, 
(ii) the G-map A\Z —> X induced by (3 is bijective, 

(iii) Z=\Jses*Zs. 
Here A\ Z denotes the set of A-orbits of Z. The morphisms rj:(Z,(3)—> (Z', (3 ') in F are 
the Zs-maps Z —• Z'. Any such 77 induces by (ii) a G-map 77: X —> X' such that /^r? = 77/3. 
This gives a functor 

p:F^TG (Z,f3)^X. 
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It makes F a fibred category over TG. For iff: Y —• X is a morphism in TG and (Z, /3 ) an 
object in F(X), then 

( Z , / 3 ) x x y = ( Z x x F , / 3 x 1) 

is an object in F(F), and the natural projection Z xx Y -^ Z makes it an inverse image 
of (Z,/3) under/. 

PROPOSITION 2.1. F £ w a gerbe over TG. 

PROOF. Let r/ : (Z, /? ) —> (Z', /3 ') be a morphism in F(X). Choose zx G Z with /3(zx) = 
x for x G X, and similarly z/

x ^ Zf. Since 77 projects to id* we have r){zx) — bxz!x for bx G A. 
Hence any morphism in F(X) is an isomorphism. 

For S G S<E we have an object 

E/jS=(E/jS,*)eF(G/S). 

Let (Z, /? ) be another object in F(G/ S) and let z\ G Z with /3(zi ) = 1. Choose S' C 5 in 
S# which leaves zi fixed. Then 

E/jS'->ZxG/sG/S\ l h - ( Z l , l ) , 

is an isomorphism in F(G/ S'). It follows that for X G F G any two objects in F(X) are 
locally isomorphic because (G/ 5,5 G SE) is cofinal in To-

Finally, F is a stack, i.e., for each covering X; —*• X, / G /, in FG the functor 

F(X) — DescF((X0/,X), Z ^ (Z x^X,-)*, 

is an equivalence, where the righthand side is the category of descent data for the covering 
(X/)/e/. For any descent datum ((Z/)/, <j>tj) one obtains a descent object Z by setting 

Z =]}%/-

where z; ^ z7 if and only if </>//(£/, xt,Xj) = fc, JC/, x/)- • 
In the following we state a few properties of the objects E/jS which will be needed 

in the sequel. Fix S G Jv£. First observe that (E/jS)s = Asj(G)/j(S) is a group since j(S) 
is a normal subgroup in Asj(G). We then have natural group isomorphisms 

(2) AutE(E/jSr *É (E/jS)\ (E/jS)s xG/sG^ Asj(Gl 

the former given by 771—• r/(l). 
Next let F —+ G/ S be a morphism in FG. Then there is a group isomorphism 

p:Homs(Ye,A)^AutY(E/jS xG/s F)°p 

defined by p(m)(l,y) — (m(y),y) for all y € Ye. This yields an isomorphism 

(3) Ax G/S^AutG/s(E/jSr 

of group sheaves on TG\G/S by Cor. 1.2. 
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3. F ~ FE. Let p. F —> TG be a gerbe over 7G. We want to show that there is an 
extension E of G such that F ~ FE. 

LEMMA 3.1. There exists S G 5 tf«d * G F(G/ 5) such that Autf(x) —> G/ 5,77 1—+ 
77(77 )(1), is surjective. 

PROOF. This is easy to see since Gj S is finite and since any two objects in F(G/ S) 
are locally isomorphic. • 

In the following, we fix S G 5 and x G F(G/ S) as above. For Sf C S in S we denote 
by JC5 the inverse image of x under Gj S' —> Gj S with respect to a fixed cleavage of F. 
Then the family 

E(Sf) = Autfi/fv xG/s, G, Sf C 5, 

is naturally a directed system of groups, and we obtain an exact sequence 

1 —> A—>E-^G—>1 

by setting E = lim E(S') and A = lim Autc/s'i^ )op. By Cor. 1.2, Aop is a representing 

object for the group sheaf AutG/s(x)e on 7^. (Note, however, that E is in general not an 
object of Ts). 

Let { h\ = 1, . . . , /zr} C G be a (minimal) set of representatives for Gj S, and choose 
<j>i'. x —> x in F which projects to -hi'.GJ S—+ Gj S. Let </>i = id, and define 7: G —> £ by 

J ( ^ I ) = («ta s/i,), J G 5, t = i , . . . , r. 

Then j is a section of AC and clearly (*) holds. Moreover, the action of 5 on A induced by 
conjugation in E coincides with the action of S on A as an object of Ts. Hence we have 
obtained an extension E = (EJ) of G. 

ForzGF(X),XG TG, we set 

Q(z)= UmHom/r(x
5\z). 

Then 0(z) is naturally an £-set and it is easy to see that f3 : 0(z) —> X,/3(TJ) = 77(77 )(1), 
satisfies (i) and (ii) of Sect. 2. Also, S' C S leaves the elements of HOHI/KJC5 , z) in 0(z) 
fixed, and hence (0(z), f3 ) is an object of FE(X). Furthermore, for any morphism/: Y —+X 
in rG, there is a natural isomorphism 0(/**(z)) = 0(z) x* Fin F£(F). 

PROPOSITION 3.1. 0: F —> FE is an equivalence of gerbes. 

PROOF. It suffices to show that the morphisms 

Autx(z) -* Autx(&(z)X z G F(X), X G TG, 

induced by 0 are isomorphisms. For then 0 yields an isomorphism L(F) —> L(FE) on 
the bands of F and FE and the assertion follows from ([2], p. 216, Prop. 2.2.6). Further, 
since (G/ S", S' C S) is cofinal in TG and since any two objects of F(G/ S') are locally 
isomorphic, it is enough to consider the case X — Gj S and z = x. 
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The element idx G 0(x) satisfies j(s) idx = id* for all s G S so that 

r):E/jS-+e(x), 1 ^ i d x , 

is an isomorphism in FE(Gj S). But the composite of Int(r/) with the morphism 

AutG/ s(x) —> AutG/s(Q(x)) induced by 0 yields the isomorphism (3) since A x Gj S = 

AutGj s(x)op by definition of A. 

4. Bands of TG» The purpose of this section is to provide a description of the bands 

of TG analogous to that of the bands of the classifying topos BQ for a group object Q in 

a topos 7\ Giraud ([2], p. 430, Prop. 6.1.2). Our method of proof will be similar to that in 

[2]. However, while the proof in [2] relies on the equivalence Bg\ G~q-, w e n e r e c a n onh 

employ the equivalences TG\G/S — Ts for S G S. This makes things more complicated 

because we still have to deal with S-actions and with further base change for S' C S. 

In the following let A be a group and a : G —+ Aut(A) be a map of G into the set of group 

automorphisms of A. Let Out(A) = Aut(A)/ In(A) where In(A) is the normal subgroup of 

inner automorphisms of A. Suppose that a satisfies the following conditions: 

(i) the map â : G —> Out(A) induced by a is a group homomorphism, 

(ii) there exists S G S such that 

a (sg) = a(s)a(g), a(gs) = a(g)a(s), s G S,£ G Ç, 

and a \s makes A a (group) object of Ts. 

We call such a pair (A, a ) a G-kernel, and write ga = a(g)(a), g G G, a G A. Condition 

(i) means there exists a map c:G x G —• A satisfying 

(4) (g/i)fl = c f e / i ) ^ ) ) ^ , / ! ) - 1 , a G A, g,/z G G. 

By (ii) we can choose c in such a way that 

(5) c(g,hs) = c{g,h) = c(gs,h), g,h G G, s G 5 , 

i.e., c factors through G/ S x G/5". Then c(G x G) is finite and we may also suppose 

without restriction that 

(6) sc(g, h) = c(g, h), g,heG, seS. 

In the following Sa denotes the set of S G S satisfying (ii) and for which there exists 

c.GxG—^A satisfying (4)-(6). Let S G Sa and let /: Gj S —> G be a section of the 

canonical map G —> Gj S with /( 1 ) = 1. Further, let p \, p2 : Gj S x Gj S —•> Gj S denote 

the projections. 

LEMMA 4.1. The map 4>a:p\(A\>< Gj S)—>/?f(Ax Gj S), 

<l>a(a,h,g9h)= ((i{grli(h))a,g,g,h), aeA, g,heG/S, 
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is an isomorphism of group objects in TG\(G/ s)2- It is a descent datum up to the inner 
automorphism defined by 

( G / S ) 3 - > Â K G/S, (g,h,k)^{c{g-'h,h-'k\g). 

The proof of this lemma is by simple calculations which we omit. • 
In the following let lien(A x Gj S) denote the band of TG\G/S defined by the group 

object Ax Gj 5, ([2], p. 186). The lemma shows that we have a descent datum 

(7) (lien(AK G/S), lien(<£a)) 

in the fibre over Gj S of the stack LIEN(7G) of bands over TQ. We shall denote by 

L(A,a) GLien(rG) 

a descent object of (7) in the category of bands (over the final object) of TG- Suppose we 
replace S by Sf C S and /: Gj S —-> G by any /': Gj S' —• G. Then 

Ax G/Sf^(Ax G/S)xG/sG/S\(a,h)^((i(hy]i,(h))a,h,h), 

is an isomorphism of group objects in TG\G/S' which transforms (j)a,s' into the isomor­
phism induced by <j>a£. This shows that L(A,a) is also a descent object for (7) with S 
replaced by any S' G Sa • 

PROPOSITION 4.2. Each L G Lien(7c) is isomorphic to an L(A,a) for a G-kernel 
(A, or). 

PROOF. Since any object and morphism of Lien(rc) is locally representable ([2], 
p. 191,1.2.1 ) there exists S G S and a group A in Ts such that L(Gj S) ^ lien(A x Gj 5), 
and we may choose S in such a way that also the canonical descent datum for L(G/ S) 
is representable. Hence there exists an isomorphism (f> : p\(A x Gj S) —• /?*(A K Gj S) 
such that lien((/> ) is a descent datum for L\ </> has the form 

</> (a, A, g, A) = (<^(a), g, g, A), a G A, g, A G GIS, 

each 4>g,h'.A —> A being a group automorphism of A. Since <j> is a G-map it is uniquely 
determined by the maps </>î , h G G/ 5. The fact that lien(c/> ) is a descent datum implies 

</>#,/*</>/*,* = <t>g,k mod In(A). 

In particular, </>gtg = id^, and we may suppose without restriction that <j>\t\ = id^. We 
now define 

a: G —> Aut(A), a(si(h)) = s</)\fh s G S,h G G/S, 

where /: G/ S —* G is a fixed section with /(l) = 1. Then a |s is the given ^-action on A, 
and it is not difficult to show that (A, a ) is indeed a G-kernel. It follows that L{A, a) = L 
because <j> equals <j>a of Lemma 4.1, both having the same ( 1, /^-components. • 
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The G-kernels form a category K(G) where a morphism/: (A, a) —> (5, /3) is defined 
to be a group homomorphism / : A —> B such that there exists b:G —> B and S G 5 
satisfying 

f(ga) = bg(gf(a))b~\ <mdbs = 1 

for all g G G, a G A and 5 G 5. Given / we can choose b and S in such a way that 
5 G 5« H 5/3 and 

bgs = bg sbg — bg g G G, s G 5. 

Then è: Ç/ S x Qj S —* / ^ (S x (7/5), />(#, /t) = <J>B-ifo8,g, h), is a morphism in 
rG and 

^ ( / • x î) = 0 ( ( / K i ) ^ ) ^ - 1 . 

Thus lien(f x 1) is a morphism of descent data in LIEN(TG) yielding a morphism 
L(A, a ) —• L(B, /? ). Hence we obtain a functor 

A : K(G) —> Lien(7G), (A, a ) »-> L(A, a ) . 

Given/: (A, a ) »-• (5, /? ) and b G 5, then 

fb\A-^B,a^bf(a)b-\ 

is also a morphism (A, a ) —• (#, j3) in Â (̂G). Moreover, if 5 G 5 a Pi Sp and b G Z?5, then 
bÇ/S-*®* Ç/ S,g^{b,g\ is a G-moiphism and £( /x l)è'1=f6x 1. Thus 
lien(/ x 1) = lien(/^ x 1), and A (f) = A (/^). Hence A induces a functor 

Â:£(G)-*Lien(rG) 

where K(G) has the same objects as K(G), but has morphisms the equivalence classes of 
morphisms/: (A, a ) —-* (5, /? ) under the action of 5. 

PROPOSITION 4.3. The functor X is an equivalence. 

PROOF. It remains to show that X is fully faithful. L e t / , / : (A,a) —* (Byf3) be 
morphisms in A (̂G) and assume X(f) — A(/"')• Then there exists S G 5 and a morphism 
è\Ç/S->rBK £ / 5 in 7G |G /S such that £ ( / x l)^1 = f \X 1. Let £(1) = (£, 1). 
Then obviously/' = /*\ Thus Â is faithful. 

Next let 77: L(A, a) —> L(B,[3) be any morphism in Lien(rG). It is locally defined by 
a morphism of group objects 

f'.ïAK QIS-^VK Ç/S, 5 G 5 a n 5 / 3 , 

which satisfies 

(8) ^ ( / x l))6-1 = {f^ l)<f>a 

for a morphism b\ Q/ 5 x Qj S —-• p^($ x Ç/ S),(£, ft) —> (£(#, h),0,£, h) in rG . 
Then f = f x 1 where/: A —• 5 is a morphism of groups in 7$. Define /?: G —> B by 
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bs — \,s G S, and b^s — b(\,h) for h ^ 1 in GjS, where /: GjS —• G is the given 

section defining the G-action on A tx Gj S and 5 K G/ S. It follows then from (8) that 

f(ga) = bg(gf(a))b~] for g G G,a G A. Hence / : (A, a) —+ (/?,/?) is a morphism in 

/r(G), and clearly \(f) = rj. • 

If E —> El are isomorphic extensions of G by A (Section 6) then the induced maps 

a,a'\G—> Aut(A) are equivalent in the sense that 

(9) a\s= af\s for some S G 5 , andâ = â'\ Ç —> Out(JÏ). 

We therefore define an abstract G-kernel to be a pair (A, a ) where (A, a ) is a G-kernel 

and à the class of a under the above equivalence relation. Given a ~ a' there exists 

S G Sa H 5a' , such that lien((/>a) = lien((/v). Hence both admit the same descent object 

and we may set 

L(A,a) = L(A,â) = L(A,ar). 

Furthermore, we have a ~ a' if and only if id^: A —• A defines a morphism (A, a) —+ 

(A, a7) in K(G). Prop. 4.3 gives then an equivalence 

%iÇ) —> Lien(Tç), (Jï, a ) »-• £ ( # , a ) , 

where ^C( ^ ) is obtained from K(G) by factoring out the (atomic) subcategory of mor-

phisms represented by id^. 

5. L(A,ot) = L(FE)op* Let E be an extension of G by A and define a : G —*• Awr(A) 

by a(g)(a) = j(g)aj(g)~l for « G A,g G G. Then (A, a ) is a G-kernel. 

PROPOSITION 5.1. The band L(A, a ) is isomorphic to the opposite of the band L(FE) 

of the gerbe FE. 

PROOF. Let S G S<E.There is an isomorphism 

(10) P*2(E/jS) ^p*x(E/jS) in FE(G/SxG/S) 

which maps (w, g, h) to (vt>, g, h) with w' = wj(h~]g) for w G E and rc(w) = /z. Note that 

w' G £ / jS does not depend on the choice of the representatives w G E and g,h £ G. 

Conjugation by (10) gives an isomorphism of group sheaves 

<j> : p\(AutG/ s(E/jS)) - ^ p\ (AutG/ s(E/jS)). 

But the isomorphism 

AK G/S^AutG/s(E/jSr 

of (3) transforms <f> into <j>a of Lemma 4.1, up to an inner automorphism. Hence we 

obtain an isomorphism L(A, a) —• L(FE)op by descent. 
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6. Ext(G,A, â) = H2(TG,L). Let £,£•' be extensions of G by the same group A. 
We define an isomorphism E —> El to be an isomorphism 6 : £ —-> E' of the underlying 
groups satisfying 

(11) K ' 0 = « , 6>U = idA, and 0 . / | 5 = / I s 

for some 5 G 5. Given such 0 we obtain an equivalence 

0 : EE —* Fe 

by setting 0(Z) = Z viewed as an £'-set via 6 ; (11) implies that a is equivalent (in the 
sense of (9)) to a'\ G —> A«£(A) defined b y / . Moreover, it follows from 0\A = id^ that 
0 induces the identity on L(A7a) — L(A, a'). 

In the following we fix a G-kernel (A, a) and set 

L = L(A,d)op. 

Let Ext(G, A, a ) denote the set of isomorphism classes of extensions of G by A inducing 
the same abstract G-kernel (A, à ) . 

THEOREM 6.1. The map 

(12) Ext(G,A,a) >H2(TG,L) 

sending the class of an extension E to the class of the L-gerbe FE is a bijection. 

PROOF. Suppose there is an L-equivalence 0: FE —> EE>, for extensions E,Ef. 
Choose S € SE H S&, such that there exists 

xj; : &(E/jS) - ^ Ef/fS in F*E(G/ S). 

For S' C 5, 0 yields 

AutE(E/j?)^AutB(&(E/jS) xG/s G/S') 

since E/^S' = E/7S x G / 5 G/ 5'. The composite with Int(^ x 1) induces 

As'j(G)-^As'f(G) 

via the isomorphisms (2). Passing then to the direct limit gives an isomorphism 6 : E —• 
El. It is easy to see that 6 satisfies K'O — « and #7(s) = f(s) for s G 5. Moreover, since 
6 induces the identity on L, it follows that 0 \A is an inner automorphism defined by an 
a £ A. Replacing then 9 bya~l9awe obtain an isomorphism satisfying (11). This shows 
that (12) is injective. 

Consider now an arbitrary L-gerbe F. By Prop. 3.1 there is an equivalence of gerbes 

0: F > FE, 
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where E! is an extension of G by a group A7. Let (A', a') be the corresponding kernel. Then 
the isomorphism L(A, a) —• L(A\ a') induced by 0 comes from a group isomorphism 
A —> A', and replacing the embedding A' —> E' by A —• A7 —• F' gives an extension £ of 
G by A having the same underlying group E — El. But then F^ = F& and 0: F —> F# is 
now an L-equivalence. Hence we obtain that (12) is surjective, thereby completing the 
proof. 

REMARK 6.2. Suppose that A is abelian. Then there is a conanonical isomorphism 

Ext(G,A,à)^-+//2(G,A) 

where the righthand side denotes the second cohomology group of the continuous dis­
crete G-module A, [4], [5]. This can be shown in the usual way (see e.g., [5], p.63, Thm. 
14) and is left to the reader. 

7. Other notions of extensions of profinite groups. Let A be a group and let 

1 —>A — > E ^ G — > 1 

be a topological extension of the profinite group G by A as defined in ([6], 1.13). In 
particular, A (discrete) embeds onto a closed normal subgroup of E and K is open. It is 
known that n has a continuous section. If F is profinite this follows from the cross-section 
theorem ([4], p. 2, Prop. 1; [5], p. 10, Thm. 3). Evidently, F is profinite if and only if A 
is finite. 

PROPOSITION 7.1. There exists a continuous and open section] of'K satisfying 

(*) j(sg) = j(s)j(g), and j{gs) = j(g)j(s\ s G S, g G G for some S G S. 

PROOF. Since 1 is open in A there is an open subset V of F such that VP\ A = { 1}. 
Then n\y\ V —> K(V) is a homeomorphism since K is open. Let S G S with S C K(V), 
and let { h \ = 1, . . . , hr} C G be a set of representatives of G/ S. Define j(s) — K \ yl (s) 
and 

j(shi) = j(s)hf
t for s G 5, i = l,...,r, 

where h\ is a preimage of hi under «, and h\ — 1. Clearly j(sg) = j(s)j(g) for all s G 
S,g G Q. Since each j(S)j(g) is open in F, it follows that7 is open. Also, j is continuous, 
for if U C F is open, then K(UC\ j(G)) = j~l(U) is open in G. Consider now the map 

c:GxG-^A, c(g, h) = j(g)j(h)j(gh)-] 

It is continuous since its composite with A —> E is so, and since A is discrete. Hence 
there exists an S' C S in S such that c(gS', hS') = c(g, h), g,h G G. But since c(g, 1) = 1 
we conclude j(gs') = j(g)j(sf) for all s' G S',£ G Ç. m 

For j as above and a G A, the map G —> A,g \—> j(g)qj(g)~\ is continuous, hence 
a is fixed under some S G S- Thus we have obtained an extension (Fj) in our sense. 

https://doi.org/10.4153/CJM-1991-011-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-011-8


224 K.-H. ULBRICH 

Conversely, given any (EJ) we can define a topology on E such that A x G —-> E, (a, g) —> 
aj(g), is a homeomorphism, with A x G having the product topology. Then it is easy to 
see that E is a topological extension of G by the discrete group A. 

For topological extensions of G by an arbitrary locally compact group the reader is 
referred to ([2], VIII, Thm. 8.4). 

In [3] certain extensions 1 —> A —> E —-> G —» 1 were considered for which there 
exists an S G 5 and a group homomorphism 

js'.S—>E such that «/s = id^. 

We therefore consider the problem of extending/s to a section j : G —> E satisfying (*). 
It is clear that75 can be extended to a section/ satisfying/(gs) = f(g)f(s) for all g G 
G, s G S- Then also 

(13) f(sg)=f(g)f(g-lsg), geG,ses. 

Consider for g G G the map 

cg: S - - A, cg(s) = f(sg)?(grlf(srl. 

PROPOSITION 7.2. Each cg,g G G, /s a \-cocycle of S in A; js can be extended to a 
section j : G —> E satisfying (*) if and only ifcg splits. 

PROOF. That cg satisfies cg(ss') — cg{s)cg(s')s for s, s' G 5, is easy to see using (13). 
Suppose that7 exists. Set ag — j(g)f(g)~]. Then j(sg) = f(s)agj

f(g). On the other hand 

j(sg) = agj
f(g)f(g~]sg) = aj{sg). 

Multiplying both equations by f(g)~]f(s)_1 gives as
g = agcg(s). Thus cg splits. The 

converse is proved in the same way. 
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