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Abstract

Primitive prime divisors play an important role in group theory and number theory. We study a certain
number-theoretic quantity, called Φ∗n(q), which is closely related to the cyclotomic polynomial Φn(x) and
to primitive prime divisors of qn − 1. Our definition of Φ∗n(q) is novel, and we prove it is equivalent to the
definition given by Hering. Given positive constants c and k, we provide an algorithm for determining
all pairs (n, q) with Φ∗n(q) 6 cnk. This algorithm is used to extend (and correct) a result of Hering and is
useful for classifying certain families of subgroups of finite linear groups.
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1. Introduction

In 1974 Hering [15] classified the subgroups G of the general linear group GL(n, Fq)
which act transitively on the nonzero vectors (Fq)n \ {0}. In his investigations, a
certain number-theoretic function, Φ∗n(q), plays an important role. It divides the nth
cyclotomic polynomial evaluated at a prime power q, and hence divides |(Fq)n \ {0}| =
qn − 1. It is not hard to prove that GL(n, Fq) contains an element of order Φ∗n(q), and
every element g of GL(n, Fq) whose order is not coprime to Φ∗n(q) acts irreducibly on
the natural module (Fq)n (see [15, Theorem 3.5]). A key result [15, page 1] shows that
if 1 < gcd(|G|,Φ∗n(q)) 6 (n + 1)(2n + 1), then the structure of G is severely constrained.
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Our definition below of Φ∗n(q) differs from the one used by Hering [15, page 1],
Lüneburg [18, Satz 2] and Camina and Whelan [7, Theorem 3.23], who used the
definition in Lemma 3.1(c). We show, in Section 3, that our definition is equivalent to
theirs and that Φ∗n(q) could have also been defined in several other ways.

Definition 1.1. Suppose n, q ∈ Z are such that n > 1 and q > 2. Write Φn(X) for the nth
cyclotomic polynomial

∏
ζ(X − ζ) where ζ ranges over the primitive complex nth roots

of unity. Let Φ∗n(q) be the largest divisor of Φn(q) that is coprime to
∏

16k<n(qk − 1).

Our definition of Φ∗n(q) is motivated by the numerous applications of primitive
prime divisors (see [19] or [1, 14]). As our primary motivation is geometric, we
will assume later (after Section 4) that q is a prime power; before this point q > 2
is arbitrary unless otherwise stated. A divisor m of qn − 1 is called a strong primitive
divisor of qn − 1 if gcd(m, qk − 1) = 1 for 1 6 k < n, and a weak primitive divisor of
qn − 1 if m - (qk − 1) for 1 6 k < n. By our definition, Φ∗n(q) is the largest strong
primitive divisor of qn − 1. A primitive divisor of qn − 1 which is prime is called a
primitive prime divisor (ppd) of qn − 1 or a Zsigmondy prime (‘strong’ equals ‘weak’
for primes). DiMuro [9] uses weak primitive prime power divisors or pppds to extend
the classification in [14] to d/3 < n 6 d. Our application in Section 7 has d/4 6 n 6 d.

Primitive prime divisors have been studied since Bang [2] proved, in 1886, that
qn − 1 has a primitive prime divisor for all q, n > 1 except for q = 2 and n = 6. Given
coprime integers q > r > 0 and n > 2, Zsigmondy [22] proved, in 1892, that there
exists a prime p dividing qn − rn but not qk − rk for 1 6 k < n except when q = 2,
r = 1, and n = 6. The Bang–Zsigmondy theorem has been re-proved many times
as explained in [20, page 27] and [8, page 3]; modern proofs appear in [18, 21].
Feit [11] studied ‘large Zsigmondy primes’, and these play a fundamental role in the
recognition algorithm in [19]. Hering’s results in [15] influenced subsequent work on
linear groups, including the classification of linear groups containing primitive prime
divisor elements (ppd-elements) [14], and its refinements in [1, 9, 19].

We describe algorithms in Sections 4 and 5 which, given positive constants c and k,
list all pairs (n, q) for which n > 3 and Φ∗n(q) 6 cnk. The behaviour of Φ∗n(q) for n = 2
is different from that for larger n (see Lemma 3.1(b) and Algorithm 5.2).

Theorem 1.2. Let q > 2 be a prime power.

(a) There is an algorithm which, given constants c, k > 0 as input, outputs all pairs
(n, q) with n > 3 and q > 2 a prime power such that Φ∗n(q) 6 cnk.

(b) If n > 3, then Φ∗n(q) 6 n4 if and only if (n,q) is listed in Tables 1, 3 or 4. Moreover,
the prime powers q with q 6 5000 and Φ∗2(q) 6 24 = 16 are listed in Table 2.

In some group-theoretic applications we need explicit information about Φ∗n(q)
when this quantity is considerably larger than n4, but we have tight control over the
sizes of its ppd divisors (each of which must be of the form in + 1, by Lemma 2.1(c)).
We give an example of this kind of result in Theorem 1.3, where we require that the
ppd divisors are sufficiently small for our group-theoretic application in Section 7.
This motivated our effort to strengthen Hering’s result and we discovered two missing
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124 S. P. Glasby, F. Lübeck, A. C. Niemeyer and C. E. Praeger [3]

cases in [15, Theorem 3.9] (see Remark 1.4). In Theorem 1.2, we list all pairs (n, q)
with n > 3 and q > 2 a prime power for which Φ∗n(q) 6 n4; the implementations in [13]
can handle much larger cases like Φ∗n(q) 6 n20. In Theorem 1.3 we also require that
the ppd divisors of Φ∗n(q) be small for our group-theoretic application in Section 7.

Theorem 1.3. Suppose that q > 2 is a prime power and n > 3. Then all possible values
of (n, q) such that Φ∗n(q) has a prime factorisation of the form

∏4
i=1(in + 1)mi , with

0 6 m1 6 3 and 0 6 m2,m3,m4 6 1 are listed in Table 5.

The proof of Theorem 1.2(a) rests on the correctness of Algorithms 4.1 and 5.1
which are proved in Sections 4 and 5. Theorems 1.2(b) and 1.3 follow by applying
these algorithms. For Theorem 1.3, we observe that Φ∗n(q) 6 (n + 1)3∏4

i=2(in + 1) 6
16n7 for all n > 4, whereas for n = 3 only 2n + 1 and 4n + 1 are primes and again
Φ∗n(q) 6 7 · 13 6 16n7. Thus, the entries in Table 5 were obtained by searching the
output of our algorithms to find the pairs (n, q) for which Φ∗n(q) 6 16n7 and has the
given factorisation. This factorisation arose from the application (Theorem 7.1) in
Section 7.

Remark 1.4. The missing cases in part (d) of [15, Theorem 3.9] had Φ∗n(q) = (n + 1)2.
We discovered the possibilities n = 2, q = 17, and n = 2, q = 71 when comparing
Hering’s result with output of the Magma [6] and GAP [12] implementations of our
algorithms (see Table 2).

2. Cyclotomic polynomials: elementary facts

The product
∏

16k<n(qk − 1) has no factors when n = 1. An empty product is 1, by
convention, and so Φ∗1(q) = Φ1(q) = q − 1.

The Möbius function µ satisfies µ(n) = (−1)k if n = p1 · · · pk is a product of distinct
primes, and µ(n) = 0 otherwise. Our algorithm uses the following elementary facts.

Lemma 2.1. Let n and q be integers satisfying n > 1 and q > 2.

(a) The polynomial Φn(X) lies in Z[X] and is irreducible. Moreover,

Xn − 1 =
∏
d|n

Φd(X) and Φn(X) =
∏
d|n

(Xn/d − 1)µ(d).

(b) If d | n and d > 1, then Φn(X) divides (Xn − 1)/(Xn/d − 1) =
∑d−1

i=0 (Xn/d)i.
(c) If r is a prime and r | Φ∗n(q), then n divides r − 1, equivalently, r ≡ 1 mod n.
(d) For any fixed integer n > 1 the function Φn(q) is strictly increasing for q > 1.
(e) Let ϕ be Euler’s totient function which satisfies ϕ(n) = deg(Φn(X)). Then

ϕ(n) >
n

log2(n) + 1
for n > 1.

(f) For all n > 2 and q > 2 we have qϕ(n)/4 < Φn(q) < 4qϕ(n).
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Proof. (a) The irreducibility of Φn(X) ∈ Z[X] and the other facts, are proved in
[10, §13.4].

(b) By part (a), (Xn − 1)/(Xn/d − 1) equals
∏

k Φk(X), where k | n and k - (n/d).
Since d > 1, it follows that Φn(X) is a factor in this product.

(c) If r | Φ∗n(q) then r | (qn − 1) and n is the order of q modulo r, so n | (r − 1).
(d) This follows from Definition 1.1 because Φn(q) = |Φn(q)| =

∏
ζ |q − ζ | and

|ζ | = 1.
(e) We use the formula ϕ(n) = n

∏t
i=1 pi − 1/pi, where p1 < p2 < · · · < pt are the

prime divisors of n. Using the trivial estimate pi > i + 1 we get ϕ(n) > n/(t + 1). It
follows from 2t 6 p1 p2 · · · pt 6 n that t 6 log2(n). Hence ϕ(n) > n/(log2(n) + 1), as
claimed.

(f) Using the product formula for Φn(X) in (a) and µ(d) ∈ {0,−1, 1}, we see that
Φn(q) equals qϕ(n) times a product of distinct factors of the form (1 − 1/qi)±1 with
1 6 i 6 n. Since

∏∞
i=1(1 − 1/qi) >

∏∞
i=1(1 − 1/2i) = 0.28878 · · · > 1/4,

qϕ(n)

4
< Φn(q) < 4qϕ(n). �

Remark 2.2. Hering [15, Theorem 3.6] gives sharper estimates than those in
Lemma 2.1(f). But our (easily established) estimates suffice for the efficient algorithms
below.

3. Equivalent definitions of Φ∗n(q)

We now state equivalent ways in which to define Φ∗n(q), where q > 2 is an integer.
Because our motivation for studying Φ∗n(q) arose from finite geometry, we assume after
the proof of Lemma 3.1 that q is a prime power. Observe that Lemma 3.1(b) suggests
a much faster algorithm for computing Φ∗n(q) than does Definition 1.1.

Lemma 3.1. Let n, q be integers such that n > 2 and q > 2. The following statements
could be used as alternatives to the definition of Φ∗n(q) given in Definition 1.1.

(a) Φ∗n(q) is the largest divisor of Φn(q) coprime to
∏

k|n, k<n Φk(q).
(b) Let (q + 1)2 be the largest power of 2 dividing q + 1, and let r be the largest

prime divisor of n. Then

Φ∗n(q) =


(q + 1)/(q + 1)2 if n = 2,
Φn(q) if n > 2 and r - Φn(q),
Φn(q)/r if n > 2 and r | Φn(q).

(c) Φ∗n(q) = Φn(q)/ f i, where f i is the largest power of f := gcd(Φn(q), n) dividing
Φn(q).

Remark 3.2. For n > 2, the last paragraph of the proof of part (b) shows that d :=
gcd(Φn(q),

∏
16k<n(qi − 1)) equals f := gcd(Φn(q), n). Either d = f = 1 and r - Φn(q),

or d = f = r and r | Φn(q). Thus, part (c) simplifies to Φ∗n(q) = Φn(q)/ f when n > 2.
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Proof. (a) We use the following notation where m is a divisor of Φn(q).

Pn =
∏

16k<n

(qk − 1), P ′n =
∏

k|n, k<n

Φk(q),

dn(m) = gcd(m, Pn), d ′n(m) = gcd(m, P ′n).

Fix a divisor m of Φn(q). We prove that dn(m) = 1 holds if and only if d ′n(m) = 1.
Certainly, dn(m) = 1 implies d ′n(m) = 1 as P ′n | Pn. Conversely, suppose that dn(m) , 1.
Then there exists a prime divisor r of m that divides qk − 1 for some k with 1 6 k <
n. However, r | Φn(q) | (qn − 1) and gcd(qn − 1, qk − 1) = qgcd(n,k) − 1, so r divides
qgcd(n,k) − 1. Hence, r divides Φ`(q) for some ` | gcd(n, k), by Lemma 2.1(a). In
summary, r | dn(m) implies r | d ′n(m), so dn(m) , 1 implies d ′n(m) , 1.

For any divisor m of Φn(q) we have shown that gcd(m, Pn) = 1 holds if and only if
gcd(m, P ′n) = 1. Thus, the largest divisor of Φn(q) coprime to P ′n is equal to the largest
such divisor which is coprime to Pn, and this is Φ∗n(q), by Definition 1.1.

(b) First, consider the case n = 2. Now d := d2(Φ2(q)) = gcd(q + 1,q − 1) divides 2.
Indeed, d = 1 for even q, and d = 2 for odd q. In both cases, (q + 1)/(q + 1)2 is
the largest divisor of q + 1 coprime to q − 1. Thus Φ∗2(q) = (q + 1)/(q + 1)2, by
Definition 1.1.

Assume now that n > 2. Let d = gcd(Φn(q), Pn), where Pn =
∏

16k<n(qk − 1). If
d = 1, then Φ∗n(q) = Φn(q), by Definition 1.1. Suppose that d > 1 and p is a prime
divisor of d. Then the order of q modulo p is less than n, and Feit [11] calls p a non-
Zsigmondy prime. It follows from [21, Proposition 2] or Lüneburg [18, Satz 1] that
the prime p divides Φn(q) exactly once, and p = r is the largest prime divisor of n.
Thus we see that gcd(Φn(q)/r, Pn) = 1 and Φ∗n(q) = Φn(q)/r, by Definition 1.1. This
proves (b).

To connect with part (c), we prove when n > 2 that d equals f := gcd(Φn(q), n).
Indeed, we prove (Remark 3.2) that either d = f = 1 and r - Φn(q), or d = f = r
and r | Φn(q). If d = 1, then Φ∗n(q) = Φn(q) and a prime divisor p of Φ∗n(q) satisfies
p ≡ 1 mod n, by Lemma 2.1(c), and hence p - n. Thus f = 1 and r - Φn(q), since
r | n. Conversely, suppose that d > 1. The previous paragraph shows that d = r
and r2 - Φn(q). Thus r | f . Let p be a prime dividing f = gcd(Φn(q), n). Since
Φn(q) | (qn − 1), we have p | (qn − 1), and hence p - Φ∗n(q), by Lemma 2.1(c). Thus
p divides Pn, by Definition 1.1, and hence p divides d = gcd(Φn(q), Pn). However,
d = r and so p = r = f , and in this case r | Φn(q).

(c) By part (b) and the last paragraph of the proof of (b), Definition 1.1 is equivalent
to Hering’s definition [15] in part (c). �

Remark 3.3. When q is a prime power, there is a fourth equivalent definition:
Φ∗n(q) is the order of the largest subgroup of F×qn (the multiplicative group of qn − 1
nonzero elements of Fqn ) that intersects trivially all the subgroups F×qd for d | n, d < n.

Proof. The correspondence H ↔ |H| is a bijection between the subgroups H of the
cyclic group F×qn and the divisors of qn − 1. Suppose d | n. Note that H ∩ F×qd = {1}
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holds if and only if gcd(|H|, qd − 1) = 1 as F×qn is cyclic. Thus, there exists a unique
subgroup H whose order m is maximal subject to H ∩ F×qd = {1} for all d | n, d < n.
Hence, m is the largest divisor of qn − 1 satisfying gcd(m, qd − 1) = 1 for all d | n,
d < n. Since qn − 1 =

∏
d|n Φd(q) and Φd(q) | qd − 1, we see that m | Φn(q). It follows,

from Lemma 3.1(a), that Φ∗n(q) = m. �

4. The polynomial bound Φn(q) 6 cnk

As we will discuss in Section 5, the number of pairs (2, q) with q a prime power
satisfying Φ2(q) 6 c2k is potentially infinite. We therefore deal here with pairs (n,q) for
n > 3. Given positive constants c and k, we now describe an algorithm for determining
all pairs in the set

M(c, k) := {(n, q) ∈ Z × Z | n > 3, q > 2 a prime power, and Φn(q) 6 cnk}.

Algorithm 4.1 M(c, k).

Input: Positive constants c and k.

Output: The finite set M(c, k).

4.1.1 [Definitions] Set s := 2 + log2(c), t := (s + k)/ ln(2), u := k/ ln(2)2 and b :=
e1−t/(2u) and define for x > 3 the function g(x) := x − s − t ln(x) − u ln(x)2, where
ln(x) = loge(x). Note that g(x) has derivative g′(x) := 1 − t/x − 2u ln(x)/x.

4.1.2 [Initialise] Set n := 3 and set M(c, k) to be the empty set.
4.1.3 [Termination criterion] If n > b and g(n) > 0 and g′(n) > 0, then return M(c, k).
4.1.4 [For fixed n, find all q] If g(n) < 0 and 2ϕ(n)−2 < cnk, then compute Φn(X) and

find the smallest prime power q̃ such that Φn(q̃) > cnk; add (n, q) to M(c, k) for
all prime powers q < q̃.

4.1.5 [Increment and loop] Set n := n + 1 and go back to step 4.1.3.

Proof of correctness. Algorithm 4.1 starts with n = 3 and it continues to increment
n. We must prove that it does terminate at step 4.1.3, and that it correctly returns
M(c, k). First, note that, for fixed n, the values Φn(q) are strictly increasing with q, by
Lemma 2.1(d). Thus, it follows from Lemma 2.1(e) and (f) that

Φn(q) > Φn(2) >
2ϕ(n)

4
= 2ϕ(n)−2 > 2n/(log2(n)+1)−2.

Consider the inequality 2n/(log2(n)+1)−2 > cnk. Taking base-2 logarithms shows

n > (k log2(n) + log2(c) + 2)(log2(n) + 1)
= (log2(c) + 2) + (k + log2(c) + 2) log2(n) + k log2(n)2

= s + t ln(n) + u ln(n)2,
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where the last step uses log2(n) = ln(n)/ln(2) and the definitions in step 4.1.1. In
summary, 2n/(log2(n)+1)−2 > cnk is equivalent to g(n) > 0, with g(n) as defined in
step 4.1.1.

The inequalities above show that the conditions g(n) < 0 and 2ϕ(n)−2 < cnk, which we
test in step 4.1.4, are necessary for Φn(2) 6 cnk. We noted above that, for fixed n, the
values of Φn(q) strictly increase with q. Thus (if executed for a particular n), step 4.1.4
correctly adds to M(c, k) all pairs (n, q) for prime powers q, such that Φn(q) 6 cnk.

It remains to show (i) that the algorithm terminates, and (ii) that the returned set
M(c, k) contains all pairs (n, q) such that Φn(q) 6 cnk. The second derivative of g(x)
equals g′′(x) = (t − 2u(1 − ln(x)))/x2. Since u > 0, this shows that g′′(x) > 0 if and
only if x > b = e1−t/(2u). Thus g′(x) is increasing for all x > b. Because x grows faster
than any power of ln(x) we have that g(x) > 0 and g′(x) > 0 for x sufficiently large.
Thus, there exists a (smallest) integer ñ fulfilling the conditions in step 4.1.3: that is,
ñ > b, g(ñ) > 0 and g′(ñ) > 0. The algorithm terminates when step 4.1.3 is executed
for the integer ñ. To prove that the returned set M(c, k) is complete, we verify that,
for all n > ñ, there is no prime power q such that Φn(q) 6 cnk. Now, for all x > ñ,
we have x > b so that g′(x) is increasing for x > ñ, and so g′(x) > g′(ñ) > 0. Hence,
g(x) is increasing for x > ñ. In particular, n > ñ implies that g(n) > g(ñ) > 0 and so
(from our displayed computation above), for all prime powers q, Φn(q) > Φn(2) > cnk.
Thus, there are no pairs (n, q) ∈ M(c, k) with n > ñ, so the returned set M(c, k) is
complete. �

5. Determining when Φ∗n(q) 6 cnk

We describe an algorithm to determine all pairs (n, q), with n, q > 2 and q a prime
power, such that the value Φ∗n(q) is bounded by a given polynomial in n, say f (n). For
n > 3 the algorithm determines the finite list of possible (n, q). For n = 2 the output
is split between a finite list, which we determine, and a potentially infinite (but very
restrictive) set of prime powers q of the form 2am − 1, where m 6 f (2) is odd. Table 2
lists the prime powers q 6 5000 such that Φ∗2(q) 6 16; we see that some proper powers
occur, though the majority of the entries are primes. For example, if Φ∗2(q) = 1 then the
prime powers q of the form 2a − 1, must be a prime by [22]. Such primes are called
Mersenne primes.

The set M(c, k) of all pairs (n, q) satisfying Φn(q) 6 cnk is finite by Lemma 2.1(f).
By contrast the set of pairs (n, q) satisfying Φ∗n(q) 6 cnk may be infinite as Φ∗2(q) =

m, m odd, and may have an infinite number of (highly restricted) solutions for q.
Algorithm 5.1 computes the set

M∗>3(c, k) = {(n, q) ∈ Z × Z | n > 3, q > 2 a prime power, and Φ∗n(q) 6 cnk}

(which we see below is a finite set).
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Algorithm 5.1 M∗>3(c, k).

Input: Positive constants c and k.

Output: The finite set M∗>3(c, k).

5.1.1 Compute M(c, k + 1) with Algorithm 4.1.
5.1.2 Initialise M∗>3(c, k) as the empty set. For all (n, q) ∈ M(c, k + 1) with n > 3 check

if Φ∗n(q) 6 cnk. If yes, add (n, q) to M∗>3(c, k).
5.1.3 Return M∗>3(c, k).

Proof of correctness. We need to show that all M∗>3(c, k) ⊆ M(c, k + 1). This follows
from Lemma 3.1(b), which shows that nΦ∗n(q) > Φn(q) whenever n > 3. �

Case n = 2. We treat the case n = 2 separately as the classification has a finite part
and a potentially infinite part. Suppose q is odd and Φ∗2(q) = (q + 1)/2a = m 6 cnk,
where m is odd by Lemma 3.1(b). Then solving for q gives q = 2am − 1.

If m = 1 then q = 2a − 1 is a (Mersenne) prime as remarked in the first paragraph
of this section. Lenstra–Pomerance–Wagstaff conjectured [17] that there are an
infinite number of Mersenne primes, and the asymptotic density of the set {a < x |
2a − 1 prime} is O(log x). For fixed m with m > 1, the number of prime powers of the
form 2am − 1 may also be infinite (although in this case we cannot conclude that a
must be prime). The set

M∗2(c, k) = {(2, q) | Φ∗n(q) 6 c2k and q is a prime power}

is a disjoint union of the three subsets

R(c, k) := {(2, q) | (2, q) ∈ M∗2(c, k) and q . 3 mod 4},
S (c, k) := {(2, q) | (2, q) ∈ M∗2(c, k) and q ≡ 3 mod 4 and q not prime},

T (c, k) := {(2, q) | (2, q) ∈ M∗2(c, k) and q ≡ 3 mod 4 and q prime}.

As the set T (c, k) may be infinite, Algorithm 5.2 below takes as input a constant B > 0
and computes the finite subset T (c, k, B) = {(2, q) | q ∈ T (c, k) and q 6 B} of M∗2(c, k).
Table 2 has n = 2 and q 6 5000, so we input B = 5000.

Algorithm 5.2 M∗2(c, k, B).

Input: Positive constants c, k and B.

Output: The (finite) set R(c, k) ∪ S (c, k) ∪ T (c, k, B) (see the notation above).

5.2.1 Initialise each of R(c, k), S (c, k),T (c, k, B) as the empty set.
5.2.2 Add (2, q) to R(c, k) when q is a power of 2, with q + 1 6 c2k.
5.2.3 Add (2, q) to R(c, k), when q is a prime power, q ≡ 1 mod 4 and (q + 1)/2 6 c2k.
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5.2.4 For all primes p ≡ 3 mod 4 with p 6 B and (p + 1)/(p + 1)2 6 c2k, add (2, p) to
T (c, k, B). For all primes p ≡ 3 mod 4 (where p 6 c2k−1 is allowed) and all odd
` > 3 with

∑`−1
i=0 (−p)i 6 c2k, add (2, p`) to S (c, k) if Φ∗2(p`) 6 c2k.

5.2.5 Return R(c, k) ∪ S (c, k) ∪ T (c, k, B).

Proof of correctness. By Lemma 3.1(b), Φ∗2(q) = Φ2(q) = q + 1, when q is an even
prime power and Φ∗2(q) = Φ2(q)/2 = (q + 1)/2 if q ≡ 1 mod 4. It is clear that steps 5.2.2
and 5.2.3 find all pairs (2, q) ∈ R(c, k) with q . 3 mod 4, and there are a finite number
of choices for q.

Any prime power q ≡ 3 mod 4 is an odd power q = p` of a prime p ≡ 3 mod 4. Write
q + 1 = 2am with m odd and a > 2: then Φ∗2(q) = m. If q is a prime, (2, q) ∈ T (c, k, B)
if and only if q 6 B and Φ∗2(q) 6 c2k, so step 5.2.4 adds such pairs. This is because,
when q ≡ 3 mod 4 and q 6 B, we have, by Lemma 3.1(b), that Φ∗2(q) = (q + 1)/2 6
B. Suppose q is not a prime: that is, ` > 1. Then we have the factorisation
q + 1 = (p + 1)(

∑`−1
i=0 (−p)i), where the second factor is odd and so divides m. Since

2p`−2 6 p`−2(p − 1) <
∑`−1

i=0 (−p)i 6 m and we require m 6 c2k, we see p`−2 6 c2k−1.
Since there are a finite number of solutions to p`−2 6 c2k−1 with ` > 1 odd, S (c, k)
is a finite set, and step 5.2.4 correctly computes S (c, k). Finally, the disjoint union
R(c, k) ∪ S (c, k) ∪ T (c, k, B) is the desired output set. �

Proofs of Theorems 1.2 and 1.3. Theorem 1.2(a) follows from the correctness of
Algorithms 4.1 and 5.1, and Theorem 1.2(b) uses these algorithms with (c, k) = (1, 4).
Similarly, Theorem 1.3 uses these algorithms with (c, k) = (16, 7). It is shown in the
penultimate paragraph of the proof of Theorem 7.1 that Φ∗n(q) 6 16n7 holds for n > 4.
If n = 3 and 1 6 i 6 4, then in + 1 is prime for i = 2, 4, and again Φ∗n(q) 6 7 · 13 6 16n7

holds. We then search the (rather large) output set for the pairs (n, q) for which
Φ∗n(q) has the prescribed prime factorisation. Magma [6] code generating the data
for Tables 1–5 mentioned in Theorems 1.2 and 1.3 is available at [13]. �

6. The tables

By Lemma 2.1(c) the prime factorisation of Φ∗n(q) has the form
∏

i>1(in + 1)mi ,
where mi = 0 if in + 1 is not a prime. It is convenient to encode this prime factorisation
as Φ∗n(q) =

∏
i∈I(in + 1), where I is a multiset and, for each i ∈ I, the prime divisor

in + 1 of Φ∗n(q) is repeated mi times in I = I(n, q). For example, Φ∗4(8) = 65 =

(4 + 1)(3 · 4 + 1), so I(4,8) = {{1, 3}}; and Φ∗5(3) = 121 = (2 · 5 + 1)2, so I(5,3) = {{2, 2}}.
To save space, we omit the double braces in our tables and denote the empty multiset
(corresponding to Φ∗6(2) = 1) by ‘−’. All of our data did not conveniently fit into
Table 1, so we created subsidiary Tables 2–4 for n = 2, n = 6 and n > 19, respectively.
For n and q such that Φ∗n(q) 6 n4, Tables 1 and 4 record the multiset I(n, q) in row n
and column q. The tables are the output from Algorithm 5.1 with c = 1 and k = 4.
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Table 1. Triples (n, q, I) with Φ∗n(q) 6 n4 and prime factorisation Φ∗n(q) =
∏

i∈I(in + 1).

n\q 2 3 4 5 7 8 9 11 13 17 19

2 Table 2
3 2 4 2 10 6 24 20
4 1 1 4 3 1, 1 1, 3 10 15 1, 4 1, 7 45
5 6 2, 2 2, 6

6 Table 3
7 18 156
8 2 5 32 39 150 2, 24
9 8 84 2, 8

10 1 6 4 52 1, 19 1, 33 118
11 2, 8
12 1 6 20 50 1, 15 3, 9 540 1, 93
13 630

14 3 39 2, 8 2, 32
15 10 304 10, 22
16 16 1, 12
18 1 1, 2 2, 6 287 4845
> 19 Table 4

Table 2. Prime powers q 6 5000 with Φ∗2(q) 6 24 = 16 (see Remark 1.4).

q 2 3 22 5 7 23 32 11 13 17 19 23 52 33 29 31
q 43 47 59 71 79 103 127 191 223 239 383 479 1151 1279 1663 3583

Table 3. Pairs (q, I) with Φ∗6(q) 6 64 and prime factorisation Φ∗6(q) =
∏

i∈I(in + 1), where − means {{ }}.

q 2 3 4 5 7 8 9 11 13 16 17
I − 1 2 1 7 3 12 6 26 40 1, 2
q 19 23 25 27 29 31 32 41 47 53 59
I 1, 1, 1 2, 2 100 3, 6 45 1, 1, 3 55 91 1, 17 153 1, 27

Table 5 exhibits data for two different theorems. For Theorem 1.3 we record the
triples (n, q, I) for which n > 3 and Φ∗n(q) has prime factorisation

∏
i∈I(i n + 1), where

I ⊆ {{1, 1, 1, 2, 3, 4}}. For Theorem 7.1 we also list the possible degrees c that can arise,
namely c0 6 c 6 c1.
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Table 4. All (n, q, I) with n > 19, Φ∗n(q) 6 n4, and factorisation Φ∗n(q) =
∏

i∈I(in + 1).

n\q 2 3 4 5 n\q 2 3 n\q 2
20 2 59 3084 33 18 166 50 5, 81
21 16 34 1285 54 1615
22 31 3, 30 36 1, 3 14 742 60 1, 22

24 10 270 4, 28 38 4599 66 1, 316
26 105 15 330 40 1542 72 6, 538
27 9728 42 129 1, 54 78 286 755

28 1, 4 1, 589 44 9, 48 84 17, 172
30 11 1, 9 2, 44 2, 254 46 60 787 90 209 300
32 2048 48 2, 14

Table 5. For Theorem 1.3, we list all (n, q, I), where n > 3 and Φ∗n(q) has prime factorisation
∏

i∈I(in + 1)
with I ⊆ {{1, 1, 1, 2, 3, 4}}. For Theorem 7.1, we also list the possible degrees c, where c0 6 c 6 c1 and in
this case we must have n > 4. Here − denotes the empty multiset.

n q I c0 c1 n q I c0 c1 n q I c0 c1

3 2 2 4 13 1, 4 17 17 8 2 2 17 34
3 3 4 4 47 1, 3, 4 17 17 10 2 1 15 42
3 4 2 6 2 – 15 26 10 4 4 41 42
3 9 2, 4 6 3 1 15 25 12 2 1 15 50
3 16 2, 4 6 4 2 15 26 14 2 3 43 58
4 2 1 15 18 6 5 1 15 25 18 2 1 19 74
4 3 1 15 18 6 8 3 19 26 18 3 1, 2 37 73
4 4 4 17 18 6 17 1, 2 15 25 20 2 2 41 82
4 5 3 15 17 6 19 1, 1, 1 15 25 28 2 1, 4 113 114
4 7 1, 1 15 17 6 31 1, 1, 3 19 25 36 2 1, 3 109 146
4 8 1, 3 15 18

7. An application

Various studies of configurations in finite projective spaces have involved a
subgroup G of a projective group PGL(d, q) (or equivalently, a subgroup of GL(d, q))
with order divisible by Φ∗n(q) for certain n, q. This situation was analysed in detail by
Bamberg and Penttila [1] for the cases where n > d/2, making use of the classification
in [14]. In turn, Bamberg and Penttila applied their analysis to certain geometrical
questions, in particular, proving a conjecture of Cameron and Liebler from 1982
about irreducible subgroups with an equal number of orbits on points and lines
[1, Section 8]. In their group-theoretic analysis, Hering’s theorem [15, Theorem 3.9]
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was used repeatedly, notably to deal with the ‘nearly simple cases’ where G has a
normal subgroup H containing Z(G) such that H is absolutely irreducible, H/Z(G)
is a nonabelian simple group, and G/Z(G) 6 Aut(H/Z(G)). Incidentally, the missing
cases (n, q) = (2, 17) and (2, 71) mentioned in Remark 1.4 do not affect the conclusions
in [1].

To study other related geometric questions, we have needed similar results that
allow the parameter n to be as small as d/4. Here, we give an example of how
our extension of Hering’s results might be used to deal with nearly simple groups
in this more general case, where no existing, general classifications are applicable. For
example, there are several theorems about translation planes that include restrictive
hypotheses such as two-transitivity [3–5]. In order to remove some of these
restrictions, we require results similar to Theorem 7.1 for all nearly simple groups. For
simplicity, we now consider representations of the alternating or symmetric groups of
degree c > 15 with Φ∗n(q) | c! and, as we see below, c − 1 > n > (c − 2)/4.

Theorem 7.1. Let G 6 GL(d, q), where G � Alt(c), Sym(c), for some c > 15, and
suppose that Alt(c) acts absolutely irreducibly on (Fq)d, where q is a power of the
prime p. Suppose Φ∗n(q) divides c! for some n > d/4. Then n > 4, d = c − δ(c, q),
where δ(c, q) equals 1 if p - c, and 2 if p | c. Also c0 6 c 6 c1, and Φ∗n(q) has prime
factorisation

∏
i∈I(in + 1), where all possible values for (n, q, I, c0, c1) are listed in

Table 5.

Proof. The smallest and the second smallest dimensions for Alt(c) and Sym(c)
modules over Fq are, very roughly, c and c2/2, respectively. The precise statement
below follows from James [16, Theorem 7], where the dimension formula (∗) on [16,
page 420] is used for part (ii). Since c > 15, these results show that either:

(i) (Fq)d is the fully deleted permutation module for Alt(c) with d = c − δ(c, q); or
(ii) d > c(c − 5)/2.

In particular, since c > 15 and n > d/4, we have n > 4. Since n > 2, it follows
from [7, Theorem 3.23] that Φ∗n(q) > 1, except when n = 6 and q = 2. As the case
(n, q) = (6, 2) is included in Table 5, we assume, henceforth, that Φ∗n(q) > 1. Thus
Φ∗n(q) = rm1

1 · · · r
m`

`
, where ` > 1, each ri is a prime, and each mi > 1. Then ri = ain + 1

for some ai > 1, by Lemma 2.1(c) and, since ri divides |Sc| = c!, we see c > ri. Let r
be the largest prime divisor of Φ∗n(q). So c > r > n + 1 > d/4. In case (ii) this implies
that c > c(c − 5)/8, which contradicts the assumption c > 15. Thus case (i) holds.

The inequalities c − 2 6 d and d 6 4n show that ain + 1 6 c 6 4n + 2 and hence
ai 6 4. The exponent mi of ri is severely constrained. If ai > 2, then

ri = ain + 1 > 2n + 1 >
d + 3

2
>

c + 1
2

>
c
2
.

Thus, the prime ri divides c! exactly once, and mi = 1. If ai = 1, then a similar
argument shows ri = n + 1 > d + 4/4 > c + 2/4 > 17/4 > 4. The inequalities ri > c/4
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and ri > 4 imply that ri divides c! at most three times, and mi 6 3. In summary, Φ∗n(q)
divides f (n) := (n + 1)3(2n + 1)(3n + 1)(4n + 1). Since n > 4, we have f (n) 6 16n7. All
possible pairs (n,q), for which Φ∗n(q) | f (n), can be computed using Algorithm 5.1 with
input c = 16, k = 7. The output is listed in Table 5, and computed using [13].

For given n and q the possible values for c form an interval c0 6 c 6 c1. Since
c − δ(c, q) = d 6 4n, the entries c0, c1 in Table 5 can be determined as follows: c0 =

max(r, 15),where r is the largest prime divisor of Φ∗n(q), and c1 = 4n + δ(4n + 2, q). �
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