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Considerable discussion over the past few years has been devoted to the question
of whether the logarithmic region in wall turbulence is indeed universal. Here,
we analyse recent experimental data in the Reynolds number range of nominally
2 × 104 < Reτ < 6 × 105 for boundary layers, pipe flow and the atmospheric surface
layer, and show that, within experimental uncertainty, the data support the existence
of a universal logarithmic region. The results support the theory of Townsend (The
Structure of Turbulent Shear Flow, Vol. 2, 1976) where, in the interior part of the
inertial region, both the mean velocities and streamwise turbulence intensities follow
logarithmic functions of distance from the wall.
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1. Introduction

A focus area for many decades in the study of wall-bounded turbulence has been
the region of the boundary layer known as the inertial sublayer or logarithmic region.
The term ‘logarithmic’ derives from the classical description (see Coles & Hirst 1969),
where the mean velocity, U, follows a logarithmic profile with distance from the
wall, z:

U+ = 1
κ

log(z+)+ A. (1.1)

Here, U+ = U/Uτ , where Uτ is the friction velocity, z+ = zUτ/ν, where ν is the
kinematic viscosity, κ is the von Kármán constant, and A is a parameter that depends
on the roughness of the surface, and is assumed to be a constant for smooth-walled
flows. A number of approaches have been used to arrive at (1.1), going back to
Prandtl (1925), Kármán (1930) and Millikan (1938), and through to Rotta (1962) and
Townsend (1976). While the theoretical arguments may differ, a central feature is
that the logarithmic region is associated with a constant velocity scale (Uτ ), and any
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characteristic lengths scale with z, the distance from the wall. Consistent with this
inertial range description, Townsend (1976) proposed that the scaling from the wall
can be associated with corresponding attached eddies, whose geometric lengths scale
with z, and with population densities per characteristic eddy height that scale inversely
with z. Townsend showed that this argument also leads to a logarithmic profile for the
streamwise (and spanwise) turbulence intensities of the form

u2
+ = B1 − A1 log(z/δ), (1.2)

where u2
+ = u2/U2

τ and δ is the boundary-layer thickness (or pipe radius, or channel
half-height). Perry & Chong (1982) show mechanistically how (1.1) and (1.2) apply
simultaneously in the context of Townsend’s attached-eddy hypothesis.

One of the difficulties when discussing the logarithmic region is that the mean
velocity profiles deviate very slowly from (1.1), making it difficult to discern where
the logarithmic region starts and ends, especially at low Reynolds numbers. This is
where it is advantageous to consider more than just the mean velocity profile. Here,
we consider (1.1) and (1.2) and require that they both need to apply as the leading-
order function for the inertial sublayer to exist. While it has been many years since
Townsend proposed (1.2), it is only recently that data have been available at very
high Reynolds numbers in order to test the hypothesis properly. Perry and coworkers
(Perry & Abell 1977; Perry, Henbest & Chong 1986; Perry & Li 1990; Perry &
Marusic 1995) reported an extensive series of experiments towards this goal, but it
was clear that their data were not at a sufficiently high Reynolds number to establish
unambiguously a logarithmic profile for u2

+
. Tentative support has also come from

other studies, notably Jiménez & Hoyas (2008).
The past decade or so has also seen vigorous discussion challenging the universality

of κ , and this topic has been extensively reviewed by Klewicki (2010), Marusic et al.
(2010), Smits, McKeon & Marusic (2011) and Jiménez (2012). To date, the empirical
evidence used to determine κ has come mainly from low to moderately high Reynolds
numbers, and, from these, Monkewitz, Chauhan & Nagib (2007, 2008) and Nagib &
Chauhan (2008) arrive at κ = 0.384 for zero-pressure-gradient boundary-layer flows.
Monty (2005) obtained similar estimates for κ from studies in pipes and channels
for friction Reynolds numbers, Reτ = δUτ/ν, in the range 1000–4000. Studies in the
atmosphere by Andreas et al. (2006) conclude that κ = 0.387, which agrees with
Nagib & Chauhan (2008) within experimental uncertainty. Very high-Reynolds-number
studies in the Princeton Superpipe by McKeon et al. (2004) using Pitot tubes have
proposed that κ = 0.421. In the following analysis we use the more recent well-
resolved hot-wire measurements of Hultmark et al. (2012) to be consistent with the
turbulence measurements made in the same study. Owing to the small size of the
sensors used in the study by Hultmark et al. in combination with the high Reynolds
numbers, an extensive logarithmic region was shown also in the streamwise turbulence
fluctuations. For more discussions regarding the logarithmic region shown in this
dataset, see Hultmark (2012).

In the following we further analyse the recent data from the Superpipe and consider
three other recent wall-turbulence datasets at very high Reynolds numbers to test the
universality of (1.1) and (1.2).

2. High-Reynolds-number experiments

Four experimental datasets are considered, as summarized in table 1. The first
dataset is from the large Melbourne wind tunnel (HRNBLWT; Nickels et al. 2005),
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Facility Reference Reτ δ (m) Uτ (m s−1) ν (m2 s−1)

Melbourne Kulandaivelu (2012) 18 010 0.3090 0.9362 1.606× 10−5

LCC Winkel et al. (2012) 68 780 0.1135 0.5884 9.710× 10−7

Superpipe Hultmark et al. (2012) 98 190 0.0647 0.3476 2.290× 10−7

SLTEST Hutchins et al. (2012) ≈628 000 ≈60 0.1884 1.800× 10−5

TABLE 1. Summary of experiments.

which, with a 27 m long working section, was purpose-built for the study of boundary
layers that develop over long distances under high-quality flow conditions. The
measurements are presented in Kulandaivelu (2012) and are very similar to the results
reported by Hutchins et al. (2009). A conventional hot wire of 2.5 µm diameter, with a
normalized sensing length of l+ = 28, was used with an in-house constant-temperature
anemometer (MUCTA). The second dataset is from the study by Winkel et al. (2012)
conducted in the US Navy’s William B. Morgan Large Cavitation Channel (LCC)
using laser-Doppler velocimetry. The Princeton Superpipe data are from Hultmark
et al. (2012), who presented the first documented micro-hot-wire measurements (using
NSTAP – Nano-Scale Thermal Anemometry Probe; Bailey et al. (2010) and Vallikivi
et al. (2011)) with a normalized sensing length of l+ = 46 for the Reynolds number
presented here. Hutchins et al. (2009) discuss the importance of adequate spatial
resolution for the turbulence intensity measurements, but it is emphasized that the
measurements reported here are adequately resolved for the wall-normal positions
considered in this study. This was confirmed by using the correction method proposed
by Smits et al. (2011) for the effects of limited spatial resolution. As this resulted
in only slight changes that do not influence the discussion or conclusions given here,
the results are presented with no corrections applied. For completeness, the final
dataset considered is from Hutchins et al. (2012) for measurements at the SLTEST
site in Utah’s Western Desert (see also Marusic & Hutchins 2008). They used
a wall-normal array of nine sonic anemometers under nominally neutrally buoyant
conditions. The spatial resolution of the sonic anemometers, as shown by Kunkel &
Marusic (2006) with comparisons to hot wires, is adequate to resolve the measured
turbulence intensities in the logarithmic region considered here. Full details of all the
measurements are given in the corresponding references.

For each dataset, estimates of the friction velocity Uτ and boundary-layer thickness
δ are required. For consistency, the boundary-layer thickness δ was estimated for the
Melbourne and LCC results by using a composite law of the wall/wake curve fit using
the method of Monkewitz et al. (2007), and the same composite profile was used
to obtain Uτ for the LCC results using κ = 0.384 and A = 4.17. For the Melbourne
results Uτ was estimated using an empirical relation for the skin-friction coefficient√

2/Cf = 2.632 log(Reδ∗)+ 3, (2.1)

where Cf = 2 (Uτ/U∞)
2 and Reδ∗ is the Reynolds number based on displacement

thickness δ∗ and free stream velocity U∞. This estimate for Cf was obtained from
a series of measurements of mean wall-shear stress using oil-film interferometry as
described in Ng et al. (2007) and Chauhan, Ng & Marusic (2010). For the Superpipe
measurement, Uτ is determined from the pressure drop in the pipe in the fully
developed region, and δ = R, the pipe radius. For the SLTEST measurements Uτ

is estimated (in the usual manner for atmosphere surface layer measurements) from
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FIGURE 1. Streamwise turbulence intensity and mean velocity profiles: Melbourne wind tunnel,
Reτ = 18 010 (2.5 µm hot wire); LCC, Reτ = 68 780 (LDV); Princeton Superpipe, Reτ = 98 190
(NSTAP); SLTEST, Reτ ≈ 628 000 (Sonics). The solid straight lines correspond to (1.1) and
(1.2) with κ = 0.39, A= 4.3 and A1 = 1.26, respectively.

the average value of the Reynolds shear stress (U2
τ = −uw) across the sonics, as

described in Hutchins et al. (2012), and the value of δ is roughly estimated based on
prior radiosonde measurements that determine the edge of the logarithmic region (see
Metzger, McKeon & Holmes 2007).

3. Results and discussion

A compilation of the results is shown in figure 1, and clear support for logarithmic
regions is seen for both the mean flow and turbulence intensities. As mentioned
earlier, it is difficult to discern the precise locations where the mean velocity profiles
deviate from the logarithmic law. However, as seen in figure 1, the turbulence intensity
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profiles tend to depart from the logarithmic profile more abruptly than for the mean
flow (Marusic & Kunkel 2003; Smits et al. 2011). For the mean flow, there are a
variety of estimates for the bounds of the logarithmic region. Most studies, including
the classical theory, suggest that the outer bound is a fixed fraction of the boundary
layer thickness, with typical estimates ranging from 0.1δ to 0.2δ. Accordingly, for our
purposes here, we will adopt the outer bound at the location z/δ = 0.15. For the lower
bound of the logarithmic region, estimates vary significantly. For example, Tennekes
& Lumley (1972) indicate the start of the logarithmic region to be z+ > 30, while
Nagib, Chauhan & Monkewitz (2007) suggest z+ > 200, and Zagarola & Smits (1998)
adopt z+ > 600 for pipe flows. Recent studies have also questioned the classical theory
assumption that the inertial subrange begins at a fixed value of z+. Zagarola & Smits
(1998) showed that the full extent of the viscous influence can exceed z+ = 1000 for
the mean velocity at their highest Reynolds numbers in the Superpipe, and studies
such as that of Wei et al. (2005) have considered the balance of terms in the mean
momentum equation to show that viscous effects are expected to extend to z+ values
that scale with Re1/2

τ . In line with this, Eyink (2008) demonstrated the possibility of
incorporating a Re1/2

τ dependence to a modified attached-eddy approach to account
for near-wall viscous effects, and Klewicki, Fife & Wei (2009) estimated that the
mean viscous force loses leading-order influence for z+ > 2.6Re1/2

τ in all turbulent wall
flows.

In this paper we are focused on testing the universality of (1.1) and (1.2) at
sufficiently high Reynolds numbers, and for the purpose of curve fitting the parameters
in these equations we choose an estimate for the lower bound of the logarithmic
region to be z+ = 3Re1/2

τ . We consider this estimate to be conservative, as all the
above studies would agree that the present data in the range 3Re1/2

τ < z+ < 0.15Reτ
fall within the logarithmic region, and thus we are effectively weighting the data points
in the logarithmic region in which we have most confidence. It is noted, however,
that using this range gives good agreement with the logarithmic regions for the
streamwise turbulence intensities as highlighted in figure 2. Figure 3 indicates how the
3Re1/2

τ < z+ < 0.15Reτ logarithmic range corresponds for the laboratory mean flows,
where here the differences from the logarithmic profile are emphasized by subtracting
a logarithmic function with κ = 0.39. The difficulties in estimating the departure
locations are exacerbated by the slow and weak deviations at levels of the order of
the measurement uncertainty. Overall, the results in figure 3 show trends that are
reasonably consistent with the chosen logarithmic region bounds. For completeness,
we also show in figure 4 that the 3Re1/2

τ bound corresponds reasonably well for the
Superpipe data of Hultmark et al. (2012) at other Reynolds numbers. At the lower
Reynolds numbers, no clear logarithmic region in the mean flow nor the turbulence
intensities exists. It is worth noting that using the bounds 3Re1/2

τ < z+ < 0.15Reτ for
one decade of a logarithmic region requires the friction Reynolds number to exceed
Reτ > 40 000, and thus it is essential to have very high-Reynolds-number data as is the
case here.

It is emphasized that figures 2–4 do not prove that the adopted bounds are correct
(for this, further work and data at higher Reynolds numbers are needed) but they do
confirm that this range can be used as a reasonable estimate for the extent of the
logarithmic region.

3.1. Compatibility with attached-eddy model
Adopting a Reynolds-number-dependent lower bound of the logarithmic region in
wall units conflicts with most classical theories, but it should not be regarded as
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FIGURE 2. Turbulence intensity profiles. The solid lines have slope with A1 = 1.26. The dashed
vertical lines indicate the region 3Re1/2

τ < z+ < 0.15Reτ .
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FIGURE 3. Mean velocity profiles with log law function, where κ = 0.39, subtracted for the
Superpipe, LCC and Melbourne datasets (shown in order from top to bottom). The dashed
vertical lines indicate the region 3Re1/2

τ < z+ < 0.15Reτ , and the horizontal lines indicate the
best fit for this range highlighting the log region plateau. Error bars of U+ are shown at the
indicated locations.

incompatible with Townsend’s theory. In fact, Townsend (1976) does not specify the
bounds and simply states that, for (1.2) to hold, l0 � z� δ, where l0 scales with
the size of the smallest attached eddy. This implies that the Reynolds number must
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FIGURE 4. Superpipe data of Hultmark et al. (2012) shown versus z+/Re1/2
τ for Reτ =

3330, 5410, 10 480, 20 250, 37 450, 68 370, 98 190. Dashed vertical line indicates z+ =
3Re1/2

τ . The mean flow deviation is with κ = 0.39, A = 4.3, and the solid black line is (1.2) for
the highest Reynolds-number case with A1 = 1.26, B1 = 1.56.

be sufficiently high, and asymptotically the condition holds for l+0 ∼ Ren
τ , provided

n< 1. Perry & Marusic (1995) showed that Reynolds-number effects could possibly be
accounted for in the attached-eddy model by limiting the range of scales of attached
eddies. This leads to a peak in the Reynolds shear stress (see figure 5 of Perry &
Marusic 1995). A similar attached-eddy cut-off was also used by Marusic, Uddin &
Perry (1997) in their formulation for u2

+
to account for departures from (1.2), but

there it was assumed that l+0 = 100. This would lead to the peak in Reynolds shear
stress also being located at l+0 = O(100). However, extensive evidence now exists, both
empirical (Sreenivasan & Sahay 1997) and from theory (Klewicki et al. 2009), that
the peak Reynolds shear stress occurs at a z+ location that scales with Re1/2

τ , and for
the attached-eddy model to reproduce this result requires l+0 ∼ Re1/2

τ . The attached-eddy
model kinematically accounts for the entire field, and the mean flow and turbulence
cannot be regarded separately. Therefore, if l+0 ∼ Re1/2

τ is adopted, then the attached-
eddy model leads to a z+ ∼ Re1/2

τ lower bound for all components of the Reynolds
stress and the mean flow.

3.2. Estimates of constants and note of caution

Using the experimental datasets for each facility in the range 3Re1/2
τ < z+ < 0.15Reτ ,

estimates of the constants and coefficients in (1.1) and (1.2) were found using
least-squares error curve fits, and the results are summarized in table 2. It is clear
that results from the three laboratory facilities show remarkably similar log law
constants, and the atmospheric case is consistent with these within experimental
error. An analysis of all the datasets together (weighted on experimental uncertainty
for measurement set and the respective number of points in the logarithmic region)
leads to estimates of the von Kármán constant κ = 0.39 with A = 4.3, and of the
Townsend–Perry constant A1 = 1.26. The solid lines drawn in figure 1 are log laws
with these constants, and excellent agreement with universal (1.1) and (1.2) is seen. It
is noted that the SLTEST data are for a mildly transitional rough surface, and therefore
for universality we expect κ to be the same but A to vary. This point is highlighted
in figure 1 with the dashed straight line, which also has κ = 0.39, but with a lower
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Facility A1 B1 κ A

LCC 1.21±0.08 2.20±0.25 0.384∗ 4.17∗
Melbourne 1.26±0.06 2.30±0.18 0.387±0.004 4.32±0.20
Superpipe 1.23±0.05 1.56±0.16 0.391±0.004 4.34±0.19
SLTEST 1.33±0.17 2.14±0.40 0.410±0.028 4.44±1.83

TABLE 2. Parameters in (1.1) and (1.2) obtained from least-squares error curve fit for
data in the region 3Re1/2

τ < z+ < 0.15Reτ . The uncertainty estimates are based on 95 %
confidence bounds from the curve-fitting procedure. An asterisk denotes values where a
composite formulation was used to determine Uτ with these assumed constants.

0.37

0.41

–0.6

–0.2

0.2

0.6

102 103 104
–1.0

1.0

FIGURE 5. Mean velocity profile with log law subtracted for Superpipe data. Error bars shown
correspond to ±1 % uncertainty in U+. The additive constant in the logarithmic law, A, is
calculated so as to minimize the root-mean-square error in the region in between the vertical
lines, corresponding to 3Re1/2

τ < z+ < 0.15Reτ . Here, κ = 0.37, A = 3.13, κ = 0.39, A = 4.28,
and κ = 0.41, A= 5.31.

value of A (A= 3.1). This result is consistent with the estimated sand grain roughness
height of k+s ≈ 21 in the SLTEST experiments (Hutchins et al. 2012). It is also noted
that B1 in (1.2) is not expected to be constant between these different wall-bounded
flows. As discussed by Marusic & Perry (1995), B1 will depend on the wake parameter
and flow geometry and therefore is expected to be different between pipes and zero-
pressure-gradient (ZPG) boundary layers. It is also noted that the LCC dataset has a
weak favourable pressure gradient, and therefore will have a smaller wake component
than a precise ZPG flow. It should be noted that, while values of κ = 0.39 and
A1 = 1.26 are seen to fit the data well, there remains considerable uncertainty as to the
precise values of these constants with the present limited datasets. The uncertainties
for κ are highlighted in figure 5 for the Superpipe mean velocity data. The error
bars shown in the figure are considered conservative, as they correspond to ±1 %
uncertainty in U/Uτ . The figure shows that, within the considered logarithmic region
(indicated by the vertical dashed lines), the differences between κ = 0.39± 0.02 cannot
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be discerned beyond the error bars. The value of κ = 0.421 reported by McKeon
et al. (2004) in the Superpipe probably exceeds these bounds, and the possible reasons
for differences between Pitot tube and hot-wire mean-velocity measurements are the
subject of ongoing study. The uncertainties for the boundary-layer datasets are likely
to be greater because of the additional uncertainties in Uτ , given that no direct
measurements of the wall-shear stress were made in these experiments. Overall, it
is emphasized that this paper is not meant to be definitive in determining the value
of κ (nor the bounds of the logarithmic region). Rather, it indicates that these four
high-Reynolds-number flows exhibit logarithmic behaviour that is consistent with a
universal von Kármán constant, and this differs from the view that has emerged over
the past decade or so.

4. Conclusions

Recent experimental studies in the Reynolds-number range of nominally 2 × 104 <

Reτ < 6× 105 for boundary layers, pipe flow and the atmospheric surface layer support
the existence of a universal logarithmic region. The results support the theory of
Townsend (1976) and Perry & Chong (1982) that the interior part of the inertial region
requires both a logarithmic profile for the mean flow and the streamwise turbulence
intensities. Within the experimental uncertainties, all the data are well described with
a nominal von Kármán constant κ = 0.39, and a Townsend–Perry constant A1 = 1.26.
The experimental data are unique given the high Reynolds numbers presented and
the fidelity of the measurement techniques, where both the mean velocity and the
streamwise turbulence intensities are measured with the same instrument.
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