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1. Introduction. A classical theorem of ^-dimensional projective geometry 
asserts: if Desargues ' theorem holds (in particular, if n > 3) then the points 
of the geometry can be assigned homogeneous coordinates (a1, . . . , an+l) 
with a1 not all zero in a suitable division ring 9? (2, p. 104; 3, Theorems 10, 
11, ex. 19, p. 204). A deep generalization by John von Neumann (5, Theorem 
14.1, p. 141) proved such a theorem for every complemented modular lattice 
possessing a homogeneous basis of n + 1 elements, n > 3. (The von Neumann 
theorem provides coordinates for all the elements in the lattice, so that in the 
special case of the projective geometry, coordinates are provided not merely 
for points, but for all points, lines, planes, etc. In the general complemented 
modular lattice there need not be "points".) For the general complemented 
modular lattice the ring 9? may be an arbitrary regular ring with unit.1 

A precise statement of the von Neumann theorem is as follows: 
Let L be a complemented modular lattice possessing a homogeneous basis2 

«i, . . . , an, n > 4, and let L i 2 be the set of all inverses of a2 with respect to a± + a2. 
Then (i) addition and multiplication can be defined for the elements of L i 2 in 
such a way that Lu becomes a regular ring 9î and the sub-lattice L(ai), consisting 
of all x < &i, is isomorphic to the lattice of all left principal ideals of 9î, and 
(ii) L is lattice-isomorphic to (coordinatized by) the lattice of all left principal 
ideals of 9?w. 

Here dln consists of all n X n matrices with elements in 9î and, as shown by 
von Neumann, is regular along with 9?. It was shown by von Neumann that 
(ii) above is equivalent to the more classical form of coordinatization, (ii)' L 
is lattice-isomorphic to the lattice of 9?-left modules of finite span in the 
space V of vectors v = (a1, . . . , an) with all a1 in 9Î. 

The definitions of addition and multiplication as originally given by von 

Received August 11, 1954. 

^ o n Neumann (5, Chapter 2) calls a ring regular if for each x there is a y satisfying xyx = x. 
2Lattice elements <ii, . . . , am are called independent if: (ai + • . • + a>i-i)a,i — 0 for i = 2, . . . , 

m. A relative complement or inverse of x in z is any element [z — x] for which x 0 [z — x] = z 
( 0 is used to indicate that the addends are independent). Lattice elements x and y are called 
perspective, written x ^ y, if there exists any z, called an axis of perspectivity, such that 
# © z = y © z- Independent elements ah . . . , an with a\ + . . . + an — \ are said to form 
a basis for L; if also ai^ a3- for each i, j , the basis is called homogeneous; a homogeneous basis 
ah . . . , an together with axes of perspectivity ca with the properties: 

en © ai = en © a3-; Cij = Cji\ cu = 0; (a3- + cy*)(«»• + ak) = cik; 

is called a normalized frame for L. The collection of all inverses of a3 in a< + a,- will be denoted 
by La. (1, Sections 2.3, 2.4, 2.5, 4.1; 4, Chapter 2; 5, Definitions 3.1, 3.3, 5.2.) 
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Neumann for (i) above, were motivated in part by the classical constructions 
in projective geometry, but the verification that 9Î becomes a regular ring was 
based on a rather involved analysis. A simplified discussion of this part of von 
Neumann's theorem was given in (1). 

Von Neumann proved (ii) by showing that for any m = 1, . . . ,n — 1, a 
given isomorphism between the lattice spanned by a,\, . . . , am and the lattice 
of left principal ideals of 9?m can be extended from m to m + 1, with a special 
discussion for the extension from m = n —1 to m = n. 

The object of this paper is to give a direct proof of (ii)' (equivalent, as 
pointed out above, to (ii)) which does not use matrix rings or extension 
theorems. 

As in (5, p. 32 and p. 64; 1, §§4.1 and 4.3) we shall assume a fixed normalized 
frame for L(n > 4) and 9î will consist of all L-numbers a = (aij\i,j = 1,..., n, 
i 9^ j) for which each ai3- is in the corresponding Ltj and the identities hold: 
(atj + cjk){at + ak) = aik and (atJ + cik){aj + ak) = akj. V will denote the 
set of all vectors of length n with coordinates in 3Î; a subscript / will denote 
either left ideal in 9î or 8?-left module in V. 

We shall give a rule which assigns to each element x i n l a family of left 
modules in V. Then we shall show that all left modules assigned by this 
rule to x actually coincide and we shall verify that the rule sets up a (1, 1) 
order preserving correspondence (i.e., a lattice isomorphism) between L and 
the set of all left modules of finite span. This will establish the von Neumann 
coordinatization theorem. 

2. Notation. We shall adopt the notation: 

A0 = 0 ; i l " = ai + . . . + au i = 1, . . . , n; 
Alj = a± + . . . + dj-! + dj+i + . . . + au 0 < j < i < n. 

A system of lattice elements (b) = (ô^; i,j= 1, . . . , n, i 5e j), satisfying 
bn < a>i + &j, will be called a fraternal system if the identities hold: 
(bij + cjk)(at + ak) = bik; (b^ + cik)(ak + ad) = bkJ; if any, and hence each, 
of the bij is in the corresponding Ltj, the fraternal system coincides with an L-
number. Von Neumann's work shows that for each x < at + dj there is one 
and only one fraternal system (b) with btj = x (5, Lemma 6.1; 1, §4.3). 

For future reference we list the following formulae: 

(2.1) (a + P)ij = [akj + (f3ij + ak)(cik + a3)](at + a,), 
(2.2) (a + /3)ij = [(aik + a3){ptj + ak) + cjk](ai + as), 

(2.3) (a - p)kJ = [atJ + (ak + / ^ ) (a y + cik)](ak + ay), 

(2.4) (afrij = (aik + pkJ)(at + a,). 

The formulae (2.1), (2.2), (2.3), and (2.4) may be obtained from (3, Chap. 7); 
they are given explicitly in (1), numbered as (4.9.1), (4.9.2), (4.9.3), and 
(4.10.1) respectively. 
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3. Reach and nullity. We associate with each a in 9? a fraternal system 
which we shall call the nullity of a, defined as 

(b) with btj = ctij at for all i,j. 

It follows from the fraternal character of the atj that the atj at do form a 
fraternal system; moreover btj < at for all i, j , and hence is independent of 

j . We shall write a°i for this btj. 
For each a in 9î, the reach of a is defined as in (1, §4.13) to be the fraternal 

system (b) with btj = (atj + a^a^, written as aT j , identical with the (a)j of 
von Neumann (5, Definition 9.1). We shall use the following: 

(3.1) For every b < aj and d = [aj — b] there is an idempotent e in 9? with 
eri = band2 (1 - e)rj = d. 

(3.2) For a, 0 in $K there is a 7 satisfying ya = (3 if and only if «%• > I3rj. 

For proofs of (3.1) and (3.2) see (5, Theorem 9.3, Lemma 9.1; 1, §4.13). 
We shall now prove the following relations: 

(3.3) a/3 = Oif and only if ar
j < 0%-

(3.4) e°j = (1 — e)rjfor every idempotent e; 

(3.5) e°j © (1 — e)0^ = e°j © eT
ù = ajfor every idempotent e; 

(3.6) (a - 0)\ = (enfin + a3)aù 
(3.7) akj < (a - f3)kJ + /?%, 

Proof of (3.3). a/3 = 0 means 

«z = (<*ij + Pjk)(fli + ak). 

Because of the indivisibility of inverses3, this is equivalent to each of 

&i < (ocij + pjk)(at + ak), 

at < atj + pjk, 

(3.8) at + atj < atj + /3jk, 
(3.9) (at + atj) (aj + ak) < (atj + /3jk) (a,- + ak). 

(Add atj to both sides of (3.9) to derive (3.8).) Thus a/3 = 0 is equivalent to 
each of: 

(at + aij)aj < fljk + «^(a , + ak), arj < 0Jk, arj < afijk = /3%. 

Proof of (3.4). That (1 - e)rj < e\ follows from (3.3). Let a be an L-
number with aTj = [£%• — (1 — e)rj]. Then ar

y < 6%; by (3.3) this implies 
ae = 0, hence a(1 — e) = a, hence, by (3.2), ar

y < (1 — 6)%-. Since arj(l — é)T
j 

— 0 (from the definition of a) this implies arj = 0 and hence e°j = (1 — e)rj. 

3The indivisibility of inverses, which follows from the modular law, states: if yi and y2 

are both inverses of a in b and yi^ y^ then y\ — y<i. Because of this, "points" as used in 
certain constructions in the classical theory of projective geometry may be replaced by 
"inverses", (1, Section 2.4; 5, Lemma 3.3, p. 32). 
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Proof of (3.5). Because of (3.1) and (3.2), the correspondence (<*)j ++ arj 
is a (1, 1) order preserving correspondence between the left principal ideals of 
9Î and the x < L(a3)\ it follows that erj © (1 — e)T

û = aj. Now (3.5) follows 
from (3.4). 

Proof of ($.6). Using (1.3), 

(a - 0)°k = [atj + (ak + P^fa; + cik)]ak 

= [atj(ak + ptj) + (ak + fin) {a, + cik)]ak 

= Wifitj + (a j + cik)(ak + t3ij)]ak 

= (aijPij + a j + cik)(ak + Pij)ak 

= (oiijPij + dj + cik)ak. 
Hence 

( « - 0 ) ° < = [(ot-fi)0
k + cik]at 

= {cttfitj + CLj + Cik)(ak + Cik)(li 

= (oiijPij + aj)at. 

Proof of (3.7). Using (1.3), 
(a - p)kJ + prj = [otij + (ak + (3ij)(aj + cik)](ak + a,) + (0„ + at)aj 

= [ocij + ((3ij + ax)cLj + (ak + Pididj + cik)](ak + a,) 
= [cLij+i&u+ai+aàaj + (a*+/M(aH-c*;0](a*+ay) 
= [atj + (fitj + at + ak) (a j + ak + $tj) (aj+cik)](ak+aj) 
> (atj + cik)(ak + aj) = akj. 

4. The ^"-elements in L. We shall call x an i-element if x < Ai and x̂ 4 *'-1 = 0. 
We shall prove that for arbitrary Z-numbers fij(j = 1, . . . . i — 1) and 
arbitrary idempotent e, the formula: 

(4.1) x = (er
t + A *-') ff (/S'«i + 4 i_1y) 

defines an i-element, (in particular, if e = 1, eT
t + A1"1 = a* + 4* - 1 and may 

be omitted). For clearly xj< A1 and 

i~\ 

^A'-'fltf'ifij + A1-1,) 

For each i-element x we define : 

(4.2) x} = (* + il*"1^ (a* + a,), 7 = 1, . . . , i - 1. 

For each choice of idempotent e = e(x) with er\ = (x + Al~l)ai (such an e 
exists by (3.1)), we define: 

(4.3) 5 = B(x) = x + A , B> = (5 + 4*-1,) (a* + a,). 

(J3 may not be uniquely determined by x.) The following relations hold: 
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(4.4) e\ + Ai~1 = x + A'-1, eU + dj = xj + aJt xj + A1-^ = x + A1'1^ 
(4.5) BAl~l = [x + e\(x + A^A*-1 = (x + e°te'\)A1-1 = 0, by (3.5), 

B + A1-1 = x + A'-1 + e\ = x + A'-1 + e7't + e\ 
= x + Ai~1 + at = A\ 

(4.6) B'a, = (B + A1-1 fa = {BAl~l + Ai~\)aj = Ai~1
jaj = 0, 

B> + a j = (B + A^j + d3) (at + a,) = (B + A^) (dt + a,) 
= Af(ai + dj) = at + a s. 

(4.7) B(er
t + A1-1) = B(x + A*'1) = x + BA*-1 = x, 

Bj(er
t + aj) = (B + Ai-1

j)(x
j + dj) = xj + (B + A*-1 fa = xj. 

(4.8) B'at = (x + e\ + A1-1 fa = e\ + (x + A*-1 fa 
= e\+ (xj + Ai~1

j)di. 

Thus Bj is in Ltj for each j = 1, . . . , i — 1. Let aj be the L-number with 
aj

tj = Bj. Then 
(4.9) ajij > xJ\ eaj = aj = e(3j 

for every L-number /3j with fij
tj > x;'. To verify (4.9) : from (4.7), aj

 tj = Bj^>xj; 
from (4.8), (a')0, = S'a, > e\ = (1 - e) r ,and (3.3) then implies ( l - e ) a ' = 0, 
i.e.,ea;" = aû\ finally, from (3.6), 

(aj - &)\ = (B'0'ij + d3)di > (BV + a fa = (er
t + d3)dt = er\ 

and by (3.3), e(aj - pj) = 0, that is, eaj = aj = e(3j. 
Suppose ë is also a possible choice of e(x) and let ây(i = 1, . . . , i — 1) 

denote the corresponding L-numbers. The definition of e(x) shows that 
ër = er and then (3.2) implies ëe = ë, eë = e. Now (4.9) implies 

(4.9)' ëaj = a'', 1 < i < i. 

The following relations follow easily from (4.3) and (4.7) : 

(4.10) B= fl (« ' , , + i i ^ 1 , ) ; 

(4.11) x = ( / , + ^ ^ f i ( ^ o + 4 M i ) . 

We shall prove that for arbitrary /33 with fij
tj > x ; for j = 1, . . . , i — 1, 

the ^'-element: 

(4.12) (er
t + A '-1) fl (fi1» + ^ *-S) 

is identical with x. To prove this let (4.12) be denoted by y. Then 

(e\ + A «-1) (« '„ + A l-\) = 4 1 - \ + B\e\ + ^ ^ (c, + a,) 

= A ^j + Bs{e\ + a,) = A *-1, + xj 

KA^t + p't, 

for each j = 1, . . . , i — 1, and hence 
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* = (er,+^f-i)ri(^+^^) 

that is, x < y. But since x and y are both i-elements, it follows from the 
indivisibility of inverses that x = y. (For y + Al~x = x + A*-1, and hence 
3/ = y{x + 4*"1) = x + 3̂ 4 *'~*1 = x.) 

Conversely, for arbitrary idempotent e and arbitrary L-numbers Pj, the 
formula (4.12) defines an element x in L with the properties: x is an i-element, 
xj < / 3 ^ for j = 1, . . . , i — 1, and e is a possible choice for e(x). For, 
(# + A^^di = £% and 

xj = (x + ^4i_1y)(ai + dj) 

= [ (e\ + A *-*) fl (0** + ̂  '-1*) + ̂  « J (a* + a,) 
= (e% + Ai~1)(pj

ij + ^ ^ ) ( a , + a,) 

= [(er
t + a,)?'» + A'-'jKa, + a,) = (er* + a,)?» 

< Pu, 

as stated. Moreover, (4.9) shows that aj(x) — epj. 

5. An important identity. Suppose that 1 < j < n, i = j + 1, and let 
dm and 0W, m = 1, . . . ,7, and 0 be arbitrary elements in 9Î. Then the following 
identity holds:4 

(5.1) niiF + pnim+A*-1»] 

= [(j8„ + A*'1)ft (*"*. + i l ' . ) + ft («%. + 4 y _ 1
m ) ] U / - 1 + a,)-

m = l ra=l 

To prove this identity we shall first establish that for arbitrary indices i, 
j , m all different, and arbitrary S, p, B in 9?, 

(5.2) (<5 + pe)im = [<V + (Bim + a,) (ptJ + 0 ] ( a * + am). 

Indeed the addition formula (2.1) shows that if k is different from i, j , m, 
(and there is such a k since we assume n > 4), 

4This identity makes possible a simple proof that the module which we shall assign to an x 
in L (see section 6), is uniquely determined by x (Theorem 6.5). This is a critical step in the 
proof of the coordinatization theorem as given in the present paper. It will be noted that the 
proof of this identity uses the same technique that was used by one of us in 1937 to obtain a 
direct proof of the associativity and distributivity laws in 9Î (1, §§ 4.11, 4.12). 
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left side of (5.2) = (130 + 8)im 

= [(P0)km + (aim + ak)(cik + am)](a,i + am) 
= [(fikj + 0/1») (a* + am + at) + (dim + ak) (cik + am)]{at + am) (ST) 
= [fikj + Ojm + (àîm + ak) (cik + am)](ak + am + at) (at + am) (ML) 
= [Ojm + Pkj + (&im + ak + aj) (cik + am)](at + am) (ST) 
= [Ojm + (aim + ak + aj) (/3kj + cik + am)](di + am) (AL) 
= [Ojm + (&im + dj) (Pkj + Cik + dm)](di + dm) (CI) 
= [Ojm + (aim + dj) { (I3kj + Cik) (dm + dt + dj) + dm) ] (di + am) (CI) 
= [Ojm + (Sim + aj){(Pkj + Cik)(di + dj) + dm}](di + dm) 

= (right side of (5.2)). 

This proves (5.2). It follows that 

5 

j-i 
3-1 

(left side of (5.1)) = I I [{0%* + (*"«* + dj) (0,, + dm)} (at + dm) + A 
m=l 

= (at+A t-1) I I l(em
Jm+Ay-x

m) + (8m
im+A j

m) (Ptj+A'-1)] 

> (right side of (5.1)). 
But both the left side and the right side of (5.1) are inverses oîAs~l in at + A1-1; 
for the left side of (5.1) is a j-element and hence: 

A1'1 (right side of (5.1)) < A1'1 (left side of (5.1)) = 0, and 

a{ + A1'1 > (left side of (5.1)) + Aj~x 

> (right side of (5.1)) + AH1 

= (a, + il*"1)[ft (emM + A}-1
m) 

m=l 
3-1 

+ (Ptj + A^U (hm
im+AJm)+A>-1] 

m==l 

= (a, + A^lYL (f*. + Aj-\) + (0„ + A^H (dm
im+AJ)} 

= (a, + A^lU (P*> + ^-\) + (j3„ + A*-1) I ! (o« + A')\ 

= (at + A^lTl (dn
jm + A3-l

m) + j8„ + A1'1] 

= (at + A^lU (6m
}m + A3-1

m +am)+ pti] 

= (ai + A^lYliA^ + Pij] 

= (at + A^Hdi + A') 

= (at + A1'1). 

Now the indivisibility of inverses shows that equality holds in (5.1). 
5(ST) will indicate application of the superfluous term identity: ab = a(b + c) — abc for all 

a, b, c, d with c(a + b) = 0 and b <J d; similarly, for application of the modular law we use 
(ML); for the absorption law: ab + c = a(b + c) for all a, b, c with K o w e use (AL); and 
for the clipping identity a(b + c) = a[b(a + c) + c] for all a, b, c we use (CI) ( l , Section 2.2). 
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As a corollary to (5.1) we shall derive the following identity which holds 
for arbitrary /3W and 6m, m = 1, . . . , j , i = j + 1, and arbitrary y: 

(5.3) [(p> - y)tJ + A^U [(ft* + yem)im + Aj
m]+ f l (em

jm + AH1
m) 

= os*,,+.ofi (is"*.+A'M) + n 0%.+A1-1^. 
m—l m=l 

The right side of (5.3) is precisely the left side of (5.3) with a particular 
value for 7, 7 = 0. Thus we need only show that for any 7 the left side of 
(5.3) has the same value, equal to its value when 7 = fij, say. For this purpose 
it is sufficient to establish the identity: 

(5.4) (left side of (5.3)) = IT [(0" + 0 ' O * . + A^] + TT (*%. + Aj~\). 

Now (5.4) can be obtained by substituting in (5.1): /3j — 7 for ft and 
pm + ydm for ôm, m = 1, . . . , j - 1 and adding the term U(dm

jm + As-l
m) to 

both sides. 

6. The rule for assigning left modules to elements of L. For each x in L 
call a base-decomposition of x if each x* is an inverse: 

xt = \xAl — xA1"1], i = 1, . . . , w. 

Clearly each x* is an ^-element and x = Xi ® . . . ® xn. For each base-decom
position of x and for any idempotent el satisfying: 

(e'Yi = (*, + ^ ' "O^ = (*4* + A^l)au 

let B(xt), Bj(Xi), ai} = a^x*) be determined as in §4, and define the vector 

u(xt) = (-a*1, . . . , -a*'*-1, e\ 0, . . . , 0). 

Now, for each such u(Xi), i = i, . . . , n, assign to x the left module 

M(xh . . . , xn) = (u(xi), . . . , u(xn))h 

We note that: (i) the xt may not be uniquely determined by x and for each 
Xi the idempotent el may not be uniquely determined by xi} however it follows 
from (4.9)' that (u(xt)) 1 is uniquely determined by x{ so that M{x\, . . . , xn) is 
uniquely determined by Xi , . . . , Xn ; (ii) if x is a 7-element then the xt are 
uniquely determined with for i = j and x* = 0 for i 9e j ; (iii) if x* is an 
arbitrary ^-element for each i = 1, . . . , n, and x = Xi + . . . + xn then 
Xi, . . . , xn is a base-decomposition for x. 

We shall prove below the following statements (6.1)-(6.7). 

(6.1) Every left module M of finite span is identical with ikf(xi, . . . , xn) 
for some base-decomposition xi, . . . , xn of some x in L. 
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(6.2) Suppose Xi, . . . , xn and #i, . . . , xn are base-decompositions for the 
same x. If 

*(*») = (-am>\ . . . , -am>m-\ em, 0, . . . , 0) 

and 
u(xm) = ( - a * - 1 , . . . , - a » ^ i , ê», 0 , . . . , 0) 

and the am,fc and the âm,fc both form canonical matrices6 with ëm = em
1 then 

Af (#i, . . . , xn) = Af (xi, . . . , xn). 

(6.3). Suppose 3/ is an i-element and z is a j-element with 1 < j < i < n. 
If for some 7 in $R there is a relation # (#) = u (y) + 7^ (z) for some i-element x, 
then x < 3/ + z; on the other hand if e is the ith coordinate of u(y) and 7 
satisfies £7 = 7 then the vector u{y) + 7^(2) has ith coordinate = e and 
coincides with u(x) for some i-element x with s + x = z + 3/. 

(6.4). For each base-decomposition Xi, . . . , xn of x and choice of the u(xm) 
there exists a base-decomposition xi, . . . , xn of x and choices of u(xm): 

u(xm) = ( - a « ' i , . . . , -a"1 ' " -1 , 6« 0 , . . . , 0) 

such that 

(6.4)' M(xu . . . , xn) = Af (*i, . . . , xn), 

(6.4)" âm,A; e* = 0 for all » > m > k > 1, 

implying that the a™"* form a canonical matrix. 

(6.5) For each x in L, all M (xi, . . . , xn) assigned to x coincide, so that we may 
write M(x) for M(xi, . . . , xn). 

(6.6) x < y implies that M{x) < M(y). 

(6.7) Af (#) < M(y) implies x < y. 

The coordinatization theorem follows easily from (6.1), (6.5), (6.6) and 
(6.7). 

7. Proof of (6.1). AT is spanned by some canonical basis u* = (a*1, . . . , ain)1 

i = 1, . . . , « (1, §3.4). Choose 6*, x(i) as follows: 

* a 
e = a , 

6It has been shown (5, Theorem 2.12 and Lemma 2.11; 1, Section 3.4) that a left module of 
finite span is always spanned by n vectors (a**1, . . . , aJ'n), j = 1, . . . , n, with the properties: 
for each j , ajj is idempotent, —eJ\ say; for all i > j , a1'* = 0; for all i < j , eJ' aji = aji and 

aa e{ = 0. Such a set of n vectors is called a canonical basis for the left module. A matrix whose 
rows form such a canonical basis is called a canonical matrix. 
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Then § 4 shows that each x (i) is an i-element and that e* is a possible choice 
for e(x(i)); with this choice of e(x{i)) it follows from the last paragraph of 
§4 that aj(x(i)) = — aij, (for a canonical basis el aij = aij)> that u1 is a possible 
choice for u(x(i)) and hence M coincides with M(xu . . . ,xn). 

8. Proof of (6.2). We shall show that xm = xm for all m so that the amk 

are uniquely determined by x and the em (if the am1c are to form a canonical 
matrix). 

Set IP = (ek)\ < ak for each k < m. Since (3.5) shows that (ek)\ (ek)\ = 0, 
it follows that 
(8.1) Uk(xk + Ak-1) = 0. 

We shall show that 
m— 1 

(8.2) xm = x r i ( ^ + ^ ) ; 

this will establish the uniqueness of xm since the Uk are uniquely determined 
by the ek. 

From §4 there is a B (xm) > xw for which 

amk
mjc = (B(*«) + Am~\)(am + a,); 

now (3.3) implies that (amk)\ < (e*)0*; i.e., (B(xm) + Am
k)ak < Uk. Hence 

[/* _|_ ^m^ ^ B(xm) > xm for each & and so (right side of (8.2)) > xw. Now 
m—1 m—1 

(right side of (8.2)) = x ^ m n (#* + A\) = (*x + . . . + xm) T\ (Uk+Am
k) 

m—\ 

(8.3) = xm + (Xl + ... + *„_!) n W* + Am
k). 

k=l 

But 
m—1 m—1 

(8.4) (*! + . . . + *w_i) I I (tf* + Am
k) = (*x + .. . + xm_x) IT (Uk+Am-\) 

k=l k=l 

= (*! + . . . + x w _ o (c;™-1+^™-2) n (uk+^™-1,) 
m—2 

= (*i+. . .+xm_2) n et/*+4m_i*) 

since (8.1) and (CI) show that x^^U^1 + Am~2) = 0. Repetition of the 
reduction in (8.4) shows that the second addend of (8.3) is zero and establishes 
(8.2). 

9. Proof of (6.3). If e is the ith coordinate of u(y) with y an ^'-element and 
z a j-element, 1 < j < i < n, and y is an element of $K with ey = y, then 
tt(y) + 7^(s) is a vector of the form: 

(-ep\ -e$\ . . . , -^jS1"1, e, 0 , . . . , 0), 

and hence coincides with u(x) for some i-element #, by the last paragraph of 
§4. This proves the second part of (6.3) except for the relation z + x = z + y. 
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However this relation follows easily from the first part of (6.3), which we now 
prove. 

Because of §4 the first part of (6.3) is equivalent to the statement: 

(9.1) (fi\+ A l~l) n {*mim + A î"1
m) 

i-i 

n 
ra=l 

j - i 

< (ê',+ A'-1)Il (A™ + Ai~1
m) + (erj + i O n (fjm+A*-1,,) 

m=l m=l 

for arbitrary idempotents ë and e in 9t provided that ëam = am for m < i, 
ëpm = pm f o r m < ^ ^ m = ^ n fQ r m < j an(J 

fam = pm for j<m<i, 
(9.1)' iaJ' = /3J — 7e for some 7, 

[am = ^ + ydm for 1 < m < 7. 

Now (9.1) can be deduced from the (apparently) simpler statement: 

(9.2) ff (c^^+A^) < f l (Pm
tm+Ai-1

m) + (.er
j+As-1)fi (dm

Jm+A}-1
m) 

ra=l m=l m—1 

for arbitrary idempotent e and arbitrary 6m satisfying edm = 6m for m < j 
and arbitrary am, /3m satisfying (9.1)' for some 7. Indeed, clipping (9.2) by 
ëri + Al~l yields (9.1) as required. 

If j < i — 1 then am = /3m îorj + l < r a < i — 1 and (9.2) can be deduced 
from: 

(9.3) I I (cT^+A1-1^ < PI {erim+Ai-1
m) + {eT

j+Aj-1)Y\ (dm
jm+Aj-1

m); 
m=l ra=l ra=l 

for clipping (9.3) by 
i-i 

I l (P^im + -4l_1m) 

gives (9.2). 
Since ai, . . . , a* are independent, we may write (9.3) (use (1, §2.3)) as: 

(9.4) (aj+1 + . . . + a,_x) + lj[ («"«m + A'm) 

< (%+1 + . . . + ow) + I l O*"*. + ^ '») + («'/ + A1'1) fi («%. + ^ ~ \ J 
m==l m = l 

and this would clearly be a consequence of 

(9.5) IT («"*. + Aj
m)< f l (/Tjm + 4'M) + (er, + ^ ^ x ) ft ( ^ + ^ _ 1 m ) . 

m=l m = l m = l 

But (9.5) can be derived from 

(9.6) n (crim+Aj
m) < n (pmim+Aj

m) + f ï (*%*+^_lm) 
w = l m=l m=l 
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by clipping both sides of (9.6) by pi} + e1't + A1-1: indeed, this clipping does 
not change the left side of (9.6) since one of its factors is 

a^iJ + A^1 = (p -ye)ij + Ai-1 

< Pa + {-yeY, + A*-1 using (3.7) 
<&„ + €', +A*-1 using (3.2); 

on the other hand this clipping changes the right side of (9.6) to 

I I (Pmim + A3
m) + G3'„ + erj + A *"x) fi («%. + A ^ (ML) 

= I l {0*m + Ai
m) + (erj + Aj~x) ff (6m

jm + A1^) 
m = l ra=l 

since the modular law implies (/3jij + erj + A3~1)Aj = erj + Aù~x. 
But since am = pm + ydm for m <j and aj = & - 7, the desired (9.6) 

follows immediately from (5.3) proved above. 

10. Proof of (6.4). By (6.3) there exist #2, • • • , xn with x\ + xm = Xi + xm 

for all m (so that Xi, x2, . . . , xn is again a base-decomposition of x) and with 
u(xm) = u(xm) + a w a ^(xi) so that âm'lel = 0 for m > 1. Similarly x3, . . . , xn 

can be replaced so that the new âiJ satisfy also a™'2 e2 = 0 for w > 2. Successive 
repetition of this procedure establishes (6.4). 

11. Proof of (6.5). If M = M(xu . . . , xn) = (w(xi), . . . , u(xn))t we may, 
without changing ikf, replace w(xm) by ew u(xm) where em is a ^ idempotent 
satisfying (em)r

m = (x^4m + Am~1)am. The statement (6.5) now follows from 
(6.4) and (6.2). 

12. Proof of (6.6). If x < y then we may choose the xu Ji so that xt < yt 

(for example, choose 3/1 = #* + [3̂ 4* — {yAl~l + #*)]. Then (£(#*))% < (^(^i))r< 
which implies £(#*) e(;y*) = e(xt); we may choose /3;(x*) to coincide with 
Pj(yi) since 

PJn(yt) > (yt + A^l,){ai + a,) 

which implies Pjij(yi) > (%i + Ai~l
j){ai + aj). Now e{x?)u(yi) = «(a;*) for 

each i = 1, . . . , w and hence M(xi, . . . , xn) < i f (yi, . . . , yn). Because of 
(6.5) it follows that M{x) < M(y). 

13. Proof of (6.7). Since x is a union of i-elements, i = 1, . . . , n, it is 
sufficient to prove (6.7) with the restriction that x is an i-element. Then if 
yi, • • • » Jn is a base-decomposition of y, u(x) will have a representation 

u{x) = 71 u(yi) + . . . + yn «(^n). 

Let e(#) be the ith coordinate of u{x) and e(ym) the rath coordinate of u(ym). 
Then e(x) «(#) = u(x) and replacing 7OT by e(x)ym we may suppose e(x)ym = ym 

for all ra. 
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Now if x is an i-element (i fixed) and i < n then the nth coordinates of 
u(x) and of ym u(ym), for m < w, are all 0 and hence the nth coordinate 
In e(yn) = 0- This implies yn u(yn) is the zero vector. Successive applications 
of this argument show that ym u(ym) = 0 for all m > i and that e(x) = yie(yt). 

The last paragraph of §4 shows that ytu(yt) = u(yt) for some ^'-element yu 

Then (4.12) shows that yt < yt since (e(yi))ri > (7* e(yi))ri. Hence we need 
only prove (6.7) with yt replaced by yù thus we may suppose that yt = yif 

that is, we may suppose that yt = 1, and e(yt) = e(x) = e (say) and eym = ym 

for all m < i. Now (6.3) shows that u(yt) + 7^-1 u(yt-i) = u(z) for some 
i-element z with z < 3^ + 3^-1. Similarly w(z) + 7z-_2 M (ji-2) = w(g) for 
some i-element z with z < s + y<_2 < y% +yt-i + y<-2. Repetition of this 
argument finally yields x < yt + yt-i + . . . + y\ < y as required. 

This completes the proof of all statements (6.1) to (6.7) and establishes the 
coordinatization theorem. 

Added in proof. A book, in Japanese, by F. Maeda, entitled Continuous 
Geometry (Tokyo, 1952), is reported to contain a simplification of von 
Neumann's coordinatization theorem, based on methods of K. Kodaira and 
S. Huruya (see Mathematical Reviews, 15 (1954), p. 540). We regret that we 
have not been able to see any further details of this work. 
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