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Abstract

Let G be a finite p-solvable group for a fixed prime p. We study how certain arithmetical conditions on
the set of p-regular conjugacy class sizes of G influence the p-structure of G. In particular, the structure
of the p -complements of G is described when this set is {1, m, n} for arbitrary coprime integers m, n > 1.
The structure of G is determined when the noncentral p-regular class lengths are consecutive numbers
and when all of them are prime powers.

2000 Mathematics subject classification: primary 20E45, 20D20.

1. Introduction

The influence of the conjugacy class sizes on the structure of a finite group G has
been studied by many authors. For a prime p , we consider the set of p-regular classes
in G, that is, of conjugacy classes of //-elements in G. Several theorems have put
forward that certain properties on the sizes of these classes are also reflected on the
p-structure of G (see for instance [7] or [8]). In this note we show how imposing
some arithmetical conditions on this set of p-regular class sizes in a p-solvable
group G yields restrictions on the structure of G or of its p-complements. This shows
furthermore, how global information on conjugacy classes of G can provide local
information on the p-complements of G.

We use the methods and results developed by the authors in [1] for studying the
graph rp(G). The vertices of this graph are the noncentral p-regular classes of the
p-solvable group G and an edge connects two classes if their sizes are not coprime
numbers. It was proved in [1, Theorem 1] that rp(G) has at most two connected
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components. When Fp (G) has exactly two components and p divides the size of some
p -regular class belonging to the component which does not contain the maximal size
classes, then it is shown in [1, Theorem 5] that G has normal p-complement and this
complement is quasi-Frobenius with abelian kernel and complement. Following [3]
a group G is said to be quasi-Frobenius when G/Z(G) is a Frobenius group and then
the inverse images of the kernel and a complement of G/Z(G) are called the kernel
and complement of G. There exist examples, which will be provided, showing that
if the above divisibility hypothesis on the prime p is eliminated, then G need not be
p-nilpotent. However, it can be questioned whether in this case the p -complements
of G are still quasi-Frobenius. Our first main result provides an affirmative answer to
a particular case in which p may divide the size of the maximal p'-classes in G.

From now on, any group will be a finite group and we will denote by Gp* the set of
p'-elements of G and by Con(Gp) the set of conjugacy classes in Gp>.

THEOREM A. Suppose that G is a p -solvable group. Let m and n be the two
maximal sizes in Con(Gp<) with m > n > 1. Suppose that (m,n) = 1 and that p is
not a prime divisor ofn. Then G is solvable and

(a) the p -regular conjugacy class lengths of G are {1, n, m};
(b) a p -complement of G is a quasi-Frobenius group with abelian kernel and com-

plement. Furthermore, its conjugacy class lengths are {l,n, mp<}.

On the one hand, Theorem A extends the main result of [5], by taking a prime p
not dividing |G|. On the other hand, it allows us to obtain the structure of the
p -complements of G when G has exactly two noncentral p -regular class sizes which
are coprime numbers. We want to mention that the structure of G is completely
determined when its p -regular conj ugacy class sizes are exactly {1, m} for an arbitrary
positive integer m [2, Theorem A].

COROLLARY B. Let G be a p -solvable group and suppose that the set ofp -regular
conjugacy class sizes of G is {1, n, m) with (m, n) = 1. Then G is solvable and the
p -complements of G are quasi-Frobenius groups with abelian kernel and complement.
Moreover, the class sizes of any p-complement are [\,np>, mP'}.

As an application of Corollary B, among other results, we determine the structure
of p-solvable groups whose noncentral p-regular class sizes are consecutive integers.

THEOREM C. Suppose that G is ap-solvable group. If[n, n + 1 , . . . , n + r] is the

set of lengths of noncentral classes in Con(Gp>)> then one of the following holds:

(a) r = 0, n = p", for some a and G has abelian p-complements.

https://doi.org/10.1017/S144678870001452X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001452X


[3] Relations between p -regular class sizes 389

(b) r = 0, n = paqb, for some prime q ^ p and integers a > 0 and b > 1, and
G= PQx A, with P e Sylp(G), Q e Syl^CG) and A < Z(G). Moreover, if a = 0
then G- P x Qx A.

(c) r = 1 and any p-complement of G is a quasi-Frobenius group with abelian
kernel and complement. Also, if p does not divide n then G is p-nilpotent and if, in
addition, p does not divide n + 1, then G = P x H, where H is the p -complement
ofG.

The next theorem determines the structure of groups having prime powers as p-
regular class lengths, so it extends Theorem 2 and Corollary 2.2 of [6]. However, our
proof is based on certain properties of the graph VP(G), and thus it sufficiently differs
from the proof of the mentioned results for ordinary conjugacy classes.

THEOREM D. Suppose that G is a p -solvable group. Every conjugacy class in
Con(GP') has prime power size if and only if one of the following holds:

(a) G has abelian p -complements. This occurs if and only if the size of every
conjugacy class in Con(Gp) is a power of p.
(b) G is nilpotent with abelian Sylow r-subgroups for all primes r distinct from p

and from some prime q ^ p. This occurs if and only if the size of every class in
Con(Gy) is a power of q.
(c) G = P x H, where P is a Sylow p -subgroup of G and H is a p -complement

of G. Furthermore, H is quasi-Frobenius with abelian kernel and complement and
the conjugacy class sizes of H are [l,q\ r'} for positive integers s, t and for some
distinct primes q, r, both distinct from p. This occurs if and only if the p-regular class
sizes of G are exactly [\,qs,r').

2. Preliminaries

In order to obtain our main theorems, we need some previous results as well as
to develop certain properties of the p -regular classes of maximal size. It is worth
mentioning that all these results hold for ordinary conjugacy classes (just take a prime
p not dividing the order of G). The first lemma is basic when studying p -regular class
lengths.

LEMMA 1. Let G be ap-solvable group and let B = bG, C = cG 6 Con(G;,0 such
that(\B\,\C\) = l. Then

(a) CG(b)CG(c) = G;
(b) BC = CB is a conjugacy class in Con(Gp<) and \BC\ divides \B\\C\.

PROOF. See [8, Lemma 1]. D

https://doi.org/10.1017/S144678870001452X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001452X


390 Antonio Beltran and Maria Jose Felipe [4]

LEMMA 2. Suppose that G is a p-solvable group and let BQ be a noncentral class
in Con(Gp') of maximal length. Then the following properties hold:

(a) Let C 6 Con(Gp-) such that (|B0|, I d ) = 1. Then \{C~XC)\ divides |B0|.
(b) Let n and m = |B0| be the two maximal sizes in Con(Gp-)- Suppose that

(n, m) = 1. Let D € Con(GpO with \D\ > 1. If(\D\, n) = 1, then \D\ = m.

PROOF, (a) If C is a class in Con(Gp<) such that (|Bo|, \C\) = 1, it follows from
Lemma 1 (b)that CB0 6 Con(Gp) and by maximality \CB0\ = l#ol- By Lemma 1 (b)
again, we have C"1 CBo = Bo. Thus, (C"1 C) Bo = Bo and consequently, BQ is a union
of some cosets of the normal subgroup {C~lC). Then | (C" 'C) | divides |B0|-

(b) Choose A e Con(Gp) such that \A\ = n and let D e Con(Gp<) such that
\D\ > l and ( |D | , n ) = 1. Then DA isaconjugacyclassinCon(Gp»)byLemma 1 (b).
Since \DA\ > n, then |DA| = n or |DA| = m. Suppose first that |DA| = n. By
Lemma 1 (b) again, D~XDA is also a class in Con(Gp<) and A c D~lDA, so
A = D~lDA. Thus, A = (D~lD)A and 1 ^ KD^'D)! divides \A\. Moreover,
since (D^D) c (AA"1), we have that \(D~lD)\ divides |(AA-') | . By (a), |(AA-') |
divides |B0|, yielding the contradiction \(D~lD)\ divides \B0\.

Suppose now that \DA\ = \B0\. By Lemma 1 (b), we have that |B0| divides \A\\D\,
which implies that |B0| = \D\. D

Other properties related to p -regular classes of maximal size were developed in
[1] (see Proposition 1 and Theorem 3). In the following theorem we summarize in
a somehow different form some of these properties. If m is a positive integer, then
n(m) will denote the set of prime divisors of m and we will also write n(X) to denote
the set of primes dividing |X| for any subgroup X of G or any X e Con(Gp>).

THEOREM 3. Suppose that G is a p-solvable group. Let Bo be a noncentral class
in Con(Gpi) of maximal length and write

M = ( D e C o n ( G p O I ( | £ > l , |Bol) = l>-

Then M = P x Mp> where Mp> is abelian and P is a Sylow p-subgroup of M.
Furthermore, Z(G)P> C Mpl and n(MP'/Z(G)P') C n(B0)- In particular, if M >
Z(G)P>, then \B0\ cannot be a power of p.

PROOF. We define N = (D^D | D e Con(Gp,), (|D|, |B0|) = 1)- From the
definition of M and N, it is clear that iV = [M, G]. Let c e C, where C is
a class in Con(GpO with (|Bol, |C|) = 1. By applying Lemma 2 (a), we obtain
7t(N) c TT(BO), whence (\N\, \C\) = 1. Since \N : CN(c)\ divides (\N\, \C\), it
follows that N = C\(c), so N < Z(M). Since M/N is contained in the centre of
G/N we deduce that M is nilpotent, hence we can write M = P x Mp<.
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Now, it is trivial that Z(G)P' c M, and consequently Z(G)P> c Mpl. Note that
MP' = Z(G)P' if and only if M = Z(G)P>, for in each case M is generated by central
p'-elements. We can assume that Mp/ > Z(G)P', since otherwise the theorem is
trivially true. Let r e 7t(Mp>/Z(G)p>) and choose R e Sy\r(Mp>). Notice that R < G
and that 1 ^ [R, G] < [M, G] = N. Therefore, r e n(N) c TT(B0) and thus
7r(MP'/Z(G)p') c n(B0) as required. In particular, if M > Z(G)P> then there exists
some prime q distinct fromp dividing |BOI-

Finally, if D is a generating class of M, we choose d e D and if R is the above
Sylow subgroup, then \R : CR(d)\ divides (\R\, \D\) = 1, so /? = CR(d) and we get
R <Z(M). Hence Mp. is abelian. •

The following result is a generalization for p -regular elements of a lemma of Ito.
It will be necessary for determining the structure of the centralizers of p'-elements
whose conjugacy class has maximal size. Although it is stated and shown as [2,
Lemma 1], we are including its proof here for the seek of completeness.

LEMMA 4. Let G be a finite group, x e Gp> and Cc(x) < G. Assume the follow-
ing:

(1) IfCcifl) < CG(x)fora 6 Gp., then Cc{a) = CG(x).
(2) IfCc{x) < Cc(b)forbe Gp., then CG(x) = CG(b) or be Z(G).

Theneither CG{x) = PxL, with P a Sylow p-subgroup of CG(x) and L < Z(CG(x))
or CG(x) = P Q x A, with P a p-Sylow of CG(x), Q a q-Sylow of CG(x), for some
prime q ^ p, and A < Z(G).

PROOF. Write x = x\x2 • • • xs, where the order of each xt is a power of a prime
distinct from p and the xt commute pairwise. As x & Z(G), there exists an i such
that xt g Z(G). By applying Hypothesis (2) we have CG(x) = CG(xi), whence there
is no loss if we assume that x is a ^-element for some prime q ^ p.

Suppose that there exists a prime divisor r of |CG(*) | such that r ^= p,q (in
another case the lemma is proved) and take R a Sylow r-subgroup of CG(x). If
v € R, since x and y have coprime orders, then CG(yx) = CG(x) D CG(y). By
Hypothesis (1), it follows that CG(x) = CG(yx) c CG(y). Thus R < Z(CG(x)),
so we can write CG(x) = PQ x A, for some P e Sylp(CG(^)), Q e SyL^CcCO)
and A < Z(CG(x)). If A < Z(G) we have finished. Suppose then that there
exists a noncentral u e A. Since u is a {p, g}'-element which commutes with x, by
applying Hypotheses (1) and (2), we obtain CG(ux) = CG(x) = CG(u). Now, take
z € Q. Then CG(uz) = CG(u) n CG(z) c CG(u) = CG(x). By Hypothesis (1),
we get CG(uz) = CG(x), so CG(x) c CG(z). Therefore, z e Z(CG(x)). If we put
L= Qx A, then CG(x) = P x L, with L < Z(CG(x)) as required. D

The following result will also be needed for distinct sets of primes.
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LEMMA 5. Let n be a set of primes and suppose that G is a n -separable group.
Then the conjugacy class length of any n -element g € G is a n'-number if and only
if G has abelian Hall n -subgroups.

PROOF. Suppose that any n-element g e G satisfies that |gG| is a 7r'-number, and
work by induction on \G\ so as to prove that any Hall n-subgroup of G is abelian.
Assume first that On(G) > 1 and write G = G/On(G). Notice that any 7r-element
of G can be written as g, with g a n -element of G, so it is easy to see that the
hypothesis is inherited in G. We conclude that G has abelian Hall 7T-subgroups and
then so has G.

Now assume that On>(G) = 1, and thus On(G) > 1. The hypothesis implies
that for any n -element g e G there exists a Hall n -subgroup H of G such that
g e H c CG(g). Thus g e CC(H) c CG{On{G)) c 0T(G). Consequently, Ghas
a normal Hall 7r-subgroup, which moreover is abelian. The converse direction in the
statement of the lemma is trivial. •

3. Theorem A and Corollary B

PROOF OF THEOREM A. We proceed with a series of steps.
Step 1. Let d e Gp> such that \dG\ = m. If x e Z(CG(d))p, then either* e Z(G)

or CG(x) = CG{d).
It is clear that CG(d) C CG(x),so(\xG\, n) - 1. If* i Z(G) then, by Lemma2(b),

we have \xG\ = m and CG(x) = CG(d).
Step 2. Let d e Gp- such that \dG\ = m. Then either CG(d) = PdQd x L where

L < Z(G), Pd e Sy\p(CG(d)) and Qd e Sylq(CG(d)) for some prime q ^ p or
CG(d) = Pdx Ld with Pd e Sylp(CG(d)) and Ld < Z{CG{d)). In addition, if there
exists some d e Gp< such that \dG\ = m and CG(d) = PdQd x L, with L < Z(G),
then CG(y) = PyQy x L for any y e GP' such that |vG| = m. In this case n is a
power of q.

To prove the first assertion it is enough to verify the hypotheses of Lemma 4 for d.
First suppose that CG(x) < CG(d) for some x 6 Gp. Then CG(x) = CG(d) by
the maximality of m. Now, if CG(d) < CG(x) for some noncentral x e Gp, then
|*G| = m by applying Lemma 2 (b). Hence CG(d) = CG(x) and the first part of the
step follows.

Assume now that there exists some d 6 Gp- such that \dG\ = m and CG{d) =
PdQdxLwithL < Z(G). Lety e Gp, such that \yG\ =m. Since|CG(d)| = \CG{y)\
and L < CG(y), we can trivially write CG(y) = PyQy x L for some Py and Qy Sylow
/?— and ^-subgroups of CG(y), respectively. Also, in this case \CG(d) : Z{G)P'\ is a
{p, ^}-number. As n is a p'-number dividing |G : Z(G)P'\ = \G : CG(d)\\CG(d) :
Z(G)P'|, we deduce that n is a ^-number.
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Step 3. There exists some d e Gp< of prime power order with \dG\ = m. If d is
such an element whose order is an r-power for some prime r ^ p, then r does not
divide m.

In order to prove the existence of such an element, choose d to be any p -regular
element such that \dG\ = m. Observe that we can factor d — drdr> for some prime
r / p, where dr and d^ are the r-part and r'-part of d respectively, and such that dr is
noncentral. As CG{d) c CG(dr) we have (\dG\, n) = 1. Applying Lemma 2 (b), we
obtain CG(d) = Cc(dr) and then \dG\ — m. Thus the first assertion is proved.

Now suppose that d is an r-element with \dG\ = m. By Step 2, we distinguish
two possibilities: either CG(d) = PdRd x L, with L < Z(G), Pd e Sy\p(CG(d)) and
Rd e Sylr(CG(d)) (note that the fact that d is a noncentral element implies that the
prime fixed in Step 2 is necessarily r) or Co(d) = Pd x Lrf, with Ld < Z{Cc{d)). In
the first case, we know by Step 2 that n is an r-power, so r cannot divide m and we
have finished the proof.

Suppose now that CG(d) is of the second type and let a be a p-regular element such
that \aG\ = n. By Lemma 1 (b), G = CG(a)CG(d) and so

n=\G: CG(a)\ = \CG(d) : CG(d) n CG(a)\.

Assume that r divides m and we will derive a contradiction. In this case r does
not divide \CG(d) : CG(d) fl CG(a)\, and as (d) is a normal r-subgroup of CG(d),
then d e CG(d) D CG(a) and a e CG(d). Now, Step 1 yields the contradiction
CG(d) = CG{a) and the step is proved.

For the rest of the proof we are fixing two p -regular elements a and b such that
aG\ = n and \bG\ = m. Additionally, by Step 3 we can choose b to be a g-element

for some prime q ^ p, so that g does not divide m. We also notice that, in accordance
with Step 2, there exist two types for the structure of CG(b), but if the first one occurs,
then actually CG(b) = PbQb * L, with Qb e SyL,(CG(b)), because b is a noncentral
^-element.

In the following steps we are going to make use of the subgroup M defined
in Theorem 3 as well as of the notation and conclusions in that theorem without
mentioning them. Recall that M is the subgroup generated by all the conjugacy
classes in Con(Gp<) whose size is coprime to m. Notice that certainly Z(G)P> < M.

Step 4. We can assume that a is a q'-element.
Since (\aG\, m) = 1, then a e M, or more precisely, a e Mp> — Z{G)P>. Write

a = aqaq>, where aq and aq: are the g-part and the g'-part of a, respectively, and
notice that if aq £ Z(G) then q e n(Mp./Z(G)P') C n(m), a contradiction. Thus
aq e Z(G) and CG(a) = CG(aq>), so we can replace a by aq> to assume that a is a
^'-element.

Step 5. CG(a)q = Z(G)q.
Suppose that there exists some noncentral ^-element y e CG(a). By Step 4, a and y
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have coprime orders, so CG{ay) = CG(a) n CG(y) c CG(a). The maximality of n
implies that CG(ay) = CG{a), whence CG(a) 91 CG(y). Consequently, (\yG\, m) = 1
and then y e Mp* — Z(G)P', which implies the contradiction q e n(Mp>/Z(G)P') c
7t(m).

Step 6. (CG(a) n CG(b))p. = Z(G)p..
Assume that there exists some noncentral p-regular x e CG(a) n CG(b). By

considering Step 2, we have two possibilities describing the structure of CG(b).
Suppose first that CG(b) = Pb x Lb, with Lb abelian. Then x e Lb and, by applying
Step 1, we get CG{b) = CG(x). Therefore, a e CG(b), whence CG(b) c CG(a), a
contradiction. In this case the step is proved.

Suppose now that CG(b) = PbQb x L with L < Z(G). Since x is a p'-element in
CG(b), we can clearly factor* = xqx^, where the qr'-partxq< e Z(G) and consequently
xq £ Z{G). But observe that xq centralizes a, a contradiction to Step 5.

Step 7. For any noncentral ^-element x e G it holds \xG\ — m.
As q is not a divisor of m, we can assume without loss of generality that x e

Q — Z(G)q for some Sylow ^-subgroup Q of G contained in CG(b).
We distinguish the two possibilities for CG(b), provided by Step 2. If CG(b) =

Pb x Lb, with Lb abelian, then x e Lb. Since x £ Z(G), by Step 1 we obtain
CG(x) = CG(b), so |*G| = m and this case is finished.

Therefore, for the rest of the proof of this step we will assume that CG(b) =
PbQ x L, with L < Z(G), and we also know that n = \G : Cc(a)| is a g-power. On
the other hand, we know that Mp> is abelian and Z(G)q c Mpl c CG{a), and taking
into account Step 5, we can write Mp> = 5 x Z(G)q, where q does not divide |5|.
Notice that (x) acts coprimely on the abelian subgroup 5, so 5 can be factorized by
coprime action properties

Denote by U = [S, (x)]. Observe that a € 5 and factor a = uw with u e U and
w e Cs(x). Consider the element g = xw and, since w is a noncentral ^'-element
centralizing x, then

CG(g) = CG(x) fl CG(w) c CG(x).

If q is not a divisor of |JCG|, then (|jcG|,n) = 1. Consequently, |JCG| = m by
Lemma 2 (b) and the proof is finished. Therefore, we can assume that q does divide
|*G|, whence q divides |gG| and, in particular, \gG\ ^ m. Now, if |gG| = n then
g e Mpl, but this implies that x e Mp, n Q C CG(a) D Q = Z{G)q by Step 5, which
is a contradiction. Thus, from the maximality of m and n we deduce that |gc | < n
and we will show that this fact provides a contradiction too. Observe that

( 1 ) \ S Q : CSQ(g)\ < \gG\ < n = \ G : CG(a)\ = \ Q : CG(a) CiQ\ = \Q
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Moreover, since S < G, 5 is abelian, 5 fl Q = 1, and S c Cc(w) we have

(2) CSQ(g) = CSQ(w) n CsgOc) = 5Ce(u>) n Cs(x)CQ(x)

= cs(x)[SCQ(w) n cQ(x)] = cs(x)[cQ(w) n ce(*)].

We denote by D = Ce(u>) n Ce(x). By combining (1) and (2), we obtain

\Q\
>, > |Cs(x)||£>r

This implies that \D : Z(G)q\ > \S : Cs(x)| = | U\.
On the other hand, as D c CG(x) and 5 is normal in G, then D acts on U by

conjugation and we claim that CD(u) = Z(G)q. If / € CD{u), since D c Cg(io),
then / e CG(a) n <2 = Z(G)q by Step 5. The other containment is trivial, so the claim
is proved. We conclude that

\D:CD(u)\ = \D:Z(G)q\>\U\,

that is, the size of the orbit of u under the action of D is greater than | U\, which is a
contradiction.

Step8. If d and? are two noncentralp -regular elements such that | fG| ^ m = \dG\,
then (Cc(d) D CC(OV = Z(G)P- and \tG\ = n. Consequently, the only p-regular
conjugacy class lengths of G are {1, n, m).

To prove the first equality we distinguish again the two cases provided by Step 2 for
CG(d). Suppose first that CG(d) = Pd x Ld with Ld < Z(Cc(d)), and suppose that
there exists a noncentral p-regular element y e CG(d) n CG(t). As y € Z(CG(d))
but y is noncentral, we deduce, by Step 1, that CG(y) = CG(d). Thus t € CG(d)
so, in particular, t e Z(CG(d)) and CG(t) = CG(d) again by Step 1, contradicting
our hypotheses. Therefore, in this case the equality (CG(d) D CG(t))p> = Z(G)P> is
proved.

Now we assume that CG(d) = PdQd x L, with L < Z(G) (note that here we are
applying the second part of Step 2, for if CG(d) has the first type structure given in that
step, then CG(b) has the same structure, so the prime q is fixed). In this case we also
know that n is a g-number. We prove first that t can be assumed to be a ^'-element.
Let tq be the ^-part of t and notice that CG(t) c CG(tq) c G. If tq £ Z(G), by
Step 7 we get \t%\ = m, and accordingly \tG\ = m, against the hypothesis of this step.
Therefore, tq e Z(G), so CG{t) = CG(^), where tq, is the g-part of t, and thus there
is no loss if we assume that t is a ^'-element, as wanted.

Now, suppose that there exists some noncentral p-regular y e CG(d) n CG(t) and
factor y = yqyq>, where yq and yq' are the g-part and the q'-pait of y, respectively. In
view of the structure of CG{d), it is clear that y,< e Z(G), so y9 ^ Z(G). Again by
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Step 7, we get |yG| = m. Moreover,

CG(ty) = CG(tyq) = CG(t) n CG(yq) c CG(yq)

and the maximality of m implies that | ( ry)c | = "i. As CG{ty) c CG{t) then
(\tG\, n) = 1, and by Lemma 2 (b), we obtain the contradiction |fG| = m. Thus,
we also conclude in this case that (CG(d) D CG(t))P' = Z{G)P'.

We show finally that \tG\ = n. Notice that

|rG| = \G : CG(t)\ > \CG(d) : CG(d) n Cc(r) | > \CG(d) : Z(G)|, , .

On the other hand, by applying the above property to a and d, we have (CG(d) D
CG{a))P' — Z(G)P'. In addition, CG(a)CG(d) = G by Lemma 1 (b), and since n is a
p'-number, we obtain

n = \G : C e (a ) | = |Cc(d) : CG(d) n CG(a)\ = \CG(d) :

Therefore, \tG\ < n, and since |rG| ^ m, we conclude that \tG\ = n and the step is
proved.

Step 9. CG(a)p, = Mp,.
Let K be a p-complement of CG(a) and choose /? a Sylow r-subgroup of CG(a)

with R c. K for any prime r ^ p. If R < Z(G) we certainly have R c MP'. We can
assume that R is noncentral, so that r divides \K : Z (G) P | . Step 6 and the fact that
G = CG(a)CG(b) imply that

\K : Z(GVI = |Cc(fl) : CG(a) n Cc(6)|p. = |G :

Consequently, r divides m. Now, for any y e /? we have \yG\ ^ m by Step 3, so
|yG| = n or 1 in view of Step 8. By definition of M, it follows that y e Mp, and thus
R c MP'. Consequently, /T c Mpl and the other containment is obvious.

Step 10. G is solvable and any p-complement of G is quasi-Frobenius with abelian
kernel and complement. Furthermore, the conjugacy class sizes of any p-complement
of G are {1, n, mpl).

Let H be a p-complement of G. First we are going to prove that, up to conjugacy,
H = Mpi T where T is a p-complement of CG(&), and that T is abelian.

In accordance with Step 2, we assume first that CG(b) = Pb x Lb, with Lb abelian.
The fact that G = CG(a)CG(b) together with Step 9 implies that Mp,Lb is a p -
complement of G satisfying the above stated conditions. In particular, notice that
G/Mp> is the product of two nilpotent groups, and this forces G to be solvable by
applying Kegel-Wielandt's theorem.

We can assume then that CG(b) = PbQb x L, with L < Z(G), so L < Mp*. As
above, it is clear that Mp: Qb is a p-complement of G, so we only have to show that Qb

https://doi.org/10.1017/S144678870001452X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001452X


[11] Relations between p -regular class sizes 397

is abelian. To see this, we will check the hypotheses of Lemma 5. For any noncentral
x e Qb, we know by Step 8 that \xG\ —m, which is a (/-number. On the other hand,
G/MP' is a [p, gj-group and Mp> is abelian, so G is solvable too. Therefore, we can
apply Lemma 5 with n = [q] to conclude that Qb is abelian, and we also get the
required structure for H.

In order to show that H is quasi-Frobenius, we first prove that Z(H) = Z(G)P>.
Certainly, Z(G)P' c Z(H). Conversely, suppose that A: e Z(H) and notice that \xG\
is a p-power. By Step 8, we know that JJCG| 6 {1, n, m), but the two last possibilities
cannot happen since n is not divisible by p and m is not a p -power by Theorem 3.
Hence, x e Z(G) and the equality holds.

Since Mp> c CG(a) it follows, by applying Step 6, that Mp, n T = Z(G)P>. Now,
we denote by T = T/Z(G)P> and by Mp< = Mp,/Z(G)P', and in general we will use
bars to work in G/Z{G)P>. We will show that (|T|, \Mp~-\) = 1. To see this, we apply
the definition of T, the fact that G = CG(a)Cc(b) and Step 6 to obtain

\T\ = \CG(b) : Z{G)\p. = \CG(b)\p,/\CG(a) n CG{b)\p>

= \G: CG{a)\p> = np, = n

and analogously, but now using Step 9, we deduce that

|M^| = \CG{a) : Z{G)\pl = \Cc{a)\p,/\CG{a) D CG{b)\p.

Accordingly (\T\, \MP>\) = 1, as required.
In order to prove that H/Z(G)P> is a Frobenius group (with kernel Mp> and comple-

ment T), we will show that Cj(g) = 1 for all 1 ^ g e Mp<. Suppose on the contrary
that 1 ^ t 6 Cj(g), for some 1 ^ g G Mp,, and we will provide a contradiction.
Since we have (o(F), o(g)) = 1, then (£7)o(l) = F"^ ^ 1. Hence,

n c^iT) - cc(0 n cc(^r) = cG(g) n cc(0,

so, in particular, Cc(^) H Cc(f) contains a noncentral p-regular element.
If we show that (CG(g) n CG(t))p, = Z(G)pi, we will get the desired contradiction.

As T fl MP' = 1 and t £ Z(G) then t £ Mpl, and consequently \tG\ —m\yj applying
Step 8. On the other hand, we have Mp> c CG(g) and \G : Mp>\ = pkn, for some
natural number it from Step 9. This implies that |gG| divides pkn, but |gG| 6 [n, m]
by Step 8, and m is not a p-power by Theorem 3. We conclude that |gG| = n and, by
Step 8, the equality (CG(g) n CG(t))p, = Z(G)P> holds.

Thus, we have shown that H is quasi-Frobenius. Furthermore, the kernel of H is
MP', which is abelian, and a complement of H, T, is abelian too (this has been proved
at the beginning of this step).
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Finally, it remains to prove the last assertion in the statement of this step. It is easy
to see that in a quasi-Frobenius group H with abelian kernel and complement, the
conjugacy class sizes are exactly [\,n\,m\),n\ and m\ being the orders of the kernel
and a complement of H, respectively. Since we have shown formerly that these orders
are n and mpi, the proof is finished. •

PROOF OF COROLLARY B. If p does not divide n, then the result is immediate from
Theorem A. We may assume then that p divides n and consequently, that p is not
a divisor of m. In this case, [1, Theorem 5] asserts that G is p-nilpotent and the
p -complement is quasi-Frobenius with abelian kernel and complement. In particular,
it also follows that G is solvable.

Let H < G be the p -complement of G. For any x e H we have

\xG\ = \G: CG(x)\ = \G: CG(X)H\\H : CH(x)\,

so \H : CH(x)\ = \xG\p>. It certainly follows that {1, npl, m] is the set of conjugacy
class sizes of H. •

REMARK. Corollary B has been proved conditioning on whether p divides n or
not. When p divides n, then the result is obtained from [1, Theorem 5], but actually
the fact that a p -complement is quasi-Frobenius follows from that G has normal p-
complement (see [1, Proposition 3]). We want to illustrate by an example that if p
divides m, under the same hypotheses of Corollary B, then G need not be p-nilpotent.
Let G be the dihedral group of order 2pq where p and q are two distinct odd primes.
Then the p-regular class sizes of G are {1,2, pq), whereas G does not possess normal
p -complement.

4. Theorems C and D

Theorems C and D describe the structure of G when we impose certain arithmetical
conditions on the set of the p-regular class sizes in two particular cases. In the proof
of Theorem C, we will also make use of the next two results. The first one extends a
theorem of Ito describing groups with exactly two conjugacy class lengths.

THEOREM 6. Suppose that G is a p-solvable group and that {l,m} are the p-
regular conjugacy class sizes of G. Then m = paqb, with q a prime distinct from
p and a, b > 0. If b = 0, then G has abelian p-complement. If b ^ 0, then
G = PQ x A, with P € SyL,(G), Q e Syl,(G) and A < Z(G). Furthermore, if
a = 0, then G — Px Q x A.

PROOF. See [2, Theorem A]. D
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The following determines the structure of those p -solvable groups whose p -regular
class sizes are p'-numbers.

LEMMA 7. Suppose that G is a p-solvable group and that p is not a divisor of
the lengths of'p-regular conjugacy classes. Then G = P x H, where P is a Sylow
p -subgroup and H is a p -complement of G.

PROOF. See for instance [1, Proposition 2]. •

Now we are able to prove Theorems C and D.

PROOF OF THEOREM C. If r = 0, then the structure of G is given by Theorem 6
and thus we obtain cases (a) and (b).

If r = 1, then the first assertion in (c) follows from Corollary B. The second
assertion in (c) is obtained by applying [1, Theorem 5] and Lemma 7. Suppose then
that r > 2. Since {n + r, n + r — 1) = 1, we can apply Lemma 2 (b) to obtain that
n + r is the only p -regular class size greater than 1 which is coprime to n + r — 1.
Since n > 1, this is a contradiction with the fact that 1 ^ n + r — 2 is coprime to
n + r - l . •

We want to remark that [4, Theorem 2] describes the structure of those groups
whose noncentral conjugacy class sizes are consecutive numbers. However, its proof
can be considerably simplified by following the same arguments as in the proof of
Theorem C, taking into account that Lemma 2 can be applied for ordinary conjugacy
classes.

PROOF OF THEOREM D. It is easy to see that if G is as described in the conclusions
of the theorem, then the lengths of all classes in Con(Gp-) are prime powers and these
powers are exactly as indicated in each one of the cases. Note that for case (a), it
suffices to apply Lemma 5 in the converse direction with n = {p}'.

Conversely, suppose that any p -regular class length is a prime power. We first
notice that such a group G is solvable. To prove this, it is sufficient to use induction
on \G\ and Bumside's Theorem which establishes the non-existence of prime power
size classes in a nonabelian simple group.

Assume now that the size of every class in Con(Gp<) is a power of p. This implies
that G has abelian p -complements by Lemma 5.

Suppose now that the size of every conjugacy class of Con(Gp) is a power of
some prime q, distinct from p. By Lemma 7, we have G = P x H, with H a
p -complement of G. Then every noncentral class length of H is a ^-power. It is
well known (see for instance [6, Proposition 4]) that if a prime r does not divide any
conjugacy class size of H, then H has a central Sylow r-subgroup. Therefore, for any
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prime r •£ q and R e Sylr(//) we have R < Z(H). As G = P x H, we obtain that
R < Z(G). Therefore, G is nilpotent with at most two nonabelian Sylow subgroups
(for the primes p and q).

Finally, we assume that there exist at least two distinct prime divisors of the p-
regular class sizes. By [1, Theorem 1], we deduce that there must be exactly two
distinct primes, say q and r. Although q or r could initially be equal to p, notice
that by Theorem 3 the maximal p -regular class size is not a p -power and thus, by
[1, Theorem 5], G is p-nilpotent and the p-complement H of G is a quasi-Frobenius
group with abelian kernel and complement. In such a group the noncentral conjugacy
class sizes are exactly two coprime numbers. Moreover, since any conjugacy class
size in H divides some p-regular conjugacy class size in G, it follows that the set of
the conjugacy class sizes of H is {1, r', qs), where t and 5 are positive integers. Also,
q and r must be distinct from p, since H is a p'-group. Therefore, p does not divide
any p -regular class size of G, so by Lemma 7, we obtain G — P x H. Consequently,
it follows that {1, r', qs) is also the set of the p-regular class sizes of G. •
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