WENCHEN CHI

The ℓ -adic representations associated to prime dimensional type IV absolutely simple abelian varieties over number fields are studied. The image of such a representation was computed. The results coincide with the well-known conjectures of Mumford and Tate.

1. INTRODUCTION

Let K be an algebraic number field and let \overline{K} be an algebraic closure of K. Let $G_K = \operatorname{Gal}(\overline{K}/K)$. For an abelian variety A defined over K, we denote by $\operatorname{End}^{\circ}(A)$ the endomorphism algebra $\operatorname{End}_{\overline{K}}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$ of A. For each prime number ℓ , let T_{ℓ} be the Tate module of A and let $V_{\ell} = T_{\ell} \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$. The Galois group G_K acts continuously on T_{ℓ} . One has the ℓ -adic representation $\rho_{\ell} \colon G_K \to \operatorname{Aut}(V_{\ell})$.

According to Albert's classification of division algebras with positive involutions, the so-called type IV absolutely simple abelian varieties over K are those abelian varieties A with $D = \text{End}^{\circ}(A)$ is a division algebra over its centre E, where E is a CM-field. Let E^+ be the maximal totally real subfield of E. If $[D:E] = f^2$ and $[E^+:\mathbb{Q}] = e$, then ef^2 divides dim A (see [6], Section 21). In particular, when dim A = p is a prime number, it is easy to see that D = E and E is a CM-field of degree 2p or an imaginary quadratic field. Existence of such type of abelian varieties over number fields except the case where dim A = 2 and E is an imaginary quadratic field was proved by Shimura in [12].

In this paper, we are interested in the ℓ -adic representations associated to the above prime dimensional type IV absolutely simple abelian varieties over number fields. For the case where E is a CM-field of $2 \dim A$, the \mathbb{Q}_{ℓ} -Lie algebra \mathcal{G}_{ℓ} of the image of the ℓ -adic representation is well-known to be equal to $\mathcal{M}_{\ell} = \mathcal{M} \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$, where \mathcal{M} is the Q-Lie algebra of the Mumford-Tate group associated to A (thought of as over \mathbb{C}). This is due to Taniyama and Shimura in [11]. In the sequel, we shall study the remaining cases. Namely, dim A = p is an odd prime number and End[°] (A) = E is an imaginary quadratic field.

Received 7 August 1990 Supported by N.S.C., R.O.C.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

W. Chi

Fix a K-polarisation on A once for all. Let ψ be the associated Riemann form on V_{ℓ} . The induced Rosati involution on E is the complex conjugation. One has $\psi(\alpha v, w) = \psi(v, \overline{\alpha}w)$ for α in E and v, w in V_{ℓ} . The Tate module V_{ℓ} is a free $E_{\ell} = E \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ -module of rank p. Let $G_{V_{\ell}}$ be the algebraic envelope of the ℓ -adic Lie group $G_{\ell} = \operatorname{Im} \rho_{\ell}$. By the theorem of Faltings ([4], Section 5, Satz 3), $G_{V_{\ell}}$ is a reductive algebraic group over \mathbb{Q}_{ℓ} . Let $S_{V_{\ell}}$ be the connected component of the identity of $G_{V_{\ell}} \cap SL_{V_{\ell}}$ and let S_{ℓ} be its Lie algebra. By replacing the base field K by a finite extension, we may assume that $\operatorname{End}_{\overline{K}}(A) = \operatorname{End}_{K}(A)$. Then $G_{V_{\ell}}(\mathbb{Q}_{\ell})$ is contained in the commutant of E_{ℓ} in the symplectic similitudes $GSp(V_{\ell}, \psi)$. On the other hand, let α be a nonzero element in E such that $\overline{\alpha} = -\alpha$. It can be shown that there is a unique E_{ℓ} -Hermitian form ϕ on V_{ℓ} such that

$$\psi(v,w) = Tr_{E_{\ell/\mathbb{Q}_{\ell}}}(lpha\phi(v,w)) ext{ for all } v,w ext{ in } V_{\ell}.$$

The commutant of E_{ℓ} in the symplectic group $Sp(V_{\ell}, \psi)$ is easily seen to be the unitary group $U(V_{\ell/E_{\ell}}, \phi)$, which can be regarded as an algebraic group over \mathbb{Q}_{ℓ} .

By an ℓ -adic analogy to the method in [7, 13], we shall prove that, for all prime dimensional absolutely simple abelian varieties of type IV over number fields, the reductive Lie algebra S_{ℓ} is equal to the Lie algebra of $U(V_{\ell/E_{\ell}}, \phi)$. In particular, $\mathcal{G}_{\ell} = \mathcal{M} \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ as was conjectured in [5]. Consequently, the conjecture of Tate on algebraic cycles (see [15]) is true for all prime dimensional absolutely simple abelian varieties of type IV over number fields.

2. PRELIMINARIES

2.1. THE ALGEBRAIC ENVELOPE G_{V_l} .

Let A be an abelian variety defined over a number field K. For each prime number ℓ , let $\rho_{\ell}: G_K \to \operatorname{Aut}(V_{\ell})$ be the associated ℓ -adic representation. The image G_{ℓ} of ρ_{ℓ} is then an ℓ -adic Lie group. Let \mathcal{G}_{ℓ} be the Lie algebra of \mathcal{G}_{ℓ} . It is easily seen that \mathcal{G}_{ℓ} is invariant under finite extensions of the base field K.

Let $G_{V_{\ell}}$ be the algebraic envelope of G_{ℓ} , that is, $G_{V_{\ell}}$ is the smallest algebraic subgroup of $GL_{V_{\ell}}$ defined over \mathbb{Q}_{ℓ} such that G_{ℓ} is contained in $G_{V_{\ell}}(\mathbb{Q}_{\ell})$. By the Theorems of Faltings ([4], Section 5, Satz 3, 4), \mathcal{G}_{ℓ} (respectively $G_{V_{\ell}}$) is reductive and $\operatorname{End}_{\mathcal{G}_{\ell}}(V_{\ell}) = \operatorname{End}_{K}(A) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell}$ (respectively $\operatorname{End}_{G_{V_{\ell}}(\mathbb{Q}_{\ell})}(V_{\ell}) = \operatorname{End}_{K}(A) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell}$). On the other hand, Bogomolov ([1], Corollary 1) proved that \mathcal{G}_{ℓ} (respectively $G_{V_{\ell}}$) contains the homotheties \mathbb{Q}_{ℓ} (respectively G_m). Replacing the base field K by a finite extension of K, we may assume that $G_{V_{\ell}}$ is connected (see [2], Section 3.3). Let $S_{V_{\ell}}$ be the connected component of the identity of $G_{V_{\ell}} \cap SL_{V_{\ell}}$. Then $S_{V_{\ell}}$ is again a connected reductive algebraic subgroup of $GL_{V_{\ell}}$ defined over \mathbb{Q}_{ℓ} . Then $G_{V_{\ell}} = S_{V_{\ell}}.G_m$. Let S_{ℓ} be the Lie algebra of $S_{V_{\ell}}$. Then S_{ℓ} is a reductive Lie algebra over \mathbb{Q}_{ℓ} and $\mathcal{G}_{\ell} = S_{\ell} \oplus \mathbb{Q}_{\ell}$. 2.2 THE HODGE-TATE DECOMPOSITION OF V_{ℓ} . (see [8, 10])

Let C_{ℓ} be the completion of a fixed algebraic closure of \mathbb{Q}_{ℓ} and let S_{ℓ} be the set of all finite places of K dividing ℓ . For each $v \in S_{\ell}$, let \overline{K}_v be the algebraic closure of K_v in C_{ℓ} . As a $\operatorname{Gal}(\overline{K}_v/K_v)$ -module, it is well-known that V_{ℓ} is a Hodge-Tate module of weights 0 and 1, each of them with multiplicity dim A (due to Tate and Raynaud, see [10], p.157). Denote the Hodge-Tate decomposition of V_{ℓ} by $V_{\ell} \otimes_{Q_{\ell}} C_{\ell} =$ $V_{C_{\ell}}(0) \oplus V_{C_{\ell}}(1)$. More precisely, $V_{C_{\ell}}(0)$ is the cotangent space (over C_{ℓ}) to the dual abelian variety A of A at its origin and $V_{C_{\ell}}(1)$ is the 1-fold Tate twist of the tangent space (over C_{ℓ}) to A at its origin (see [16], Corollary 2 of Theorem 3).

For each $v \in S_{\ell}$, let \overline{v} be an extension of v to \overline{K} . Then the local Galois group $\operatorname{Gal}(\overline{K}_{v}/K_{v})$ can be identified with the decomposition group $D_{\overline{v}}$ for \overline{v} in $\operatorname{Gal}(\overline{K}/K)$. Let $I_{\overline{v}}$ be the inertia subgroup of $D_{\overline{v}}$. Then the algebraic envelope of $\rho_{\ell}(I_{\overline{v}})$ is an algebraic subgroup of $G_{V_{\ell}}$. By a theorem of Sen ([8], Section 6), the one-parameter subgroup $h_{V_{\ell}}$ of $GL_{V_{\ell}/C_{\ell}}$ defined by

$$h_{V_{\ell}}(c)(x) = \left\{egin{array}{ll} x, & ext{if } x \in V_{C_{\ell}}(0) \ cx, & ext{if } x \in V_{C_{\ell}}(1), \end{array}
ight.$$

maps $G_{m/C_{\ell}}$ into the algebraic envelope of $\rho_{\ell}(I_{\overline{v}})$ over C_{ℓ} . So $h_{V_{\ell}}$ is a one-parameter subgroup of $G_{V_{\ell}}$ defined over C_{ℓ} .

2.3. The unitary group $U(V_{\ell/E_{\ell}}, \phi)$.

For our purpose, we now assume that $E = \text{End}^{\circ}(A)$ is an imaginary quadratic field. For a fixed K-polarisation on A, let ψ be the associated Riemann form on V_{ℓ} . The induced Rosati involution on E is the complex conjugation. Let $E_{\ell} = E \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$. The Tate module V_{ℓ} is then a free E_{ℓ} -module of rank dim A. By \mathbb{Q}_{ℓ} -linearity, the complex conjugation on E extends to an involution on the \mathbb{Q}_{ℓ} -algebra E_{ℓ} . We denote it again by -. Then

$$\psi(\alpha v, w) = \psi(v, \overline{\alpha}w)$$
 for all v, w in $V_{\ell}; \alpha$ in E_{ℓ} .

Let $\operatorname{Tr}_{E_{\ell}/\mathbb{Q}_{\ell}}$ be the regular trace of E_{ℓ} over \mathbb{Q}_{ℓ} . The following results are an analogy of Lemmas 4.6, 4.7 in [3].

LEMMA 2.1. Let V and W be free E_{ℓ} -modules of finite rank and let $\psi: V \times W \to \mathbb{Q}_{\ell}$ be a \mathbb{Q}_{ℓ} -bilinear form such that $\psi(ev, w) = \psi(v, ew)$ for all e in E_{ℓ} , v in V, and w in W. Then there exists a unique E_{ℓ} -bilinear form ϕ such that

$$\psi(v, w) = \operatorname{Tr}_{E_{\ell}/\mathbb{Q}_{\ell}}(\phi(v, w))$$
 for all v in V, w in W.

PROOF: ψ defines a \mathbb{Q}_{ℓ} -linear map $V \otimes_{E_{\ell}} W \to \mathbb{Q}_{\ell}$, that is, an element of the \mathbb{Q}_{ℓ} -linear dual of $V \otimes_{E_{\ell}} W$. But $\operatorname{Tr}_{E_{\ell}/\mathbb{Q}_{\ell}}$ identifies the \mathbb{Q}_{ℓ} -linear dual of $V \otimes_{E_{\ell}} W$ with the E_{ℓ} -linear dual, and ψ with ϕ .

LEMMA 2.2. Let $\alpha \in E^*$ be such that $\overline{\alpha} = -\alpha$. Then there exists a unique E_{ℓ} -Hermitian form ϕ on V_{ℓ} such that $\psi(v, w) = \operatorname{Tr}_{E_{\ell}/Q_{\ell}}(\alpha\phi(v, w))$ for all v, w in V_{ℓ} .

PROOF: Take V to be V_{ℓ} and W to be V_{ℓ} with E_{ℓ} acting through the involution $\bar{}$. Then, by Lemma 2.1, there exists a unique E_{ℓ} -sesquilinear form ϕ_1 on V_{ℓ} such that $\psi(v, w) = \operatorname{Tr}_{E_{\ell}/Q_{\ell}}(\phi_1(v, w))$.

Let $\phi = \alpha^{-1}\phi_1$ be such that $\psi(v, w) = \operatorname{Tr}_{E_{\ell/Q_{\ell}}}(\alpha\phi(v, w))$. Since ϕ is sesquilinear, it remains to show that $\phi(v, w) = \overline{\phi(w, v)}$.

Replacing v by ev with e in E_{ℓ} , one finds that $\operatorname{Tr}_{E_{\ell/\mathbb{Q}_{\ell}}}(\alpha e\phi(v,w)) = \operatorname{Tr}_{E_{\ell/\mathbb{Q}_{\ell}}}(\overline{\alpha e}\phi(w,v))$. On the other hand, $\operatorname{Tr}_{E_{\ell/\mathbb{Q}_{\ell}}}(\alpha e\phi(v,w)) = \operatorname{Tr}_{E_{\ell/\mathbb{Q}_{\ell}}}(\overline{\alpha e}\phi(v,w))$ and as $\overline{\alpha e}$ is an arbitrary element of E_{ℓ} , the non-degeneracy of the trace implies that $\overline{\phi(v,w)} = \phi(w,v)$. The uniqueness of ϕ is obvious from Lemma 2.1.

LEMMA 2.3. The commutant of E_{ℓ} in $Sp(V_{\ell}, \psi)$ is equal to $U(V_{\ell/E_{\ell}}, \phi)$.

PROOF: Let $T \in \operatorname{Sp}(V_{\ell}, \psi)$ be such that $T\alpha = \alpha T$ for all α in E_{ℓ} . Then T can be thought of as an element in $\operatorname{Aut}_{E_{\ell}}(V_{\ell})$. It is easy to check that the map $(v, w) \mapsto \phi(Tv, Tw)$ is an E_{ℓ} -Hermitian form.

On the other hand, $\psi(Tv, Tw) = \psi(v, w)$ is equivalent to $\operatorname{Tr}_{E_{\ell}/\mathbb{Q}_{\ell}}(\alpha\phi(Tv, Tw)) = \operatorname{Tr}_{E_{\ell}/\mathbb{Q}_{\ell}}(\alpha\phi(v, w))$. By the uniqueness of ϕ , this amounts to saying that $\phi(Tv, Tw) = \phi(v, w)$.

REMARK. For those ℓ which remain prime in E, $U(V_{\ell/E_{\ell}}, \phi)$ is an algebraic group over the field E_{ℓ} . By Weil's restriction of scalars, it can be thought of as a connected algebraic group over \mathbb{Q}_{ℓ} . For those ℓ such that $E_{\ell} = \mathbb{Q}_{\ell} \oplus \mathbb{Q}_{\ell}$, although $U(V_{\ell/E_{\ell}}, \phi)$ is an algebraic group over \mathbb{Q}_{ℓ} , it doesn't seem to be obvious that $U(V_{\ell/E_{\ell}}, \phi)$ is a connected algebraic group.

3. PROOF OF THE MAIN RESULT

In this section, let A be an abelian variety defined over a number field K where dim A = p is an odd prime number and $E = \text{End}^{\circ}(A)$ is an imaginary quadratic field. For simplicity, we shall assume the following conditions (by extending the base field K):

(i) $\operatorname{End}_{K}(A) = \operatorname{End}_{\overline{K}}(A)$.

- ℓ -adic representations
- (ii) $E \subseteq K \subseteq \overline{K}$ (identifying E as a subfield of \overline{K}).
- (iii) The algebraic envelope $G_{V_{\ell}}$ is connected.

Fix a non-zero element α in E such that $\overline{\alpha} = -\alpha$. Then as in Section 2.3, let $U(V_{\ell/E_{\ell}}, \phi)$ be the unitary group with respect to the E_{ℓ} -Hermitian form ϕ associated with the Riemann form ψ on the free E_{ℓ} -module V_{ℓ} of rank p.

We now prove the main theorem.

THEOREM 3.1. The reductive Lie algebra S_{ℓ} is equal to the Lie algebra of $U(V_{\ell/E_{\ell}}, \phi)$.

PROOF: By Lemma 2.3, it is clear that S_{ℓ} is contained in $\text{Lie}(U(V_{\ell/E_{\ell}}, \phi))$. On the other hand, it is easily seen that $\dim_{\mathbb{Q}_{\ell}} \text{Lie}(U(V_{\ell/E_{\ell}}, \phi)) = p^2$. It suffices to show that $\dim_{S_{\ell}} S_{\ell}$ is at least $p^2 - 1$ and the centre of G_{ℓ} is at least of dimension 2.

Now, we divide the rest of the proof into the following steps:

STEP 1. Decomposition of V_{ℓ} by the action of E_{ℓ} .

Let $\overline{V}_{\ell} = V_{\ell} \otimes_{\mathbb{Q}_{\ell}} C_{\ell}$, $\overline{E}_{\ell} = E_{\ell} \otimes_{\mathbb{Q}_{\ell}} C_{\ell} = E \otimes_{\mathbb{Q}} C_{\ell}$, and let $\{\sigma, \tau\}$ be the two embeddings of E into C_{ℓ} . Corresponding to σ , τ , one has an $\overline{E}_{\ell}[G_{V_{\ell}}]$ -module decomposition $\overline{V}_{\ell} = X \oplus Y$. Namely, $X = \{v \in \overline{V}_{\ell} \mid e \cdot v = \sigma(e)v \text{ for all } e \text{ in } E\}$ and $Y = \{v \in \overline{V}_{\ell} \mid e \cdot v = \tau(e)v \text{ for all } e \text{ in } E\}$. Since V_{ℓ} is a free E_{ℓ} -module, both of Xand Y are p-dimensional C_{ℓ} -vector spaces.

Let *H* be the image of the representation $\rho_{\ell} \colon G_{V_{\ell/C_{\ell}}} \to GL_X$ given by the action of $G_{V_{\ell/C_{\ell}}}$ on *X*.

LEMMA 3.1.1. *H* is a reductive connected algebraic subgroup of GL_X and $End_H(X) = C_\ell$. In particular X is an irreducible *H*-module.

PROOF: By the theorems of Faltings ([4], Section 5, Satz 3, 4) $G_{V_{\ell/C_{\ell}}}$ acts on \overline{V}_{ℓ} and hence on X semisimply. Moreover, one has $\operatorname{End}_{G_{V_{\ell}}(\mathbb{Q}_{\ell})}(V_{\ell}) = E_{\ell}$. By $E_{\ell} = C_{\ell} \times C_{\ell}$, one concludes that $\operatorname{End}_{H}(X) = C_{\ell}$.

STEP 2. The Hodge–Tate decomposition of V_{ℓ} .

As in Section 2.2, \overline{V}_{ℓ} has a Hodge-Tate decomposition $\overline{V}_{\ell} = V_{C_{\ell}}(0) \oplus V_{C_{\ell}}(1)$ with dim $V_{C_{\ell}}(0) = \dim V_{C_{\ell}}(1) = p$. Here $V_{C_{\ell}}(0)$ is the cotangent space (over C_{ℓ}) to the dual abelian variety $A_{/C_{\ell}}$ at its origin. Let $M = V_{C_{\ell}}(0)$ and $N = V_{C_{\ell}}(1)$. From condition (ii) of our assumption, both M, N are \overline{E}_{ℓ} -modules. Accordingly, $M = M_{\sigma} \oplus M_{\tau}$, where E acts via σ on the former space and via τ on the latter. Similarly, one has $N = N_{\sigma} \oplus N_{\tau}$. Let dim $M_{\sigma} = n_{\sigma}$ and dim $M_{\tau} = n_{\tau}$. Then $n_{\sigma} + n_{\tau} = p$, where $p \ge 3$.

Fix an isomorphism between C_{ℓ} and \mathbb{C} . Consider the dual module of the \overline{E}_{ℓ} -module Lie $(A_{/C_{\ell}})$ (that is the tangent space of $A_{/C_{\ell}}$ at its origin). By a result of Shimura ([12], Theorem 5), one concludes that both n_{σ} and n_{τ} are positive.

LEMMA 3.1.2. $X = M_{\sigma} \oplus N_{\sigma}$ and dim M_{σ} , dim N_{σ} are relatively prime.

PROOF: $\overline{V}_{\ell} = X \oplus Y = (M_{\sigma} \oplus M_{\tau}) \oplus (N_{\sigma} \oplus N_{\tau})$. One sees easily that $X = (X \cap M) \oplus (X \cap N) = M_{\sigma} \oplus N_{\sigma}$. In particular, dim $N_{\sigma} = n_{\tau}$. Since $n_{\sigma} + n_{\tau} = p$ (odd prime), so n_{σ} , n_{τ} are relatively prime.

Note that Lemmas 3.1.1, 3.1.2 verify the hypotheses of a theorem of Serre ([9], Theorem 3). So we conclude that $H = GL_X$. In particular, ρ_ℓ maps the commutator subgroup of $G_{V_{\ell/C_\ell}}$ onto SL_X . This shows that dim S_{V_ℓ} is at least $p^2 - 1$.

STEP 3. The 2-dimensional C_{ℓ} -torus $T_{E_{\ell}/C_{\ell}} \simeq G_{m/C_{\ell}} \times G_{m/C_{\ell}}$. Let $T_{E_{\ell}/C_{\ell}} \simeq G_{m/C_{\ell}} \times G_{m/C_{\ell}}$ be the 2-dimensional torus \overline{E}_{ℓ}^{*} over C_{ℓ} . Recall that $G_{V_{\ell}}(C_{\ell})$ is contained in $\operatorname{Aut}_{\overline{E}_{\ell}}(\overline{V}_{\ell}) = GL_X \oplus GL_Y$. Let $\theta: G_{V_{\ell}}(C_{\ell}) \subseteq \operatorname{Aut}_{\overline{E}_{\ell}}(\overline{V}_{\ell}) \xrightarrow{\det} T_{E_{\ell}/C_{\ell}}$ be the determinant map. Bogomolov ([1], Corollary 1) asserts that $G_{V_{\ell}/C_{\ell}}$ contains the homotheties $G_{m/C_{\ell}}$. So, the image of θ contains the diagonal of $G_{m/C_{\ell}} \times G_{m/C_{\ell}}$. On the other hand, the map $\theta \circ h_{V_{\ell}}: G_{m/C_{\ell}} \xrightarrow{h_{V_{\ell}}} G_{V_{\ell}/C_{\ell}} \xrightarrow{\theta} T_{E_{\ell}/C_{\ell}}$ gives $(\theta \circ h_{V_{\ell}})(c) = (c^{n_{\tau}}, c^{n_{\sigma}})$ for all c in $G_{m/C_{\ell}}$. Since $n_{\sigma} \neq n_{\tau}$, the image of $\theta \circ h_{V_{\ell}}$ is distinct from the diagonal of $G_{m/C_{\ell}} \times G_{m/C_{\ell}}$. It follows that θ is surjective.

So the 2-dimensional torus $T_{E_{\ell/C_{\ell}}}$ is a quotient of $G_{V_{\ell/C_{\ell}}}$. We conclude that the centre of $G_{V_{\ell}}$ has dimension at least 2.

This completes the proof of Theorem 3.1.

COROLLARY 3.2. For all prime dimensional absolutely simple abelian varieties of type IV over number fields,

$$\mathcal{G}_{\ell} = \mathcal{M} \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$$

PROOF: This follows immediately from Theorem 3.1, Theorem 2 in [7], and the result of Taniyama and Shimura in [11]

COROLLARY 3.3. The Tate conjecture is true for all prime dimensional absolutely simple abelian varieties of type IV over number fields.

PROOF: After Faltings proved his theorems ([4], Section 5, Satz 3, Satz 4), it is well-known that if $\mathcal{G}_{\ell} = \mathcal{M} \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$, then the conjectures of Hodge, Tate on algebraic cycles (see [7, 15]) over $A(\mathbb{C})$, A respectively are equivalent. On the other hand, Hodge's conjecture for all prime dimensional absolutely simple abelian varieties of type IV was proved in [14].

CONCLUDING REMARK. Let A be a prime dimensional absolutely simple abelian variety over a number field K. According to Theorem 2 of Section 21 in [6], one has the following possibilities:

Type I. dim A is a prime number and $\operatorname{End}_{\overline{K}}(A) = \mathbb{Z}$.

Ο

l-adic representations

Type II. dim A = 2 and End[°] (A) is an indefinite quaternion algebra over \mathbb{Q} . Type III. dim A = 2 and End[°] (A) is a definite quaternion algebra over \mathbb{Q} . Type IV. A is as in Section 1.

In his 1984-85 course at Collège de France, J-P. Serre has proved $\mathcal{G}_{\ell} \simeq sp(2d, \mathbb{Q}_{\ell}) \oplus \mathbb{Q}_{\ell}$, where $d = \dim A$ is odd and $\operatorname{End}_{\overline{K}}(A) = \mathbb{Z}$. For $\dim A = 2$ and A of type II, $\mathcal{G}_{\ell} = \mathcal{M} \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ is well-known (see [2], Corollary 4.2). On the other hand, according to a result of Shimura ([12], Theorem 5), the above Type III abelian variety of dimension 2 doesn't exist. Taking all of these into account, Corollaries 3.2, 3.3 are true for all prime dimensional absolutely simple abelian varieties over number fields.

References

- F.A. Bogomolov, 'Sur l'algébricité des représentations *l*-adiques', C.R. Acad. Sc. Paris, 290 (1980), 701-703.
- [2] W. Chi, 'On the *l*-adic representations attached to some absolutely simple abelian varieties of type II', J. Fac. Sci. Univ. Tokyo. Sect. IA Math. (1990) (to appear).
- [3] P. Deligne, Hodge cycles on Abelian varieties (notes by J.S. Milne): Lecture Notes in Math. 900, pp. 9-100 (Springer-Verlag, Berlin, Heidelberg, New York, 1982).
- [4] G. Faltings, 'Endlichkeitssätze fur abelsche varietäten uber zahlkörpern', Invent. Math. 73 (1983), 349-366.
- [5] D. Mumford, 'Families of abelian varieties', in Proc. of Symposia in Pure Math. IX, pp. 347-351 (A.M.S., 1966).
- [6] D. Mumford, Abelian varieties (Oxford University Press, 1974).
- [7] K. Ribet, 'Hodge classes on certain types of abelian varieties', Amer. J. Math. 105 (1983), 523-538.
- [8] S. Sen, 'Lie algebras of Galois groups arising from Hodge-Tate modules', Ann. of Math. 97 (1973), 160-170.
- [9] J-P. Serre, 'Sur les groupes de Galois attachés aux groupes p-divisibles', in Proceedings of a Conference on Local Fields, pp. 118-131 (Springer-Verlag, Berlin, Heidelberg, New York, 1967).
- [10] J-P. Serre, 'Groupes algébriques associés aux modules de Hodge-Tate', Astérisque 65 (1979), 155-188.
- [11] G. Shimura and Y. Taniyama, 'Complex multiplication of abelian varieties and its applications to number theory', Publ. Math. Soc. Japan 6 (1961).
- [12] G. Shimura, 'On analytic families of polarized abelian varieties and automorphic functions', Ann. of Math. 78 (1963), 149-192.
- [13] S.G. Tanke'ev, 'Algebraic cycles on simple 5-dimensional abelian varieties', Math. USSR Izv. 19 (1982), 95-123.
- [14] S.G. Tanke'ev, 'Cycles on simple abelian varieties of prime dimension', Math. USSR Izv. 20 (1983), 157-171.

[7]

- [15] J. Tate, Algebraic cycles and poles of zeta functions, Arithmetical algebraic geometry, pp. 93-110 (Harper and Row, New York, 1965).
- [16] J. Tate, 'p-divisible groups', in Proc. of a Conference on Local Fields, pp. 158-183 (Springer-Verlag, Berlin, Heidelberg, New York, 1967).

Department of Mathematics National Tsing Hua University Hsinchu, Taiwan 30043 Republic of China