ON THE ℓ-ADIC REPRESENTATIONS ATTACHED TO SIMPLE ABELIAN VARIETIES OF TYPE IV

Wenchen Chi

The ℓ-adic representations associated to prime dimensional type IV absolutely simple abelian varieties over number fields are studied. The image of such a representation was computed. The results coincide with the well-known conjectures of Mumford and Tate.

1. Introduction

Let K be an algebraic number field and let \bar{K} be an algebraic closure of K. Let $G_{K}=\operatorname{Gal}(\bar{K} / K)$. For an abelian variety A defined over K, we denote by End ${ }^{\circ}(A)$ the endomorphism algebra End $\bar{K}(A) \otimes_{\mathbf{z}} \mathbb{Q}$ of A. For each prime number ℓ, let T_{ℓ} be the Tate module of A and let $V_{\ell}=T_{\ell} \otimes_{\ell} \mathbb{Q}_{\ell}$. The Galois group G_{K} acts continuously on T_{ℓ}. One has the ℓ-adic representation $\rho_{\ell}: G_{K} \rightarrow \operatorname{Aut}\left(V_{\ell}\right)$.

According to Albert's classification of division algebras with positive involutions, the so-called type IV absolutely simple abelian varieties over K are those abelian varieties A with $D=\operatorname{End}^{\circ}(A)$ is a division algebra over its centre E, where E is a $C M$-field. Let \dot{E}^{+}be the maximal totally real subfield of E. If $[D: E]=f^{2}$ and $\left[E^{+}: \mathbb{Q}\right]=e$, then $e f^{2}$ divides $\operatorname{dim} A$ (see [6], Section 21). In particular, when $\operatorname{dim} A=p$ is a prime number, it is easy to see that $D=E$ and E is a $C M$-field of degree $2 p$ or an imaginary quadratic field. Existence of such type of abelian varieties over number fields except the case where $\operatorname{dim} A=2$ and E is an imaginary quadratic field was proved by Shimura in [12].

In this paper, we are interested in the ℓ-adic representations associated to the above prime dimensional type IV absolutely simple abelian varieties over number fields. For the case where E is a $C M$-field of $2 \operatorname{dim} A$, the \mathbb{Q}_{ℓ}-Lie algebra \mathcal{G}_{ℓ} of the image of the ℓ-adic representation is well-known to be equal to $\mathcal{M}_{\ell}=\mathcal{M} \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$, where \mathcal{M} is the \mathbb{Q}-Lie algebra of the Mumford-Tate group associated to A (thought of as over \mathbb{C}). This is due to Taniyama and Shimura in [11]. In the sequel, we shall study the remaining cases. Namely, $\operatorname{dim} A=p$ is an odd prime number and $\operatorname{End}^{\circ}(A)=E$ is an imaginary quadratic field.

[^0]Fix a K-polarisation on A once for all. Let ψ be the associated Riemann form on V_{l}. The induced Rosati involution on E is the complex conjugation. One has $\psi(\alpha v, w)=\psi(v, \bar{\alpha} w)$ for α in E and v, w in V_{ℓ}. The Tate module V_{l} is a free $E_{\ell}=E \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$-module of rank p. Let $G_{V_{\ell}}$ be the algebraic envelope of the ℓ-adic Lie group $G_{\ell}=\operatorname{Im} \rho_{\ell}$. By the theorem of Faltings ([4], Section 5, Satz 3), $G_{V_{\ell}}$ is a reductive algebraic group over \mathbb{Q}_{l}. Let $S_{V_{l}}$ be the connected component of the identity of $G_{V_{l}} \cap S L_{V_{l}}$ and let \mathcal{S}_{ℓ} be its Lie algebra. By replacing the base field K by a finite extension, we may assume that $\operatorname{End}_{\bar{K}}(A)=\operatorname{End}_{K}(A)$. Then $G_{V_{l}}\left(\mathbb{Q}_{l}\right)$ is contained in the commutant of E_{ℓ} in the symplectic similitudes $G S p\left(V_{\ell}, \psi\right)$. On the other hand, let α be a nonzero element in E such that $\bar{\alpha}=-\alpha$. It can be shown that there is a unique E_{ℓ}-Hermitian form ϕ on V_{ℓ} such that

$$
\psi(v, w)=\operatorname{Tr}_{E_{\ell / Q \ell}}(\alpha \phi(v, w)) \text { for all } v, w \text { in } V_{\ell} .
$$

The commutant of E_{ℓ} in the symplectic group $S_{p}\left(V_{\ell}, \psi\right)$ is easily seen to be the unitary group $U\left(V_{\ell / E_{\ell}}, \phi\right)$, which can be regarded as an algebraic group over \mathbb{Q}_{ℓ}.

By an ℓ-adic analogy to the method in [7,13], we shall prove that, for all prime dimensional absolutely simple abelian varieties of type IV over number fields, the reductive Lie algebra \mathcal{S}_{ℓ} is equal to the Lie algebra of $U\left(V_{\ell / E_{\ell}}, \phi\right)$. In particular, $\mathcal{G}_{\ell}=\mathcal{M} \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ as was conjectured in [5]. Consequently, the conjecture of Tate on algebraic cycles (see [15]) is true for all prime dimensional absolutely simple abelian varieties of type IV over number fields.

2. Preliminaries

2.1. The algebraic envelope $\boldsymbol{G}_{V_{l}}$.

Let A be an abelian variety defined over a number field K. For each prime number ℓ, let $\rho_{\ell}: G_{K} \rightarrow A u t\left(V_{\ell}\right)$ be the associated ℓ-adic representation. The image G_{ℓ} of ρ_{ℓ} is then an ℓ-adic Lie group. Let \mathcal{G}_{ℓ} be the Lie algebra of \mathcal{G}_{ℓ}. It is easily seen that \mathcal{G}_{ℓ} is invariant under finite extensions of the base field K.

Let $G_{V_{\ell}}$ be the algebraic envelope of G_{ℓ}, that is, $G_{V_{\ell}}$ is the smallest algebraic subgroup of $G L_{V_{l}}$ defined over \mathbb{Q}_{ℓ} such that G_{ℓ} is contained in $G_{V_{l}}\left(\mathbb{Q}_{\ell}\right)$. By the Theorems of Faltings ([4], Section 5, Satz 3, 4), \mathcal{G}_{ℓ} (respectively $G_{V_{l}}$) is reductive and $\operatorname{End}_{\mathcal{G}_{l}}\left(V_{\ell}\right)=\operatorname{End}_{K}(A) \otimes_{\mathbf{z}} \mathbb{Q}_{\ell}$ (respectively $\left.\operatorname{End}_{G_{V_{l}}(\mathbb{Q})}\left(V_{l}\right)=\operatorname{End}_{K}(A) \otimes_{\mathbf{Z}} \mathbb{Q}_{\ell}\right)$. On the other hand, Bogomolov ([1], Corollary 1) proved that \mathcal{G}_{ℓ} (respectively $\boldsymbol{G}_{V_{l}}$) contains the homotheties \mathbb{Q}_{ℓ} (respectively G_{m}). Replacing the base field K by a finite extension of K, we may assume that $G_{V_{l}}$ is connected (see [2], Section 3.3). Let $S_{V_{l}}$ be the connected component of the identity of $G_{V_{l}} \cap S L_{V_{l}}$. Then $S_{V_{l}}$ is again a connected reductive algebraic subgroup of $G L_{V_{l}}$ defined over \mathbb{Q}_{l}. Then $G_{V_{l}}=S_{V_{l}} \cdot G_{m}$. Let S_{ℓ} be the Lie algebra of $S_{V_{\ell}}$. Then \mathcal{S}_{ℓ} is a reductive Lie algebra over \mathbb{Q}_{ℓ} and $\mathcal{G}_{\ell}=\mathcal{S}_{\ell} \oplus \mathbb{Q}_{\ell}$.

2.2 The Hodge-Tate decomposition of V_{l}. (see [8, 10])

Let C_{ℓ} be the completion of a fixed algebraic closure of \mathbb{Q}_{ℓ} and let S_{ℓ} be the set of all finite places of K dividing ℓ. For each $v \in S_{\ell}$, let \bar{K}_{v} be the algebraic closure of K_{v} in C_{ℓ}. As a $\mathrm{Gal}\left(\bar{K}_{v} / K_{v}\right)$-module, it is well-known that V_{ℓ} is a Hodge-Tate module of weights 0 and 1 , each of them with multiplicity $\operatorname{dim} A$ (due to Tate and Raynaud, see [10], p.157). Denote the Hodge-Tate decomposition of V_{ℓ} by $V_{\ell} \otimes_{Q_{l}} C_{\ell}=$ $V_{C_{l}}(0) \oplus V_{C_{l}}(1)$. More precisely, $V_{C_{l}}(0)$ is the cotangent space (over C_{ℓ}) to the dual abelian variety A of A at its origin and $V_{C_{l}}(1)$ is the 1 -fold Tate twist of the tangent space (over C_{ℓ}) to A at its origin (see [16], Corollary 2 of Theorem 3).

For each $v \in S_{\ell}$, let \bar{v} be an extension of v to \bar{K}. Then the local Galois group $\mathrm{Gal}\left(\bar{K}_{v} / K_{v}\right)$ can be identified with the decomposition group $D_{\bar{v}}$ for \bar{v} in $\mathrm{Gal}(\bar{K} / K)$. Let $I_{\bar{v}}$ be the inertia subgroup of $D_{\bar{v}}$. Then the algebraic envelope of $\rho_{\ell}\left(I_{\bar{v}}\right)$ is an algebraic subgroup of $G V_{l}$. By a theorem of Sen ([8], Section 6), the one-parameter subgroup $h_{V_{l}}$ of $G L_{V_{l /} c_{\ell}}$ defined by

$$
h_{V_{l}}(c)(x)= \begin{cases}x, & \text { if } x \in V_{C_{l}}(0) \\ c x, & \text { if } x \in V_{C_{l}}(1)\end{cases}
$$

maps $G_{m / C_{\ell}}$ into the algebraic envelope of $\rho_{\ell}\left(I_{\bar{v}}\right)$ over C_{ℓ}. So $h_{V_{l}}$ is a one-parameter subgroup of $G_{V_{l}}$ defined over C_{ℓ}.

2.3. The unitary group $U\left(V_{\ell / E_{\ell}}, \phi\right)$.

For our purpose, we now assume that $E=\operatorname{End}^{\circ}(A)$ is an imaginary quadratic field. For a fixed K-polarisation on A, let ψ be the associated Riemann form on V_{l}. The induced Rosati involution on E is the complex conjugation. Let $E_{\ell}=E \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$. The Tate module V_{ℓ} is then a free E_{ℓ}-module of rank $\operatorname{dim} A$. By \mathbb{Q}_{ℓ}-linearity, the complex conjugation on E extends to an involution on the \mathbb{Q}_{ℓ}-algebra E_{ℓ}. We denote it again by - Then

$$
\psi(\alpha v, w)=\psi(v, \bar{\alpha} w) \text { for all } v, w \text { in } V_{\ell} ; \alpha \text { in } E_{\ell}
$$

Let $\operatorname{Tr}_{E_{l / \mathbb{Q}}}$ be the regular trace of E_{ℓ} over \mathbb{Q}_{ℓ}. The following results are an analogy of Lemmas 4.6, 4.7 in [3].

Lemma 2.1. Let V and W be free E_{ℓ}-modules of finite rank and let $\psi: V \times$ $W \rightarrow \mathbb{Q}_{\ell}$ be a \mathbb{Q}_{ℓ}-bilinear form such that $\psi(e v, w)=\psi(v, e w)$ for all e in E_{ℓ}, v in V, and w in W. Then there exists a unique E_{ℓ}-bilinear form ϕ such that

$$
\psi(v, w)=\operatorname{Tr}_{E_{l / Q_{\ell}}}(\phi(v, w)) \text { for all } v \text { in } V, w \text { in } W .
$$

Proof: ψ defines a \mathbb{Q}_{ℓ}-linear map $V \otimes_{E_{l}} W \rightarrow \mathbb{Q}_{\ell}$, that is, an element of the \mathbb{Q}_{ℓ}-linear dual of $V \otimes_{E_{\ell}} W$. But $\operatorname{Tr}_{E_{\ell / \mathbb{Q}_{\ell}}}$ identifies the \mathbb{Q}_{ℓ}-linear dual of $V \otimes_{E_{\ell}} W$ with the E_{ℓ}-linear dual, and ψ with ϕ.

Lemma 2.2. Let $\alpha \in E^{*}$ be such that $\bar{\alpha}=-\alpha$. Then there exists a unique E_{ℓ}-Hermitian form ϕ on V_{ℓ} such that $\psi(v, w)=\operatorname{Tr}_{E_{\ell / Q_{\ell}}}(\alpha \phi(v, w))$ for all v, w in V_{ℓ}.

Proof: Take V to be V_{ℓ} and W to be V_{ℓ} with E_{ℓ} acting through the involution -. Then, by Lemma 2.1, there exists a unique E_{ℓ}-sesquilinear form ϕ_{1} on V_{l} such that $\psi(v, w)=\operatorname{Tr}_{E_{\ell / \mathbb{C}_{\ell}}}\left(\phi_{1}(v, w)\right)$.

Let $\phi=\alpha^{-1} \phi_{1}$ be such that $\psi(v, w)=\operatorname{Tr}_{E_{\ell / \mathbb{Q}_{\ell}}}(\alpha \phi(v, w))$. Since ϕ is sesquilinear, it remains to show that $\phi(v, w)=\overline{\phi(w, v)}$.

By $\psi(v, w)=-\psi(w, v)$ for all v, w in $V_{\ell}, \operatorname{Tr}_{E_{\ell / \mathbb{Q}_{\ell}}}(\alpha \phi(v, w))=$ $-\operatorname{Tr}_{E_{l / \mathbb{Q}_{\ell}}}(\alpha \phi(w, v))=\operatorname{Tr}_{E_{l / \mathbb{Q}_{\ell}}}(\bar{\alpha} \phi(w, v))$.

Replacing v by $e v$ with e in E_{ℓ}, one finds that $\operatorname{Tr}_{E_{\ell / \mathbb{Q}}}(\alpha e \phi(v, w))=$ $\operatorname{Tr}_{E_{l / \mathbb{Q}_{\ell}}}(\overline{\alpha e} \phi(w, v))$. On the other hand, $\operatorname{Tr}_{E_{\ell / \mathbb{Q}_{\ell}}}(\alpha e \phi(v, w))=\operatorname{Tr}_{E_{\ell / \mathbb{Q}_{\ell}}}(\overline{\alpha e} \overline{\phi(v, w)})$ and as $\overline{\alpha e}$ is an arbitrary element of E_{ℓ}, the non-degeneracy of the trace implies that $\overline{\phi(v, w)}=\phi(w, v)$. The uniqueness of ϕ is obvious from Lemma 2.1.

Lemma 2.3. The commutant of E_{ℓ} in $S_{p}\left(V_{\ell}, \psi\right)$ is equal to $U\left(V_{\ell / E_{\ell}}, \phi\right)$.
Proof: Let $T \in \operatorname{Sp}\left(V_{\ell}, \psi\right)$ be such that $T \alpha=\alpha T$ for all α in E_{ℓ}. Then T can be thought of as an element in $\mathrm{Aut}_{E_{\ell}}\left(V_{\ell}\right)$. It is easy to check that the map $(v, w) \mapsto \phi(T v, T w)$ is an E_{ℓ}-Hermitian form.

On the other hand, $\psi(T v, T w)=\psi(v, w)$ is equivalent to $\operatorname{Tr}_{E_{l / \mathbb{Q}_{\ell}}}(\alpha \phi(T v, T w))=$ $\operatorname{Tr}_{E_{\ell / Q \ell}}(\alpha \phi(v, w))$. By the uniqueness of ϕ, this amounts to saying that $\phi(T v, T w)=$ $\phi(v, w)$.

Remark. For those ℓ which remain prime in $E, U\left(V_{\ell / E_{\ell}}, \phi\right)$ is an algebraic group over the field E_{ℓ}. By Weil's restriction of scalars, it can be thought of as a connected algebraic group over \mathbb{Q}_{ℓ}. For those ℓ such that $E_{\ell}=\mathbb{Q}_{\ell} \oplus \mathbb{Q}_{\ell}$, although $U\left(V_{\ell / E_{\ell}}, \phi\right)$ is an algebraic group over \mathbb{Q}_{ℓ}, it doesn't seem to be obvious that $U\left(V_{\ell / E_{\ell}}, \phi\right)$ is a connected algebraic group.

3. Proof of the main result

In this section, let A be an abelian variety defined over a number field K where $\operatorname{dim} A=p$ is an odd prime number and $E=\operatorname{End}^{\circ}(A)$ is an imaginary quadratic field. For simplicity, we shall assume the following conditions (by extending the base field K):
(i) $\operatorname{End}_{K}(A)=\operatorname{End}_{\bar{K}}(A)$.
(ii) $E \subseteq K \subseteq \bar{K}$ (identifying E as a subfield of \bar{K}).
(iii) The algebraic envelope $G_{V_{l}}$ is connected.

Fix a non-zero element α in E such that $\bar{\alpha}=-\alpha$. Then as in Section 2.3, let $U\left(V_{\ell E_{\ell}}, \phi\right)$ be the unitary group with respect to the E_{ℓ}-Hermitian form ϕ associated with the Riemann form ψ on the free E_{ℓ}-module V_{ℓ} of rank p.

We now prove the main theorem.
Theorem 3.1. The reductive Lie algebra \mathcal{S}_{ℓ} is equal to the Lie algebra of $U\left(V_{\ell / E_{\ell}}, \phi\right)$.

Proof: By Lemma 2.3, it is clear that \mathcal{S}_{ℓ} is contained in $\operatorname{Lie}\left(U\left(V_{\ell / E_{\ell}}, \phi\right)\right)$. On the other hand, it is easily seen that $\operatorname{dim}_{\mathbb{Q}_{\ell}} \operatorname{Lie}\left(U\left(V_{\ell / E_{l}}, \phi\right)\right)=\boldsymbol{p}^{2}$. It suffices to show that $\operatorname{dim} S_{V_{\ell}}$ is at least $p^{2}-1$ and the centre of $G_{V_{\ell}}$ is at least of dimension 2.

Now, we divide the rest of the proof into the following steps:
STEP 1. Decomposition of V_{l} by the action of E_{l}.
Let $\bar{V}_{\ell}=V_{\ell} \otimes_{\mathbb{Q}_{l}} C_{\ell}, \bar{E}_{\ell}=E_{\ell} \otimes_{\mathbb{Q}_{l}} C_{\ell}=E \otimes_{\mathbb{Q}} C_{\ell}$, and let $\{\sigma, \tau\}$ be the two embeddings of E into C_{ℓ}. Corresponding to σ, τ, one has an $\bar{E}_{\ell}\left[G_{V_{l}}\right]$-module decomposition $\bar{V}_{\ell}=X \oplus Y$. Namely, $X=\left\{v \in \bar{V}_{\ell} \mid e \cdot v=\sigma(e) v\right.$ for all e in $\left.E\right\}$ and $Y=\left\{v \in \bar{V}_{\ell} \mid e \cdot v=\tau(e) v\right.$ for all e in $\left.E\right\}$. Since V_{ℓ} is a free E_{ℓ}-module, both of X and Y are p-dimensional C_{ℓ}-vector spaces.

Let H be the image of the representation $\rho_{\ell}: G_{V_{\ell / c_{\ell}}} \rightarrow G L_{X}$ given by the action of $G_{V_{l / C_{l}}}$ on X.

Lemma 3.1.1. H is a reductive connected algebraic subgroup of $G L_{X}$ and $\operatorname{End}_{H}(X)=C_{\ell}$. In particular X is an irreducible H-module.

Proof: By the theorems of Faltings ([4], Section 5, Satz 3, 4) $G_{V_{\ell / c_{\ell}}}$ acts on \bar{V}_{ℓ} and hence on X semisimply. Moreover, one has $\operatorname{End}_{G_{V_{\ell}}\left(Q_{\ell}\right)}\left(V_{\ell}\right)=E_{\ell}$. By $E_{\ell}=$ $C_{\ell} \times C_{\ell}$, one concludes that $\operatorname{End}_{H}(X)=C_{\ell}$.

Step 2. The Hodge-Tate decomposition of V_{l}.
As in Section 2.2, \bar{V}_{ℓ} has a Hodge-Tate decomposition $\bar{V}_{\ell}=V_{C_{l}}(0) \oplus V_{C_{l}}(1)$ with $\operatorname{dim} V_{C_{l}}(0)=\operatorname{dim} V_{C_{l}}(1)=p$. Here $V_{C_{l}}(0)$ is the cotangent space (over C_{ℓ}) to the dual abelian variety $A_{/ C_{l}}$ at its origin. Let $M=V_{C_{l}}(0)$ and $N=V_{C_{l}}(1)$. From condition (ii) of our assumption, both M, N are \bar{E}_{ℓ}-modules. Accordingly, $M=M_{\sigma} \oplus M_{\tau}$, where E acts via σ on the former space and via τ on the latter. Similarly, one has $N=N_{\sigma} \oplus N_{\tau}$. Let $\operatorname{dim} M_{\sigma}=n_{\sigma}$ and $\operatorname{dim} M_{\tau}=n_{\tau}$. Then $n_{\sigma}+n_{\tau}=p$, where $p \geqslant 3$.

Fix an isomorphism between C_{ℓ} and \mathbb{C}. Consider the dual module of the $\bar{E}_{\ell^{-}}$ module $\operatorname{Lie}\left(A_{/ C_{\ell}}\right)$ (that is the tangent space of $A_{/ C_{\ell}}$ at its origin). By a result of Shimura ([12], Theorem 5), one concludes that both n_{σ} and n_{τ} are positive.

Lemma 3.1.2. $X=M_{\sigma} \oplus N_{\sigma}$ and $\operatorname{dim} M_{\sigma}, \operatorname{dim} N_{\sigma}$ are relatively prime.
Proof: $\bar{V}_{\ell}=X \oplus Y=\left(M_{\sigma} \oplus M_{\tau}\right) \oplus\left(N_{\sigma} \oplus N_{\tau}\right)$. One sees easily that $X=$ $(X \cap M) \oplus(X \cap N)=M_{\sigma} \oplus N_{\sigma}$. In particular, $\operatorname{dim} N_{\sigma}=n_{\tau}$. Since $n_{\sigma}+n_{\tau}=p$ (odd prime), so n_{σ}, n_{r} are relatively prime.

Note that Lemmas 3.1.1, 3.1.2 verify the hypotheses of a theorem of Serre ([9], Theorem 3). So we conclude that $H=G L_{X}$. In particular, ρ_{ℓ} maps the commutator subgroup of $G_{V_{l / C_{l}}}$ onto $S L_{X}$. This shows that $\operatorname{dim} S_{V_{l}}$ is at least $p^{2}-1$.
Step 3. The 2-dimensional C_{ℓ}-torus $T_{E_{\ell / C_{\ell}}} \simeq G_{m_{/ c_{\ell}}} \times G_{m / c_{\ell}}$. Let $T_{E_{\ell / C_{\ell}}} \simeq$ $G_{m / C_{l}} \times G_{m_{/} C_{l}}$ be the 2-dimensional torus \bar{E}_{ℓ}^{*} over C_{ℓ}. Recall that $G_{V_{l}}\left(C_{\ell}\right)$ is contained in $\operatorname{Aut}_{\bar{E}_{\ell}}\left(\bar{V}_{\ell}\right)=G L_{X} \oplus G L_{Y}$. Let $\theta: G_{V_{\ell}}\left(C_{\ell}\right) \subseteq \operatorname{Aut}_{\bar{E}_{\ell}}\left(V_{\ell}\right) \xrightarrow{\text { det }} T_{E_{\ell / C_{\ell}}}$ be the determinant map. Bogomolov ([1], Corollary 1) asserts that $G_{V_{\ell / C_{\ell}}}$ contains the homotheties $G_{m / C_{\ell}}$. So, the image of θ contains the diagonal of $G_{m / C_{\ell}} \times G_{m / C_{\ell}}$. On the other hand, the map $\theta \circ h_{V_{l}}: G_{m / C_{\ell}} \stackrel{h_{V_{l}}}{\mapsto} G_{V_{l / c_{l}}} \xrightarrow{\theta} T_{E_{l / C_{l}}}$ gives $\left(\theta \circ h_{V_{l}}\right)(c)=\left(c^{n_{r}}, c^{n_{\sigma}}\right)$ for all c in $G_{m_{/ c_{l}}}$. Since $n_{\sigma} \neq n_{\tau}$, the image of $\theta \circ h_{V_{l}}$ is distinct from the diagonal of $G_{m_{/ C_{l}}} \times G_{m_{/ C_{l}}}$. It follows that θ is surjective.

So the 2-dimensional torus $T_{E_{\ell / C_{\ell}}}$ is a quotient of $G_{V_{\ell / C_{\ell}}}$. We conclude that the centre of $G_{V_{l}}$ has dimension at least 2.

This completes the proof of Theorem 3.1.
Corollary 3.2. For all prime dimensional absolutely simple abelian varieties of type IV over number fields,

$$
\mathcal{G}_{\ell}=\mathcal{M} \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell} .
$$

Proof: This follows immediately from Theorem 3.1, Theorem 2 in [7], and the result of Taniyama and Shimura in [11]

Corollary 3.3. The Tate conjecture is true for all prime dimensional absolutely simple abelian varieties of type IV over number fields.

Proof: After Faltings proved his theorems ([4], Section 5, Satz 3, Satz 4), it is well-known that if $\mathcal{G}_{\ell}=\mathcal{M} \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$, then the conjectures of Hodge, Tate on algebraic cycles (see $[7,15]$) over $A(\mathbb{C}), A$ respectively are equivalent. On the other hand, Hodge's conjecture for all prime dimensional absolutely simple abelian varieties of type IV was proved in [14].

Concluding Remark. Let A be a prime dimensional absolutely simple abelian variety over a number field K. According to Theorem 2 of Section 21 in [6], one has the following possibilities:

Type I. $\quad \operatorname{dim} A$ is a prime number and $\operatorname{End}_{\bar{K}}(A)=\mathbb{Z}$.

Type II. $\operatorname{dim} A=2$ and $\operatorname{End}^{\circ}(A)$ is an indefinite quaternion algebra over \mathbb{Q}.
Type III. $\operatorname{dim} A=2$ and $E^{\circ}(A)$ is a definite quaternion algebra over \mathbb{Q}.
Type IV. A is as in Section 1.
In his 1984-85 course at Collège de France, J-P. Serre has proved $\mathcal{G}_{\ell} \simeq s p\left(2 d, \mathbb{Q}_{\ell}\right) \oplus$ \mathbb{Q}_{ℓ}, where $d=\operatorname{dim} A$ is odd and $\operatorname{End}_{\bar{K}}(A)=\mathbb{Z}$. For $\operatorname{dim} A=2$ and A of type II, $\mathcal{G}_{\ell}=\mathcal{M} \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ is well-known (see [2], Corollary 4.2). On the other hand, according to a result of Shimura ([12], Theorem 5), the above Type III abelian variety of dimension 2 doesn't exist. Taking all of these into account, Corollaries 3.2, 3.3 are true for all prime dimensional absolutely simple abelian varieties over number fields.

References

[1] F.A. Bogomolov, 'Sur l'algébricité des représentations ℓ-adiques', C.R. Acad. Sc. Paris, 290 (1980), 701-703.
[2] W. Chi, 'On the ℓ-adic representations attached to some absolutely simple abelian varieties of type II', J. Fac. Sci. Univ. Tokyo. Sect. IA Math. (1990) (to appear).
[3] P. Deligne, Hodge cycles on Abelian varieties (notes by J.S. Milne): Lecture Notes in Math. 900, pp. 9-100 (Springer-Verlag, Berlin, Heidelberg, New York, 1982).
[4] G. Faltings, 'Endlichkeitssätze fur abelsche varietäten uber zahlkörpern', Invent. Math. 73 (1983), 349-366.
[5] D. Mumford, 'Families of abelian varieties', in Proc. of Symposia in Pure Math. IX, pp. 347-351 (A.M.S., 1966).
[6] D. Mumford, Abelian varieties (Oxford University Press, 1974).
[7] K. Ribet, 'Hodge classes on certain types of abelian varieties', Amer. J. Math. 105 (1983), 523-538.
[8] S. Sen, 'Lie algebras of Galois groups arising from Hodge-Tate modules', Ann. of Math. 97 (1973), 160-170.
[9] J-P. Serre, 'Sur les groupes de Galois attachés aux groupes p-divisibles', in Proceedings of a Conference on Local Fields, pp. 118-131 (Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[10] J-P. Serre, 'Groupes algébriques associés aux modules de Hodge-Tate', Asté'isque 65 (1979), 155-188.
[11] G. Shimura and Y. Taniyama, 'Complex multiplication of abelian varieties and its applications to number theory', Publ. Math. Soc. Japan 6 (1961).
[12] G. Shimura, 'On analytic families of polarized abelian varieties and automorphic functions', Ann. of Math. 78 (1963), 149-192.
[13] S.G. Tanke'ev, 'Algebraic cycles on simple 5-dimensional abelian varieties', Math. USSR Izv. 19 (1982), 95-123.
[14] S.G. Tanke'ev, 'Cycles on simple abelian varieties of prime dimension', Math. USSR Izv. 20 (1983), 157-171.
[15] J. Tate, Algebraic cycles and poles of zeta functions, Arithmetical algebraic geometry, pp. 93-110 (Harper and Row, New York, 1965).
[16] J. Tate, 'p-divisible groups', in Proc. of a Conference on Local Fields, pp. 158-183 (Springer-Verlag, Berlin, Heidelberg, New York, 1967).

[^1]
[^0]: Received 7 August 1990
 Supported by N.S.C., R.O.C.

[^1]: Department of Mathematics National Tsing Hua University
 Hsinchu, Taiwan 30043
 Republic of China

