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1. Introduction

In 1902 William Burnside asked the following question, which later became known as the
Burnside Problem: does a finitely generated group whose elements all have finite order
need to be finite? An analogous problem for algebras is the Kurosh Problem: if A is a
finitely generated algebra over a field K, and every element of A is algebraic over K,
does it follow that A is finite dimensional over K? A special case of the Kurosh Problem,
sometimes known as Levitski’s Problem, concerns nil algebras: if A is a finitely generated
algebra over a field K and every element of A is nilpotent, is A finite dimensional over K?

The seminal works of Golod and Shafarevich [1,2] in 1964 showed that the answer to
these famous problems was negative. Their method entailed the construction of a finitely
generated nil algebra A which was infinite dimensional; from this algebra the counter-
example to the Burnside Problem arises by considering a group whose elements are of
the form 1 + n, for a particular nil algebra A and some n ∈ A.

The groups and the algebras constructed by the Golod–Shafarevich method have expo-
nential growth. Gromov [3] proved in 1981 that, under the assumption that the group has
polynomial growth, the answer to the Burnside Problem is positive. In fact, he proved
that a finitely generated group with polynomial growth has a nilpotent normal subgroup
of finite index. As a consequence, if a finitely generated group has polynomial growth
and each element has finite order, then the group is finite.
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Golod and Shafarevich’s work, together with Gromov’s result, naturally raises the
question as to whether a finitely generated nil algebra with polynomial growth is of neces-
sity finite dimensional (see [9]; L. W. Small, personal communication, February 2004).
Surprisingly, this is not the case; in [5] Lenagan and Smoktunowicz constructed, over
any countable field, an infinite-dimensional finitely generated nil algebra with Gelfand–
Kirillov dimension at most 20. This result raises the following question: what is the
minimal rate of growth for a finitely generated infinite-dimensional nil algebra? In this
paper, we make progress on this latter question; by refining the methods of [5], we con-
struct, over any countable field, an infinite-dimensional finitely generated nil algebra with
Gelfand–Kirillov dimension at most 3. (In fact, our algebra requires only two generators.)

2. Notation

In what follows, K will be a countable field and A will be the free K-algebra in two
non-commuting indeterminates x and y. The set of monomials in x, y is denoted by M ,
and M(n) denotes the set of monomials of degree n for each n � 0. Thus, M(0) = {1}
and for n � 1 the elements in M(n) are of the form x1 · · ·xn, where xi ∈ {x, y}. The
K-subspace of A spanned by M(n) will be denoted by H(n) and elements of H(n) will
be called homogenous polynomials of degree n. The degree, deg f , of any f ∈ A, is the
least d � 0 such that f ∈ H(0) + · · · + H(d). Any f ∈ A can be uniquely presented
in the form f = f0 + f1 + · · · + fd, where each fi ∈ H(i). The elements fi are the
homogeneous components of f . A right ideal I of A is homogeneous if for every f ∈ I

all homogeneous components of f are in I. If V is a linear space over K, then dimK V

denotes the dimension of V over K. The Gelfand–Kirillov dimension of an algebra R is
denoted by GKdim(R). For elementary properties of Gelfand–Kirillov dimension we refer
the reader to [4].

For any real number k, define �k� to be the largest integer not exceeding k.
Throughout the paper, Ā will denote the subalgebra of A consisting of polynomials

with constant term equal to 0.
Assume that all logarithms in this paper are of base 2.
The aim of this paper is to present an algebra with the desired properties in the form

Ā/E for a suitable ideal E. Roughly speaking, we construct a sequence of linear spaces
U(2n), and then set E to be the largest subset such that, for all n � 0, AEA ∩ H(2n) ⊆
U(2n). As the sets U(2n) will be very large in dimension (dimK U(2n)+2 = dimK H(2n)
for most n) and behave like an ideal (that is, H(2n)U(2n) + U(2n)H(2n) ⊆ U(2n+1)),
the ideal E will be very large and hence GKdim Ā/E will be small. To guarantee that
the algebra Ā/E is nil we allow the sets U(2n) to have a bigger co-dimension at some
sparse places.

3. Enumerating elements

We start with the following lemma.

Lemma 3.1. Let K be a countable field and let Ā be as above. Then there exists
a subset Z ⊆ N, with all i ∈ Z being greater than or equal to 5, and an enumeration
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{fi}i∈Z of Ā such that �log i� > 66 deg fi . Moreover, the set Z has the following property:
if i > j and i, j ∈ Z, then i > 2222j

.

Proof. As Ā is a finitely generated algebra over a countable field, it is itself countable.
Let Ā = {g1, g2, . . . } be an arbitrary enumeration. We now inductively define an increas-
ing function θ : N → N as follows: first set θ(1) := min{i ∈ N | i > 4, �log i� > 66 deg g1}.

As an inductive hypothesis, suppose that θ is defined over {1, . . . , n} such that
�log(θ(i))� > 66 deg gi for each i � n. Then set

θ(n + 1) = min
{

s ∈ N | �log s� > 66 deg gn+1 , s > 2222θ(n) }
.

If we now rename the elements of Ā by setting fθ(s) = gs, then we have a listing of the
elements of Ā with the required properties. �

Theorem 3.2. Let Z and {fi}i∈Z be as in Lemma 3.1. Let i ∈ Z and let I be the
two-sided ideal generated by f10wi

i , where wi = 4 · 22i−�log i�. There is a linear K-space
Fi ⊆ H(22i−�log i�) such that I ⊆

∑∞
k=0 H(k(22i−�log i�))FiA and dimK(Fi) < 22i − 2.

Proof. Note that 66 deg(fi) < �log i� by Lemma 3.1. Apply [7, Theorem 2] with f = fi,
r = 22i−�log i�, w = wi = 4 · 22i−�log i� and put Fi = spanK F , where F is the correspond-
ing set F of the conclusion of Lemma 3.1. Note that these choices of f , r, w satisfy the
hypotheses of [7, Theorem 2]. Although the algebra A in [7, Theorem 2] is generated by
three elements rather than two, this does not influence the proof. �

4. Definition of U(2n) and V (2n)

In this section we shall define the sets U(2n), for n = 1, 2, . . . , mentioned in § 2.
For each i ∈ Z, set Si = [2i − i − �log i�, 2i − �log i� − 1] and set S =

⋃
i∈Z Si. Note

that the Si are pairwise disjoint.

Theorem 4.1. Let Z and Fi be as in Theorem 3.2. There are K-linear subspaces
U(2n) and V (2n) of H(2n) such that, for all n > 0:

(i) dimK V (2n) = 2 if n /∈ S;

(ii) dimK V (22i−i−�log(i)�+j) = 22j

for all 1 < i ∈ Z and all 0 � j � i − 1;

(iii) V (2n) is spanned by monomials;

(iv) Fi ⊆ U(22i−�log(i)�) for every i ∈ Z;

(v) V (2n) ⊕ U(2n) = H(2n);

(vi) H(2n)U(2n) + U(2n)H(2n) ⊆ U(2n+1);

(vii) V (2n+1) ⊆ V (2n)V (2n);

(viii) if n /∈ S, then there are monomials m1, m2 ∈ V (2n) such that V (2n) = Km1+Km2

and m2H(2n) ⊆ U(2n+1).
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Proof. The proof of properties (i)–(vii) is very similar to the proof of [5, Theorem 3],
and the proof of property (viii) is similar to the proof of [8, Theorem 10(8)]. We construct
the sets U(2n) and V (2n) inductively. Set V (20) = Kx + Ky and U(20) = 0. Assume
that we have defined V (2m) and U(2m) for m � n in such a way that conditions (i)–(v)
hold for all m � n and conditions (vi)–(viii) hold for all m < n. Then we define V (2n+1)
and U(2n+1) inductively, in the following way. Consider the following three cases.

Case 1 (n ∈ S and n + 1 ∈ S). If n ∈ S and n + 1 ∈ S, define U(2n+1) =
H(2n)U(2n) + U(2n)H(2n) and V (2n+1) = V (2n)V (2n). Conditions (vi) and (vii) cer-
tainly hold. If, by induction, conditions (v) and (iii) hold for U(2n) and V (2n), they hold
for U(2n+1) and V (2n+1) as well. Moreover, dimK V (2n+1) = (dimK V (2n))2, inductively
satisfying condition (ii).

Case 2 (n /∈ S). Suppose that n /∈ S. Then dimK V (2n) = 2, and V (2n) is generated
by monomials, by the inductive hypothesis. Let m1, m2 be the distinct monomials that
generate V (2n). Then

V (2n)V (2n) = Km1m1 + Km1m2 + Km2m1 + Km2m2.

Set V (2n+1) = Km1m1 + Km1m2, so that conditions (i), (iii), (vii) and (viii) hold.
Set

U(2n+1) = H(2n)U(2n) + U(2n)H(2n) + m2V (2n).

Using this definition, condition (vi) holds and

H(2n+1) = H(2n)H(2n)

= U(2n)U(2n) ⊕ U(2n)V (2n) ⊕ V (2n)U(2n) ⊕ m1V (2n) ⊕ m2V (2n)

= U(2n+1) ⊕ V (2n+1).

Thus, condition (v) holds.

Case 3 (n ∈ S and n + 1 /∈ S). Suppose that n ∈ S while n + 1 /∈ S. Then
n = 2i − �log(i)� − 1 for some i ∈ Z. By induction on condition (ii),

dimK V (2n) = dimK V (22i−i−�log(i)�+i−1) = 22i−1

and

dimK V (2n)V (2n) = 22i−1
22i−1

= 22i

.

By induction on condition (v),

H(2n+1) = U(2n)U(2n) ⊕ U(2n)V (2n) ⊕ V (2n)U(2n) ⊕ V (2n)V (2n).

We know that Fi has a basis {f1, . . . , fs} for some f1, . . . , fs ∈ H(22i − �log(i)�) and
s < 22i − 2. Each fj can be uniquely decomposed into f̄j + gj with f̄j ∈ V (2n)V (2n)
and gj ∈ V (2n)U(2n) + U(2n)U(2n) + U(2n)V (2n). Let P be the subspace spanned by
f̄1, . . . , f̄s.
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Since dimK P � s = dimFi < 22i − 2 < dimK V (2n)V (2n) − 2, there must exist at
least two monomials m1, m2 ∈ V (2n)V (2n) such that the space Km1 + Km2 is disjoint
from P . Define V (2n+1) as this space; this satisfies conditions (i), (iii) and (vii).

As P is disjoint from Km1 + Km2, there must exist a space Q ⊇ P such that
V (2n)V (2n) = Q ⊕ (Km1, Km2). Set

U(2n+1) = U(2n)U(2n) + U(2n)V (2n) + V (2n)U(2n) + Q.

This immediately satisfies conditions (v) and (vi). Since each polynomial fi = gi + f̄i ∈
U(2n+1), it satisfies condition (iv) as well. �

Before continuing, a helpful lemma concerning U(2n) should be mentioned.

Lemma 4.2. For any m � n, and any 0 � k < 2m−n,

H(k2n)U(2n)H((2m−n − k − 1)2n) ⊆ U(2m).

Proof. If m = n, then k = 0 and the equation is trivially true. Using induction,
assume the theorem holds true for some m � n. When 0 � k < 2m−n,

H(k2n)U(2n)H((2m+1−n − k − 1)2n)

= H(k2n)U(2n)H((2m−n − k − 1)2n)H(2m) ⊆ U(2m)H(2m) ⊆ U(2m+1),

and when 2m−n � k < 2m+1−n,

H(k2n)U(2n)H((2m+1−n − k − 1)2n)

= H(2m)H((k − 2m−n)2n)U(2n)H((2m+1−n − k − 1)2n)

⊆ H(2m)U(2m) ⊆ U(2m+1),

as required. �

Another way of stating Lemma 4.2 is that, given any product of the form

H(i2n)U(2n)H(j2n),

if the sum of the three arguments i2n + 2n + j2n is a power of 2, then

H(i2n)U(2n)H(j2n) ⊆ U(i2n + 2n + j2n).

5. A finitely generated infinite-dimensional nil algebra

A graded subspace E ⊆ Ā is formed by defining its homogeneous subspace E(n) to be
the set of elements r ∈ H(n) such that if 2m � n < 2m+1, then, for all 0 � j � 2m+2 −n,

H(j)rH(2m+2 − j − n) ⊆ U(2m+1)H(2m+1) + H(2m+1)U(2m+1).

Now, define E := E(1) + E(2) + · · · .
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Theorem 5.1. The subset E is an ideal in Ā. Moreover, Ā/E is a nil algebra and is
infinite dimensional over K.

Proof. The set E is shown to be an ideal in [5, Theorem 5], and Theorems 14 and 15
of [5] prove that Ā/E is both nil and infinite dimensional over K. No changes to these
proofs need to be made to apply to our example, and so the proofs are not repeated
here. �

6. The subspaces R, S, Q, W

The key to computing the Gelfand–Kirillov dimension of the algebra Ā/E is to use a
collection of subspaces R, S, Q, W with the following properties: if n > 0, 2m � n <

2m+1, then

R(n)H(2m+1 − n) ⊆ U(2m+1), H(2m+1 − n)S(n) ⊆ U(2m+1),

H(n) = R(n) ⊕ Q(n), H(n) = S(n) ⊕ W (n).

It then follows from Lemma 4.2 that, for any k > m, R(n)H(2k − n) ⊆ U(2k) and
H(2k − n)S(n) ⊆ U(2k).

The existence of suitable such subspaces is established in the next section. Once this
has been achieved, the following theorem is available to help calculate the Gelfand–
Kirillov dimension of Ā/E. (In this theorem we take R(0) = S(0) = U(0) = 0 and
V (0) = Q(0) = W (0) = K.)

Theorem 6.1. For every n ∈ N,

n⋂
k=0

S(n − k)H(k) + H(n − k)R(k) ⊆ E(n).

Moreover,

dim
(

H(n)
E(n)

)
�

n∑
k=0

dim(W (n − k)) dim(Q(k)).

Proof. The proof of the first claim is very similar to the proof of [5, Theorem 9] and
so is omitted. Notice that

H(n) = (S(n − k) ⊕ W (n − k))(R(k) ⊕ Q(k))

= (S(n − k)H(k) + H(n − k)R(k)) ⊕ W (n − k)Q(k).

Therefore,

dim E(n) � dim
( n⋂

k=0

(S(n − k)H(k) + H(n − k)R(k))
)

� dim(H(n)) −
n∑

k=0

dim(W (n − k)Q(k))
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and so

dim
(

H(n)
E(n)

)
�

n∑
k=0

dim(W (n − k)Q(k)),

as required. �

7. A sufficiently small Q and W

In order to define R, S, Q and W , begin with R(1) = S(1) = U(1) and Q(1) = W (1) =
V (1). Given any natural number j with 2m � j < 2m+1, define

R(j) = {r ∈ H(j) : rH(2m+1 − j) ⊆ U(2m+1)}

and

S(j) = {r ∈ H(j) : H(2m+1 − j)r ⊆ U(2m+1)}.

Theorem 7.1. Let j be a natural number. Write j in binary form as

j = 2p0 + 2p1 + · · · + 2pn

with 0 � p0 < p1 < · · · < pn. Then there is a K-linear space W (j) ⊆ H(j) such that
W (j) ⊕ S(j) = H(j) and

W (j) ⊆ V (2p0) · · ·V (2pn) =
n∏

i=0

V (2pi).

Proof. By Theorem 4.1 (v), H(2pi) = U(2pi) ⊕ V (2pi) for i = 1, 2, . . . , n. Hence,

H(j) =
n∏

i=0

(U(2pi) ⊕ V (2pi)),

and

H(j) =
( n∑

i=0

H(2p0 + · · · + 2pi−1)U(2pi)H(2pi+1 + · · · + 2pn)
)

⊕
n∏

i=0

V (2pi).

Define Tpi(j) as H(2p0 + · · · + 2pi−1)U(2pi)H(2pi+1 + · · · + 2pn), so that

H(j) =
( n∑

i=0

Tpi(j)
)

⊕
n∏

i=0

V (2pi).

Now, from the definition of Tpi(j), we obtain

H(2pn+1 − j)Tpi(j)

= H(2pn+1 − (2pi + · · · + 2pn))U(2pi)H(2pi+1 + · · · + 2pn)

= H((2pn+1−pi − (20 + · · · + 2pn−pi))2pi)U(2pi)H((2pi+1−pi + · · · + 2pn−pi)2pi).
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It follows from Lemma 4.2 that H(2pn+1 − j)Tpi
(j) ⊆ U(2pn+1); therefore, each Tpi

(j) ⊆
S(j). Thus, there must exist some W (j) ⊆

∏n
i=0 V (2pi) such that S(j) ⊕ W (j) = H(j).

To see this more clearly, choose a basis of (
∏n

i=0 V (2pi) + S(j))/S(j), pull this basis back
to elements in

∏n
i=0 V (2pi) and let W (j) be the subspace generated by that basis. �

Next, the sets N(2i) are defined in a similar way to the procedure used in [8].
Let i /∈ S. Then, by Theorem 4.1 (viii), each V (2i) is generated by two monomials, m1,i

and m2,i, with m2,iH(2i) ⊆ U(2i+1). Define N(2i) = Km1,i and M(2i) = U(2i)+Km2,i.
In the case where i ∈ S, simply set N(2i) = V (2i), M(2i) = U(2i). Observe that, for
every i, N(2i) ⊕ M(2i) = H(2i). These sets will be used to construct Q(n).

Lemma 7.2. For any integer 0 � m < 2k−1,

H(m2n+1)M(2n)H((2k − 2m − 1)2n) ⊆ U(2n+k).

Proof. By definition, M(2n)H(2n) ⊆ U(2n+1). Using this fact and Lemma 4.2,

H(m2n+1)M(2n)H((2k − 2m − 1)2n) ⊆ H(m2n+1)U(2n+1)H((2k−1 − m − 1)2n+1)

⊆ U(2n+k),

as required. �

Theorem 7.3. Let j ∈ N. Write j in binary form as

j = 2p0 + 2p1 + · · · + 2pn

with 0 � p0 < p1 < · · · < pn, and suppose n 	= 0 (that is, j is not a power of 2). Then
there is a linear space Q(j) ⊆ H(j) such that Q(j) ⊕ R(j) = H(j) and

Q(j) ⊆ N(2pn)N(2pn−1) · · ·N(2p0) =
n∏

i=0

N(2pn−i) ⊆
n∏

i=0

V (2pn−i).

Proof. This proof is very similar to that for Theorem 7.1. By definition, H(2pi) =
N(2pi) ⊕ M(2pi) for i = 1, 2, . . . , n. Hence,

H(j) ⊆
n∏

i=0

(N(2pi) ⊕ M(2pi))

and

H(j) =
( n∑

i=0

H(2pn + · · · + 2pi+1)M(2pi)H(2pi−1 + · · · + 2p0)
)

⊕
n∏

i=0

N(2pi).

Set
Bpi(j) := H(2pn + · · · + 2pi+1)M(2pi)H(2pi−1 + · · · + 2p0),

so that

H(j) =
n∑

i=0

Bpi(j) ⊕
n∏

i=0

N(2pi).
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Multiplying on the right by H(2pn+1 − j), we obtain

Bpi(j)H(2pn+1 − j) = H(2pn + · · · + 2pi+1)M(2pi)H(2pn+1 − (2pn + · · · + 2pi))

= H((2pn−pi−1 + · · · + 2pi+1−pi−1)2pi+1)M(2pi)H(2pi)

× H((2pn−pi − (2pn−pi−1 + · · · + 2pi+1−pi−1 − 1))2pi+1)

⊆ H((2pn−pi−1 + · · · + 2pi+1−pi−1)2pi+1)U(2pi+1)

× H((2pn−pi − (2pn−pi−1 + · · · + 2pi+1−pi−1 − 1))2pi+1).

It follows from Lemma 4.2 that Bpi(j)H(2pn+1 − j) ⊆ U(2pn+1); therefore, each Bpi(j) ⊆
R(j). By exactly the same reasoning as in Theorem 7.1, there must exist some

Q(j) ⊆
n∏

i=0

N(2pn−i)

such that R(j) ⊕ Q(j) = H(j). �

One last theorem about the size of Q and W must be obtained before continuing.

Theorem 7.4. Suppose that j, k ∈ N have the binary forms

k = 2p0 + · · · + 2pi−1 , j = 2pi + · · · + 2pn .

with p0 < · · · < pn. Then dim Q(j + k) � dim Q(j) dimQ(k) and dim W (j + k) �
dim W (j) dimW (k).

Proof. Use the definition of Q to see that

H(j + k) = (R(j) ⊕ Q(j))(R(k) ⊕ Q(k)) = R(j)H(k) ⊕ Q(j)R(k) ⊕ Q(j)Q(k).

If it can be shown that R(j)H(k) + Q(j)R(k) ⊆ R(j + k), then

dim Q(j + k) = dimH(j + k) − dim R(j + k)

� dim H(j) dimH(k) − dim R(j) dimH(k) − dim Q(j) dimR(k)

= dimQ(j) dimH(k) − dim Q(j) dimR(k)

= dimQ(j) dimQ(k),

which establishes the Q inequality.
In order to show that R(j)H(k) ⊆ R(j + k), note that 2pn < j + k < 2pn+1, and recall

from the definition of R(j) that

R(j)H(k)H(2pn+1 − j − k) = R(j)H(2pn+1 − j) ⊆ U(2pn+1)

so that R(j)H(k) ⊆ R(j + k) by the definition of R(j + k).
Finally, to show that Q(j)R(k) ⊆ R(j + k), note that 2pi−1 � k < 2pi−1+1 and

Q(j)R(k)H(2pn+1 − j − k) = Q(j)(R(k)H(2pi−1+1 − k))H(2pn+1 − 2pi−1+1 − j)

⊆ H(j)U(2pi−1+1)H(2pn+1 − 2pi−1+1 − j).

As each of j and 2pn+1 − 2pi−1+1 − j is divisible by 2pi−1+1, Lemma 4.2 reveals that
Q(j)R(k)H(2pn+1 − j − k) ⊆ U(2pn+1) and so Q(j)R(k) ⊆ R(j + k).

An analogous argument is used to prove the inequality for W . �
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8. Inequalities

In this section we shall prove, using induction, that, for all n > 1,

dim Q(n), dim W (n) � 8
√

n(log n)3.

This result is obtained by combining the following theorems.

Theorem 8.1. If 2m < n < 2m+1, then

dim W (n) � dim Q(2m+1 − n) dimV (2m+1)

and

dim Q(n) � dim W (2m+1 − n) dimV (2m+1)

Proof. By the definition, R(2m+1 − n)H(n) ⊆ U(2m+1). Therefore, if c ∈ H(n) and
Q(2m+1 − n)c ⊆ U(2m+1), then H(2m+1 − n)c ⊆ U(2m+1) and c ∈ S(n).

Let v1, . . . , vd ∈ Q(2m+1−n) be a basis of Q(2m+1−n) over K and let c1, . . . , cp ∈ W (n)
be a basis of W (n). Suppose that

p = dim(W (n)) > dim Q(2m+1 − n) dimV (2m+1) = d dim V (2m+1).

Define a K-linear function

f : W (n) → (H(2m+1)/U(2m+1))d ∼= V (2m+1)d

by setting

f(c) := ((v1c + U(2m+1)), (v2c + U(2m+1)), . . . , (vdc + U(2m+1)))

for each c ∈ W (n).
Observe that dim(Im f) � dim(H(2m+1)/U(2m+1))d = d dim V (2m+1), and that since

dim W (n) = p > d dim V (2m+1), there must exist some non-zero c ∈ ker f . However, if
(vic + U(2m+1)) = 0 for each vi, then Q(2m+1 − n)c ∈ U(2m+1) and c ∈ S(n). Hence,
c ∈ S(n) ∩ W (n) = {0}: a contradiction. Thus,

dim W (n) = p � dim Q(2m+1 − n) dimV (2m+1),

as required.
The second inequality can be proven by a similar argument. �

Theorem 8.2. Let j be a natural number. Write j in binary form as

j = 2p0 + 2p1 + · · · + 2pn

with 0 � p0 < p1 < · · · < pn. Recalling the sets {Si}i∈Z from § 4, suppose that there is an
m ∈ Z with p0, . . . , pn ∈ Sm. Then dim Q(j) � 2

√
j�log j� and dim W (j) � 2

√
j�log j�.
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Proof. This proof will be divided into three cases.

Case 1 (j < 22m−�log m�−1). Suppose that j < 22m−�log m�−1. Then pn < 2m −
�log(m)� − 1. Notice that j � 22m−�log m�−m and

√
j�log j� � 22m−1−�log m�/2−m/2(2m − �log m� − m)

> 22m−1−�log m�/2−m/22m−1 > 22m−1

Hence, by using Theorem 7.3, we obtain

dim Q(j) � dim
n∏

i=0

V (2pi) �
m−2∏
i=0

22i

< 22m−1
<

√
j�log j�,

as required.
A similar argument, using Theorem 7.1, gives dimW (j) �

√
j�log j�.

Case 2 (j = 22m−�log m�−1). Suppose that j = 22m−�log m�−1. Then, by definition,
U(j) ⊆ R(j)∩S(j), and so dimQ(j), dim W (j) � dim V (22m−�log m�−1) = 22m−1

, by The-
orem 4.1 (ii). Consequently, dimQ(j), dim W (j) �

√
j�log j�.

Case 3 (j > 22m−�log m�−1). Suppose that j > 22m−�log m�−1. Then pn = 2m −
�log m� − 1 and 2pn+1 − j < 22m−�log m�−1. Set k := 2pn+1 − j, and note that k < j and
that case 1 applies to k. Thus, an application of case 1 gives

dim Q(k), dim W (k) �
√

k�log k� <
√

j�log j�.

Now, apply Theorem 8.1 to see that

dim Q(j) � dim W (2pn+1 − j) dimV (2pn+1) = 2 dimW (k) � 2
√

k�log k� < 2
√

j�log j�,

as required.
A similar argument shows that dimW (j) � 2

√
j�log j� in this case.

This finishes the three cases and thus also the proof. �

Now, for each m ∈ Z, define Tm ⊂ N to be the set bounded above by Sm and below
by Sm′ , where m′ is the next lowest value in Z (or by 0, if m is the lowest value of
Z). More formally, if m′, m ∈ Z with m′ < m and (m′, m) ∩ Z = ∅, then set Tm =
[2m′ − �log m′�, 2m − m − �log m� − 1]. If m is the minimal value of Z, then set Tm =
[1, 2m − m − �log m� − 1]. The subsets {Sm, Tm}m∈Z provide a partition of N.

Theorem 8.3. Let j be a natural number. Write j in binary form as

j = 2p0 + 2p1 + · · · + 2pn

with 0 � p0 < p1 < · · · < pn. If there exists an m ∈ Z such that p0, . . . , pn ∈ Tm, then
dim Q(j), dim W (j) � 2.
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Proof. Note that

dim Q(j) � dim
( n∏

i=0

N(2pi)
)

= 1,

by Theorem 7.3, because p0, . . . , pn /∈ S.
For the W (j) case, note that 2pn � j < 2pn+1 and let 2q0 + · · · + 2qn be the binary

form of 2pn+1 − j. As p0 = q0 < · · · < qn < pn, it follows that q0, . . . , qn ∈ Tm and so
q0, . . . , qn /∈ S. Applying Theorem 7.3 in this case gives dimQ(2pn+1 − j) � 1, and then
applying Theorem 8.1 gives

W (j) � Q(2pn+1 − j)V (2pn+1) � 2,

as required. �

We can now establish the main estimate of this section.

Theorem 8.4. For each n > 1,

dim Q(n), dim W (n) � 8
√

n(log n)3.

Proof. Let n = 2p0 + 2p1 + · · · be the binary decomposition of n. For each m ∈ Z,
let jm be the sum of all the 2pi that occur in the binary form of n with pi ∈ Sm and let
km be the sum of each 2pi with pi ∈ Tm. Then

n =
∑
m∈Z
jm �=0

jm +
∑
m∈Z
km �=0

km,

as {Sm, Tm}m∈Z forms a partition of N.
Therefore,

dim Q(n) �
∏

m∈Z
jm �=0

dim Q(jm)
∏

m∈Z
km �=0

dim Q(km),

by Theorem 7.4.
We estimate the two terms on the right-hand side separately.
Firstly, suppose that m < r are consecutive members of Z with kr 	= 0. Then

22m−�log m� � kr � n, as Tr = [2m − �log m�, 2r − r − �log r� − 1]. It follows that
m � log log(n)+1 in this case. Therefore, the number of m ∈ Z with km 	= 0 is less than
or equal to log log(n) + 2. Note that dimQ(km) � 2, for each such km, by Theorem 8.3,
so that ∏

m∈Z
km �=0

dim Q(km) �
�log log(n)+2�∏

i=1

2 � 2log log(n)+2 � 4 log n.

Secondly, observe that if jm 	= 0, then 22m−m−�log m� � jm � n and jm < 22m

,
because Sm = [2m − m − �log m�, 2m − �log m� − 1]. Also, observe that dimQ(jm) �
2
√

jm�log jm� � jm, by Theorem 8.2.
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Suppose that t < r are consecutive members of Z such that r is the largest member of
Z and such that jr 	= 0. Note that 2222t

< r by Lemma 3.1; therefore 222t

< log r � log n.
Consider any m ∈ Z with m � t and jm 	= 0. Any pi involved in the sum jm satisfies

pi � 2m − �log m� − 1 � 2m � 2t.

As each pi can be involved in at most one such sum jm, the number of m ∈ Z with
jm 	= 0 is less than or equal to 2t. For any such m,

dim Q(jm) � jm � 22m � 22t

.

Thus, ∏
m∈Z
km �=0
m<r

dim Q(km) � (22t

)2
t

= 222t � log r � log n.

Hence, ∏
m∈Z
km �=0

dim Q(km) � (log n)(2
√

jr log jr) � 2
√

n(log n)2,

and so

dim Q(n) �
∏

m∈Z
jm �=0

dim Q(jm)
∏

m∈Z
km �=0

dim Q(km)

� (4 log n)(2
√

n(log n)2)

= 8
√

n(log n)3,

as required.
To show that W (n) � 8

√
n(log n)3 we use an analogous argument. �

Now we are ready to obtain the main result of the paper.

Theorem 8.5. The algebra Ē/A is a finitely generated infinite-dimensional nil algebra
with Gelfand–Kirillov dimension at most 3.

Proof. The algebra Ē/A is a finitely generated infinite-dimensional nil algebra, by
Theorem 5.1.

By combining Theorem 8.4 with Theorem 6.1, we obtain

dim H(n)
E(n)

�
n∑

k=0

dim(W (n − k)) dim(Q(k))

�
n∑

k=0

64
√

(n − k)k(log(n − k) log k)3

< 64n2(log n)6.
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Hence,
n∑

i=1

dim
(

H(i)
E(i)

)
� 64n3(log n)6.

Therefore,

GKdim(Ā/E) = lim
n→∞

(
log(

∑n
i=1 dim H(i)/E(i))

log n

)

� lim
n→∞

(
6 + 3(log n) + 6(log log n)

log n

)

= 3,

as required. �

9. Concluding remarks and some questions

We have constructed a finitely generated infinite-dimensional nil algebra with Gelfand–
Kirillov dimension at most 3. Equivalently, we have a finitely generated infinite-
dimensional nil-but-not-nilpotent algebra with Gelfand–Kirillov dimension at most 3.

In contrast, nil does imply nilpotent for algebras of Gelfand–Kirillov dimension at
most 1, by [6]. Combining this with Bergman’s Gap Theorem [4, Theorem 2.5], we see
that a nil-but-not-nilpotent example must have Gelfand–Kirillov dimension at least 2. It
would be very interesting to find the precise dividing line in terms of growth. A starting
point might be to consider nil algebras with quadratically bounded growth and attempt
to show that these algebras must be finite dimensional. Given a positive result in this
direction, one might then speculate whether there exists a finitely generated nil-but-not-
nilpotent algebra with Gelfand–Kirillov dimension 2 (but, of course, not having quadratic
growth).

Many of the constructions of weird algebras that we know involve starting with a
free algebra and introducing infinitely many relations, so the corresponding questions
for finitely presented algebras remain unresolved. In particular, we ask: is every finitely
presented nil algebra nilpotent?

It seems unlikely that by using the methods employed in this work we can hope to
construct a nil-but-not-nilpotent algebra with Gelfand–Kirillov dimension 2. Our algebras
are graded, and this raises the question of whether a finitely generated nil algebra that
is graded and has Gelfand–Kirillov dimension at most 2 (or quadratic growth) must in
fact be finite dimensional.

The methods employed here depend crucially on the countability hypothesis. It would
be interesting to see if it is possible to construct a finitely generated infinite-dimensional
nil algebra with finite Gelfand–Kirillov dimension over an uncountable field.

There are many problems of a similar type in [10].
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