Hence

$$
\begin{aligned}
& \frac{d X}{d t} \\
& \frac{d Y}{d t} \\
\therefore \quad & \frac{d Z}{{ }_{X} t} \\
\quad & \frac{d U}{Z}=\frac{{ }^{2} t}{U} \\
b & =\frac{Z}{c}=\frac{U}{d}
\end{aligned}
$$

where a, b, c, d are constants,
and since
$x X+y Y+z Z+u U=0$, we have $\quad a x+b y+c z+d u=0$,
which is the result required.
J. E. A. Steggall.

On the Solutions of $\frac{d^{2} u}{d t^{2}}+P \frac{d u}{d t}+Q u=0$.
(Suggested in discussion at a meeting of the Society).
The following note gives a proof of the theorem that if x, y, z are any three values of u which satisfy the differential equation $\frac{d^{2} u}{d t^{2}}+P \frac{d u}{d t}+Q=0$, then $l x+m y+n z=0$ where l, m, n are constants. If the dots denote differentiation with respect to t, we have

$$
\ddot{x}+P \dot{x}+Q x=0, \quad \ddot{y}+P \dot{y}+Q y=0 \quad \text { and } \quad \ddot{z}+P \dot{z}+Q z=0 .
$$

Hence

$$
\left|\begin{array}{ccc}
x & y & z \tag{1}\\
\dot{x} & \dot{y} & \dot{z} \\
\ddot{x} & \ddot{y} & \ddot{z}
\end{array}\right|=0 .
$$

Now x, y, z are functions of t, and therefore the locus of the point (x, y, z) is a curve in space. Equation (1) is the condition that the osculating plane at (x, y, z) should pass through the origin. But if the osculating plane at any point of a curve passes through a fixed point, the curve is a plane curve lying in a plane through the point. Therefore the point (x, y, z) lies in a plane through the origin or $l x+m y+n z=0$.
R. J. T. Bell.

