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ON THE LOCATION OF THE MAXIMUM OF
A CONTINUOUS STOCHASTIC PROCESS
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Abstract

In this short article we will provide a sufficient and necessary condition to have uniqueness
of the location of the maximum of a stochastic process over an interval. The result will
also express the mean value of the location in terms of the derivative of the expectation
of the maximum of a linear perturbation of the underlying process. As an application,
we will consider a Brownian motion with variable drift. The ideas behind the method
of proof will also be useful to study the location of the maximum, over the real line,
of a two-sided Brownian motion minus a parabola and of a stationary process minus a
parabola.
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1. Introduction

Let (X(z), z ∈ [s, t]) be a stochastic process with continuous paths on [s, t] ⊆ R. The
maximum of X on [s, t] is defined as

M(X) := max
z∈[s,t]X(z),

and the set of locations of the maximum (or arg max) is defined as

arg max(X) := {z ∈ [s, t] : X(z) = M}.
By continuity, M is well defined and arg max(X) is a nonempty compact subset of [s, t]. In
many situations, we do expect that the maximum is actually attained almost surely (a.s.) at a
unique location Z, so that

arg max(X) = {Z} a.s. (1)

In this article, we will prove a sufficient and necessary condition such that (1) holds. The main
result is stated below.

Theorem 1. Let (X(z), z ∈ [s, t]) be a stochastic process with continuous paths on [s, t] and
assume that E|M| < ∞. For a ∈ R let

Xa(z) := X(z)+ az, z ∈ [s, t],
and define

Ma := M(Xa) and m(a) := EMa.

Received 13 September 2012; revision received 25 April 2013.
∗ Postal address: Federal University of Rio de Janeiro, Postal Code 68530, 21.945-970, Rio de Janeiro, Brazil.
Email address: leandro@im.ufrj.br

152

https://doi.org/10.1239/jap/1395771420 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1395771420
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Then a �→ m(a) is differentiable at a = 0 if and only if the location of the maximum is almost
surely unique (i.e. (1) holds). In the latter case we have

EZ = m′(0), (2)

where m′(0) is the derivative of m at a = 0.

The proof of Theorem 1 is based on a simple nonprobabilistic result (Lemma 1 below),
which roughly states that the left- and right-directional derivatives of the functional M , with
respect to the identity function, are given by the left-most and the right-most locations of the
maximum, respectively. (Note that ifX(z) = 0 for all z ∈ [0, t] thenm(a) is not differentiable
at a = 0, since m(a) = 0 for a ≤ 0 and m(a) = at for a > 0.)

An example where we can apply Theorem 1 is given byX = B+f , where B is a Brownian
motion and f is a deterministic continuous function.

Theorem 2. Let
X(z) = B(z)+ f (z), z ∈ [0, t],

where B is a standard Brownian motion process and f is a deterministic continuous function.
Then the location of the maximum is almost surely unique (i.e. (1) holds) and

EZ = cov(M,B(t)). (3)

Theorem 2 implies a similar result when f is a continuous process that is independent of B.
An interesting aspect of (3) is that it gives the same result as if Z were independent of B.
(If U ∈ [0, t] is independent of B then cov(B(U) + f (U), B(t)) = cov(B(U), B(t)) = EU .
Can we understand this behavior of Z, for f ≡ 0, in light of Lévy’s M − B theorem, or
Pitman’s 2M − B theorem?) Analogous identities have also appeared in particle systems and
percolation models; see [1], [2], [5], and [14]. The uniqueness of the location of the maximum
for a continuous Gaussian process was proved in [11], and it can certainly be used in our context.
The author has tried to compute the derivative ofm for a Gaussian processX, in order to provide
an alternative proof of uniqueness based on Theorem 1, but with no success so far.

In the previous situation we considered the expectation of the maximum of a linear perturba-
tion of the process X and computed its derivative at zero. Other types of perturbation can also
provide useful information about the location of the maximum. For instance, consider X =
B + f , where now B denotes a standard two-sided Brownian motion, f is again a continuous
function, and z ∈ [−t, t]. By taking a perturbation with respect to z �→ z+ := max{z, 0}, we
see that

EZ+ = cov(M,B(t)). (4)

The maximum, over the real line, of a two-sided Brownian motion minus a parabola, and its
location, arises as a limit object in many different statistical problems. Theorem 1 can be used
in this context as well to ensure uniqueness, since a.s. the arg max will be compact (due to the
negative parabolic drift). For many examples and various results, see [6]. By symmetry, it is not
hard to see that the location has zero mean. The expectation of the maximum and the variance of
the location can be expressed in terms of integrals involving the Airy function; see [4], [7], [8],
and [9]. Relying on those expressions, Groeneboom [7] and Janson [8] remarked that the
variance of the location is equal to one third of the expectation of the maximum. By adding a
quadratic perturbation (i.e. az2), and computing the derivative of the expected maximum, we
can directly prove the Groeneboom–Janson relation. We also note that the probability that the
maximum over the real line differs from the maximum over [−t, t] decays exponentially fast
to zero; thus, (4) can be extended to the limiting behavior.

https://doi.org/10.1239/jap/1395771420 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1395771420


154 L. P. R. PIMENTEL

Theorem 3. Let
X(z) = B(z)− z2, z ∈ R,

where B is a standard two-sided Brownian motion process. Then the location of the maximum
is almost surely unique (i.e. (1) holds) and

EZ = 0, EZ+ = lim
t→∞ cov(M,B(t)), EZ2 = 1

3EM.

Another situation where uniqueness can be proved by the same methodology is when X is
a stationary process minus a parabola.

Theorem 4. Let
X(z) = A(z)− z2, z ∈ R,

where A is a stationary process with continuous paths. Assume that

E|M| < ∞ and
∫ ∞

0
P(arg max(X) �⊆ [−u, u]) du < ∞. (5)

Then the location of the maximum is almost surely unique (i.e. (1) holds) and

EZ = 0. (6)

It is surprising that (6) holds for any stationary process minus a parabola. However, as we
shall see, the derivative of m(a) can be easily computed in this case. The Airy process [13]
is an example where Theorem 4 can be used. It is a one-dimensional stationary process with
continuous paths, whose finite-dimensional distributions are described by Fredholm determi-
nants. The interest in this process is mainly due to the fact that it gives the limit fluctuations
of a number of processes appearing in statistical mechanics. Under the assumption that the
maximum is indeed attained at a unique location, Johansson [10] was able to prove that the
law of the location describes the limit transversal fluctuations of maximal paths in last passage
percolation models. This assumption was proved to be true by Corwin and Hammond [3] and
by Moreno Flores et al. [12]. Both proofs used very strong results that depend on particular
features of the Airy process. Theorem 4 is an alternative way to get uniqueness.

2. Proofs

2.1. Proof of Theorem 1

Let h : [s, t] → R be a continuous real function and let

Z1(h) := inf arg max(h) and Z2(h) := sup arg max(h).

We start with the analytic counterpart of the proof that is given by Lemma 1, below. It shows
that the left- and right-directional derivatives of the functional M , with respect to the identity
function, are given by Z1 and Z2, respectively.

Lemma 1. Let
ha(z) := h(z)+ az.

Then
lim
a→0− Z1(h

a) = Z1(h) and lim
a→0+ Z2(h

a) = Z2(h). (7)
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Furthermore,

lim
a→0−

M(ha)−M(h)

a
= Z1(h) and lim

a→0+
M(ha)−M(h)

a
= Z2(h). (8)

Proof. For simple notation, put Ma = M(ha) and Zai = Zi(h
a). By continuity of h, we

have
M + aZi = h(Zi)+ aZi ≤ Ma = h(Zai )+ aZai ≤ M + aZai . (9)

This implies that
0 ≤ (Ma −M)− aZi ≤ a(Zai − Zi). (10)

The left-hand inequality in (10) is equivalent to

0 ≤ a(Zai − Zi)− (h(Zi)− h(Zai )). (11)

Since h(Zi) ≥ h(Zai ), (11) yields

Zai ≤ Zi for a < 0, and Zai ≥ Zi for a > 0. (12)

By (12), if (7) is not true for i = 1 then there exist δ > 0 and a sequence an → 0− such that
Z
an
1 ≤ Z1 − δ for all n ≥ 1. By compactness of [s, t], we can find a subsequence ank → 0−

and Z̃1 ∈ K such that Z̃1 = limk→∞ Z
ank
1 ≤ Z1 −δ. By (11) (and continuity of h), this implies

that h(Z̃1) ≥ h(Z1), which leads to a contradiction since Z1 is the left-most location of the
maximum. The proof for i = 2 is analogous.

Now, by (10),

0 ≥ Ma −M

a
− Z1 ≥ Za1 − Z1 ≥ s − t for a < 0, (13)

and

0 ≤ Ma −M

a
− Z2 ≤ Za2 − Z2 ≤ t − s for a > 0. (14)

Together with (7), (13), and (14), this implies (8).

Proof of Theorem 1. Note that (9) implies that |Ma| has finite expectation, since we assume
that E|M| < ∞, and Zi, Zεi ∈ [s, t]. Also, the distance between Zi and Zai is always bounded
by t − s. This will be important in the probabilistic counterpart of the proof, in order to use
dominated convergence, as follows. If m(a) is differentiable at a = 0 then

m′(0) = lim
a→0−

m(a)−m(0)

a
= lim
a→0+

m(a)−m(0)

a
.

Together with (8), and dominated convergence, this proves that EZ1 = EZ2. Since Z1 ≤ Z2,
we must haveZ1=Z2 a.s., which yields (1) and (2). Reciprocally, if (1) is true then, by Lemma 1,

lim
a→0−

Ma −M

a
= lim
a→0+

Ma −M

a
a.s.

Thus, dominated convergence implies that

lim
a→0−

m(a)−m(0)

a
= lim
a→0+

m(a)−m(0)

a
,

which shows that m(a) is differentiable at a = 0, and the proof is complete.
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2.2. Proof of Theorem 2

In Lemma 2 below we take X = B + f and compute the derivative of m(a) in a different
way. This derivative can be computed by using the Cameron–Martin theorem. For simplicity,
we will present an alternative proof requiring only basic knowledge of Brownian motion.

Lemma 2. Let Y = Y (B) be a (measurable) functional of a standard Brownian motion B on
[0, t] satisfying EY 2 < ∞. Define

y(a) := EYa, where Ya := Y (Ba),

and Ba(z) := az+ B(z). Assume that y(·) is well defined in a neighborhood of a = 0. Then

y′(0) = cov(Y, B(t)). (15)

Proof. Without loss of generality, we assume that t = 1. The Brownian motion can be
decomposed into

B(z)
d= Nz+ B0(z)

(as processes), where B0 is a standard Brownian bridge with B0(0) = B0(1) = 0, and N is an
independent Normal random variable with mean 0 and variance 1. Thus,

Ba(z) = az+ B(z)
d= (a +N)z+ B0(z).

Since Ba(1) = u if and only if a +N = u, we have

Ba(z)
d= uz+ B0(z), (16)

conditioned on the event that Ba(1) = u. By (16), the conditional expectation of Ya , given
that Ba(1) = u, does not depend on a ∈ R. Specifically, denote by Bu the process on the
right-hand side of (16). Then we obtain

E(Y a | Ba(1) = u) = E(Y (Bu)).

Therefore, by writing

ρu(a) := 1√
2π

exp

{
− (u− a)2

2

}
,

we have

y(a) =
∫

E(Y a | Ba(1) = u)ρu(a) du =
∫

E(Y (Bu))ρu(a) du.

Hence, by interchanging the derivative with the integral, we obtain

y′(a) =
∫

E(Y a | Ba(1) = u)ρ′
u(a) du

=
∫

E(Y a | Ba(1) = u)(u− a)ρu(a) du

= E(Y aBa(1))− aE(Y a),

which proves (15).

Proof of Theorem 2. Take Y (B) := M(B + f ). By Lemma 2,

m′(0) = cov(M,B(t));
hence, Theorem 1 implies Theorem 2.
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Proof of (4). Put Xa,+(z) := X(z)+ az+ for z ∈ R, and Ma,+ = M(Xa,+). Then

lim
a→0+

Ma,+ −M

a
= Z+,

which implies that

lim
a→0+

m+(a)−m+(0)
a

= EZ+,

wherem+(a) = EMa,+. By conditioning onB(t)+at , this derivative is equal to cov(M,B(t)),
which shows that (4) holds.

Remark 1. Given a square integrable function φ on [0, t], define the function ψ on [0, t] by

ψ(z) :=
∫ z

0
φ(u) du.

By the Cameron–Martin theorem, if Y = Y (B) is a (measurable) functional of standard
Brownian motion B on [0, t] satisfying EY 2 < ∞ then

lim
a→0

EY (B + aψ)− EY

a
= E

(
Y

∫ t

0
φ(z) dB(z)

)
.

If ψ is increasing, then the same reasoning that we used to prove Lemma 1 yields

lim
a→0

M(ha,ψ)−M(h)

a
= ψ(Z),

where ha,ψ(z) := h(a)+ aψ(z). Therefore,

Eψ(Z) = E

(
M

∫ t

0
φ(u) dB(u)

)
.

By the chain rule, we also have

E(H ′(M)Z) = E(H(M)B(t)).

2.3. Proof of Theorem 3

As we mentioned before, in this case (1) can be obtained from Theorem 2 by using a.s.
compactness of the arg max, and EZ = 0 follows easily by symmetry. The uniqueness also
follows from [11]. For the sake of completeness, we also present an alternative proof which
uses similar ideas as before. We start with a key lemma, which contains well-known facts; see,
for instance, [6].

Lemma 3. Let B be a two-sided Brownian motion, and for β ∈ R define

M(β) = M(B, β) := max
z∈R

{B(z)− (z− β)2}.

LetZ1(β) = Z1(B, β) andZ2(β) = Z2(B, β) denote the left-most and right-most locations
of the maximum of B(z)− (z− β)2, respectively. Then

EM(β) = EM(0) and EZi(β) = β + EZi(0).
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Proof. By the almost-sure compactness of the arg max, Zi(β) is well defined for i = 1, 2.
Note that B̄

d= B, where B̄(x) := B(x + β) − B(β) for x ∈ R; thus, taking x = z − β, we
obtain

max
z∈R

{B(z)− (z− β)2} = max
x∈R

{B̄(x)− x2} + B(β).

This implies that

M(B, β) = M(B̄, 0)+ B(β) and Zi(B, β)− β = Zi(B̄, 0),

which proves the lemma. (Notice that the arg max does not change by summing B(β).)

Proof of Theorem 3. By Lemma 3,

m(a) = E max
z∈R

{B(z)− z2 + az} = E max
z∈R

{
B(z)−

(
z− a

2

)2}
+ a2

4
= m(0)+ a2

4
;

hence,
m′(0) = 0. (17)

Since the arg max does not change by a vertical shifting of a2/4, by Lemma 3 we have

EZai = EZi

(
a

2

)
= a

2
+ EZi,

which shows that
lim
a→0

EZai = EZi. (18)

On the other hand, by (10) we obtain

0 ≤ Ma −M

a
− Zi ≤ Zai − Zi for a > 0,

and

0 ≥ Ma −M

a
− Zi ≥ Zai − Zi for a < 0.

Together with (18), these inequalities yield

EZi = m′(0);
hence, EZ1 = EZ2. SinceZ1 ≤ Z2, we haveZ1=Z2 a.s., which proves (1). By (17), EZ = 0.
To compute the limiting value of EZ+, use (4).

To evaluate the second moment ofZ, we add a quadratic perturbation to our original process
and compute the derivative with respect to that. We follow the same notation as in [8] and set
Xγ (z) := B(z) − γ z2 for z ∈ R, Mγ := M(Xγ ), and Vγ := arg max(Xγ ). (If the maximum
is reached at a single value, then we refer to the point as the arg max.) Note that

M1−a = max
z∈R

{B(z)− z2 + az2}.

By scaling invariance of Brownian motion, we have

Mγ
d= γ

1/3
1 γ−1/3Mγ1 and Vγ

d= γ
2/3
1 γ−2/3Vγ1 . (19)
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Therefore,
n(a) := EM1−a = (1 − a)−1/3n(0);

thus,

n′(0) = n(0)

3
. (20)

On the other hand, as in the proof of (10),

0 ≤ (M1−a −M1)− aV 2
1 ≤ a(V 2

1−a − V 2
1 ),

which implies that

0 ≤ M1−a −M1

a
− V 2

1 ≤ V 2
1−a − V 2

1 for a > 0,

and that

0 ≥ M1−a −M1

a
− V 2

1 ≥ V 2
1−a − V 2

1 for a < 0.

By taking expectations on both sides of the last inequalities, and then using (19), we have

∣∣∣∣n(a)− n(0)

a
− v(0)

∣∣∣∣ ≤ |v(a)− v(0)| = (1 − a)−4/3|v(0)|,

where v(a) = EV 2
1−a . Hence,

n′(0) = v(0).

Together with (20), this shows that

EZ2 = v(0) = n′(0) = n(0)

3
= EM

3
.

We note that, by (19), this also shows that EV 2
γ = (3γ )−1

EMγ .

2.4. Proof of Theorem 4

Lemma 4. Let A be a stationary process and, for β ∈ R, let

M(β) = M(A, β) := max
s∈R

{A(s)− (s − β)2}.

Let Z1(β) = Z1(β) and Z2(β) = Z2(β) denote the left-most and right-most locations of
the maximum of A(z)− (z− β)2, respectively. Then, for each fixed β ∈ R,

M(β)
d= M(0) and Zi(β)− β

d= Zi(0).

Proof. By stationarity, Ā
d= A, where Ā(x) := A(x + β). On the other hand,

M(A, β) = max
z∈R

{A(z)− (z− β)2} = M(Ā, 0) and Zi(A, β)− β = Zi(Ā, 0)

(take x = z− a), which proves the lemma.
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Proof of Theorem 4. By Lemma 4,

m(a) = E max
z∈R

{A(z)− z2 + az} = E max
z∈R

{
A(z)−

(
z− a

2

)2}
+ a2

4
= m(0)+ a2

4
;

hence,
m′(0) = 0. (21)

By (5), we have E|Zi | < ∞. Since the arg max does not change by a vertical shifting of a2/4,
by Lemma 4 we have

EZai = EZi

(
a

2

)
= a

2
+ EZi,

which shows that
lim
a→0

EZai = EZi. (22)

On the other hand, by (10) we obtain

0 ≤ Ma −M

a
− Zi ≤ Zai − Zi for a > 0,

and

0 ≥ Ma −M

a
− Zi ≥ Zai − Zi for a < 0.

Together with (22), these inequalities yield

EZi = m′(0).

Thus, EZ1 = EZ2. Since Z1 ≤ Z2, we have Z1=Z2 a.s., which proves (1). By (21), EZ = 0.
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