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ON p-AUTOMORPHISMS THAT ARE INNER
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Abstract

Let G be a group and let CAut8(G)(Z(8(G))) be the set of all automorphisms of G centralizing G/8(G)
and Z(8(G)). For each prime p and finite p-group G, we prove that CAut8(G)(Z(8(G)))≤ Inn(G) if
and only if G is elementary abelian or 8(G)= Z(G) and Z(G) is cyclic.
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1. Introduction and result

Throughout p denotes a prime number. Let G be a group. We denote by G ′,
8(G), Z(G), Inn(G), Aut(G) respectively the commutator subgroup, the Frattini
subgroup, the centre, the inner automorphism group and the automorphism group
of G. An automorphism α of G is called a central automorphism if x−1xα ∈
Z(G) for each x ∈ G. The central automorphisms of G form a normal subgroup
Autc(G) of the full automorphism group Aut(G). Let CAutc(G)(Z(G)) be the
group of all central automorphisms of G fixing Z(G) elementwise. Curran
and McCaughan [2] characterized finite p-groups G for which Autc(G)= Inn(G).
Curran [1] characterized finite p-groups G for which CAutc(G)(Z(G))≤ Inn(G). In [6]
we proved that if G is a finite p-group, then CAutc(G)(Z(G))= Inn(G) if and only if G
is abelian or G is nilpotent of class 2 and Z(G) is cyclic. Let

Aut8(G)= {φ ∈ Aut(G) | x−1xφ ∈8(G) for all x ∈ G}

and

CAut8(G)(Z(8(G)))= {φ ∈ Aut8(G) | xφ = x for all x ∈ Z(8(G))}.

By a well-known theorem of P. Hall the group Aut8(G) is a p-group. Clearly Aut8(G)
is a normal subgroup of Aut(G) containing Inn(G).
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Müller [3], by using cohomological methods, proved that for a finite p-group G,
Aut8(G)= Inn(G) if and only if G is elementary abelian or extraspecial. Here we
give a characterization for finite p-groups G for which CAut8(G)(Z(8(G)))≤ Inn(G).

THEOREM 1.1. If G is a finite p-group, then CAut8(G)(Z(8(G)))≤ Inn(G) if and
only if G is elementary abelian or 8(G)= Z(G) and Z(G) is cyclic.

2. Proof of the theorem

If G is elementary abelian, then 8(G)= 1 and so we have

CAut8(G)(Z(8(G)))= Inn(G)= 1.

If 8(G)= Z(G) and Z(G) is cyclic, then by [6] we have CAut8(G)(Z(8(G)))=
CAutc(G)(Z(G))= Inn(G).

Now let CAut8(G)(Z(8(G)))≤ Inn(G). Let G be an abelian p-group. We prove
that exp(G)= p. Suppose, on the contrary, that exp(G)= pk for some k > 1.
We define the mapping θ : G −→ G by θ(x)= x1+pk−1

for all x ∈ G. Then θ is
a nontrivial automorphism of G, since exp(G)= pk . Also θ(x p)= x p+pk

= x p.
Therefore θ is a nontrivial automorphism of G which fixes G/8(G) and Z(8(G)).
This contradicts the hypothesis. Assume that G is a nonabelian p-group. We first prove
that Z(G)≤8(G). Suppose, on the contrary, that there exists a maximal subgroup M
of G such that Z(G) 6≤ M . Take an element g in Z(G)\M . Therefore G = M〈g〉.
Choose an element z of order p in Z(G) ∩8(G). Then it is easy to see that the map
α defined by (mgk)α = mgk zk for every m ∈ M and every k ∈ {0, 1, . . . , p − 1} is an
automorphism which fixes G/8(G) and Z(8(G)). By the hypothesis there exists an
element a ∈ G such that α = θa where θa is the inner automorphism of G induced by
a. Since g ∈ Z(G), we have gz = α(g)= θa(g)= a−1ga = g whence z = 1, which
contradicts the hypothesis. Thus Z(G)≤8(G).

Now we prove that Z(G)� Z(M) for every maximal subgroup M of G. Suppose,
for a contradiction, that M is a maximal subgroup of G such that Z(G)= Z(M).
We have CG(M)= Z(M), since Z(G)≤8(G) and M is maximal subgroup. Let
g ∈ G\M and z be an element of order p in Z(G)≤8(G). Then it is easy
to see that the map β on G defined by (mgk)β = mgk zk for every m ∈ M and
every k ∈ {0, 1, . . . , p − 1} is an automorphism which fixes G/8(G) and Z(8(G))
elementwise. By assumption we have α = θa for some a ∈ G whence a ∈ CG(M)=
Z(M)= Z(G), which contradicts the hypothesis. Thus Z(G) 6= Z(M).

Hence, by [5], G has one of the following forms:

(i) G = E1 E2 · · · Es , where [Ei , E j ] = 1 for all i 6= j , |Ei | = p2
|Z(G)| and

Z(G)= Z(Ei ) for all 1≤ i ≤ s; or
(ii) G = E F is the central product of the Frattinian subgroups E and F where

CF (Z(8(F)))=8(F) and where E = CG(F) satisfies 8(E)≤ Z(G).

Moreover in case (ii), either E = Z(G) (and therefore G = F), or E is a central
product as in case (i).
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If the group G is as in case (i), then Z(G)=8(G). Therefore CAut8(G)(Z(8(G)))=
CAutc(G)(Z(G))≤ Inn(G). On the other hand Inn(G)≤ CAutc(G)(Z(G)) since G is
nilpotent of class 2. Therefore CAutc(G)(Z(G))= Inn(G). Hence, by [6], Z(G)
is cyclic. We now complete the proof by showing that G can not have a form
as case (ii). Suppose, for a contradiction, that G satisfies case (ii). If G = F
then CG(Z(8(G)))=8(G), which is impossible by [5, Proposition 3]. Let G 6= F .
Thus E is a central product as in case (i) and so 8(E)= Z(E). Since G = E F , we
have 8(G)= G ′G p

= E ′F ′E p F p
= E ′E p F ′F p

=8(E)8(F)= Z(E)8(F) and
hence Z(8(G))≤ Z(E)Z(8(F)). Since 8(F)= CF (Z(8(F))), by [5, Proposition
3] there exists α ∈ CAut8(F)(Z(8(F)))\ Inn(F).

Since E = CG(F) and CF (Z(8(F)))=8(F), E ∩ F ≤ Z(8(F)) and hence
the map ϕ on G defined by (xy)ϕ = xyα for every x ∈ E and for every y ∈ F
is well-defined. Since Z(8(G))≤ Z(E)Z(8(F)), it is easy to check that ϕ ∈
CAut8(G)(Z(8(G))) and so it is an inner automorphism of G. It follows that α is
an inner automorphism of F , which is impossible. 2

COROLLARY 2.1. If G is a finite p-group, then CAut8(G)(Z(8(G)))= Inn(G) if and
only if G is elementary abelian or 8(G)= Z(G) and Z(G) is cyclic.
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