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The Number of Fields Generated by the
Square Root of Values of a Given
Polynomial

Pamela Cutter, Andrew Granville, and Thomas J. Tucker

Abstract. The abc-conjecture is applied to various questions involving the number of distinct fields

Q
(√

f (n)
)

, as we vary over integers n.

1 Introduction

We first investigate the following problem:

Conjecture 1 Suppose that f (x) ∈ Z[x] has degree ≥ 2 and no repeated roots. Then

there are ∼ N distinct quadratic fields amongst

(1.1) Q
(
√

f (1)
)

, Q
(
√

f (2)
)

, Q
(
√

f (3)
)

, . . . , Q
(
√

f (N)
)

.

Conjecture 1 is actually untrue for linear polynomials. Indeed an elementary ar-
gument gives:

Theorem 1A Let f (x) = ax + b with integers 0 ≤ b < a < N and gcd(a, b) = 1.

There are
(

6

π2

∏

p|a

(

1 − 1

p2

)−1

c(a)

)

N + O(
√

aN log a)

distinct quadratic fields amongst those in (1.1) where c(a) =
∑

m∈Ma
1/m2 and Ma is

the set of integers m, coprime to a, such that there is no l < m with l2 ≡ m2 (mod a).

By further elementary arguments one can prove conjecture 1 for quadratic poly-
nomials:

Theorem 1B Suppose that f (x) ∈ Z[x] has degree 2 and no repeated roots. Then there

are N + O(N/ log N) distinct quadratic fields amongst

Q
(
√

f (1)
)

, Q
(
√

f (2)
)

, Q
(
√

f (3)
)

, . . . , Q
(
√

f (N)
)

.

For higher degree polynomials we have proved the conjecture assuming the abc-
conjecture, using several of the ideas from [3]:
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The abc-conjecture (Oesterlé, Masser, Szpiro) Fix ε > 0. If a, b, c are coprime

positive integers satisfying a + b = c then

(1.2) c �ε N(a, b, c)1+ε,

where N(a, b, c) is the product of the distinct primes dividing abc.

A special case of Theorem 1 in [3] states that if we assume the abc-conjecture then

for f (x) ∈ Z[x] without repeated roots with gcd{ f (n) : n ∈ Z} = 1, there exists a
constant c f > 0 such that there are ∼ c f N positive integers n ≤ N for which f (n) is
squarefree. (Note that this result can be proved unconditionally if f has degree ≤ 2
using the sieve of Eratosthenes; and was proved unconditionally by Hooley [5] for f

of degree 3 by deeper arguments. Perhaps it might be possible to use the techniques
of [5] to prove Conjecture 1 for degree 3 polynomials unconditionally).

The main result in this paper is that Conjecture 1 follows from the abc-conjecture
(a weaker consequence of the abc-conjecture was given in Corollary 2 of [3]).

Theorem 1C If the abc-conjecture is true then Conjecture 1 is also true.

A key component in the proof of Theorem 1C is the following result (which may
be of independent interest) on integral points on f (x)− c f (y), which is proved using

Siegel’s Theorem.

Theorem 2 Suppose that f (x) ∈ Z[x] has at least three distinct roots. For any fixed

c > 1 there are at most finitely many integral points (a, b) on the curve f (x) − c f (y)
= 0.

A harder though perhaps more important problem is to determine, for a given
f (x) ∈ Z[x] without repeated roots, an estimate for A f (D), the number of squarefree
integers d ≤ D such that there exists some integer n with f (n) = dm2 for some in-

teger m. From Theorem 1C we deduce that A f (D) � D1/ deg( f ) if the abc-conjecture
holds. To get an upper bound we use Corollary 1 from [3] (which is deduced from
(26) of Elkies’ paper [2]):

Lemma 1 Assume that the abc-conjecture is true. Suppose that f (x) ∈ Z[x] has no

repeated roots. Then
∏

primes p| f (n)

p � |n|deg( f )−1−o(1).

Now, note that in the above case

(

∏

primes p| f (n)

p
) 2

=

(

∏

primes p|dm

p
) 2

≤ (dm)2
= |d f (n)| � D|n|deg( f ),

and combining this with Lemma 1 shows that that |n| � D1/(deg( f )−2)+o(1). Recalling
the definition of the quantity A f (D) given above, we have now proved:

Theorem 3A Assume the abc-conjecture. Suppose that f (x) ∈ Z[x] has no repeated

roots. Then

D1/ deg( f ) � A f (D) � D1/(deg( f )−2)+o(1).

In particular A f (D) � D1/2+o(1) if deg( f ) ≥ 4.
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In fact we believe that A f (D) = D1/ deg( f )+o(1) if deg( f ) 6= 2, and we will give a
heuristic to justify this for deg( f ) ≥ 3 in Section 7. For linear polynomials we prove

the following, in Section 6.

Theorem 3B If f (x) = ax + b with (a, b) = 1 then

A f (D) ∼ 2α(a) × 6

π2
D

∏

p|a

p

2(p + 1)
,

where α(a) equals −1 if 8|a, equals 0 if 4|a but not 8, and equals 1 if 4 does not divide a.

For quadratic polynomials we believe that A f (D) = D1+o(1) (which might be prov-
able). More precisely we believe that if f is reducible then A f (D) ∼ c f D, and if f is

irreducible then A f (D) ∼ c f D/
√

log D for some constants c f > 0. It is easy to see
that such a dichotomy exists from the following examples:

Example 1 Consider f (x) = x2−1. Then f (x) = dm2 precisely when x2−dm2
= 1;

in other words, when we have a solution to Pell’s equation. Pell’s equation always has
an integer solution, so A f (D) ∼ (6/π2)D.

Example 2 Consider f (x) = x2−3. Then f (x) = dm2 is equivalent to x2−dm2
= 3;

that is, 3 is represented by the principal binary quadratic form of discriminant 4d.
Now 3 is represented by a binary quadratic form of discriminant 4d if and only if d is
a square mod 3, so that d ≡ 0 or 1 (mod 3). If that is the case then 3 is represented
by a binary quadratic form from the principal genus, of discriminant 4d, if and only

if 3 is a square mod p for every prime p dividing d, so that p = 3 or p ≡ ±1
(mod 12). In other words we have d ≡ 0 or 1 (mod 3), with no prime factors
congruent to ±5 (mod 12): By the fundamental lemma of the sieve [4] there are
� D/

√

log D such integers d ≤ D. For such d we know that 3 is represented by

some form from the principal genus, but it is a relatively deep problem to determine
which form(s). However, Cohen and Lenstra conjectured that there is just one class
of quadratic forms in each genus for over 75% of real quadratic discriminants, and
we expect this to be true for the restricted class of discriminants considered here.

Thus we surmise that Ax2−3(D) ≈ D/
√

log D, and a more detailed analysis of the

Cohen-Lenstra heuristic leads to the guess that Ax2−3(D) ∼ D/
√

log D.

2 Algebraic Preliminaries

Lemma 2.1 Suppose that f (x) ∈ Z[x] has no repeated roots. Then there exists a

constant B = B f such that for all prime powers q, there are no more than B values of a

(mod q) for which f (a) ≡ 0 (mod q).

Proof Let K be the splitting field for f over Q , let P be a prime in K lying over a
prime p with ramification index e and with N P = pg , let α1, . . . , αn be the roots
of f , and let pr be the highest power of p dividing the leading coefficient of f . We
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will show that for any m ≥ 0, the number values of a (mod pm) for which f (a) ≡ 0
(mod pm) is at most

B f ,p := max
P|p

n
∑

i=1

pg(er+vP,i )

where vP,i =
∑

k6=i vP(αk − αi). If p does not divide the discriminant D f of f then
r = 0 and each vP,i = 0, so that B f ,p ≤ n. Therefore B f := max{n, maxp|D f

B f ,p}.

Suppose f (a) ≡ 0 (mod pm). Select i such that vP(a−αi) = maxk

(

vP(a−αk)
)

,

so that vP(αi − αk) ≥ min
(

vP(a − αk), vP(a − αi)
)

= vP(a − αk). Therefore

em ≤ vP

(

f (a)
)

= er +
∑

k

vP(a − αk) ≤ er + vP(a − αi) +
∑

k 6=i

vP(αi − αk).

In other words, vP(a − αi) ≥ em − er − vP,i , so that there are at most (NP)er+vP,i

such values of a (mod pm). Summing over i then finishes the proof.

By the Chinese Remainder Theorem we immediately deduce:

Corollary 2.2 Suppose that f (x) ∈ Z[x] has no repeated roots. Then there exists a

constant B = B f such that there are no more than Bω(d) values of a (mod d) for which

f (a) ≡ 0 (mod d), where ω(d) denotes the number of distinct prime factors of d.

We will now prove a couple lemmas about the nonexistence of various types of

low degree factors for certain f (x) ∈ Q̄[x].

Lemma 2.3 Suppose that f (x) ∈ Q̄[x] has at least two distinct roots. If c is neither

zero nor a root of unity then f (x) − c f (y) has no linear factor in Q̄[x, y].

Proof If f (x)−c f (y) has a linear factor x−ay−b, with a, b in Q̄ , then the linear map

L(y) = ay + b has the property that f
(

L(y)
)

= c f (y). This implies that L permutes

the roots of f , which means that some power Lk of L fixes all the roots of f . Since
there are at least two distinct roots, Lk must be the identity, but this is impossible

since then f (y) = f
(

Lk(y)
)

= ck f (y) and c is not a root of unity.

Lemma 2.4 Suppose that f (x) ∈ Q̄[x] has at least three distinct roots. If c is neither

zero nor a root of unity then f (x)− c f (y) has no quadratic factor of the form x2 −ay2 +
2dx + ey + h ∈ Q̄[x, y].

Proof Let g(x) = f (x−d) so that g(x)−cg(y) has a factor of the form x2−ay2+`y+q

over Q̄ . Define P(x, y) by

(x2 − ay2 + `y + q)P(x, y) = g(x) − cg(y),

and let Pk(x, y) be the degree k part of P(x, y). Assuming without loss of generality
that g is monic of degree n, we find that x2 − ay2 divides xn − cyn so that n is even,
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say 2m, and c = am, giving P2m−2(x, y) = (x2m − am y2m)/(x2 − ay2). The degree
2m − 1 terms in the equation above then give

(x2 − ay2)P2m−3(x, y) + `y
(x2m − am y2m)

(x2 − ay2)
= u(x2m−1 − am y2m−1)

for some integer u. Replacing x to −x and subtracting, gives

(x2 − ay2)
(

P2m−3(x, y) − P2m−3(−x, y)
)

= 2ux2m−1,

so that x2 − ay2 divides 2ux2m−1, which can only happen if u = 0. But then x2 − ay2

divides −`yP2m−2(x, y), which can only happen if ` = 0.
We have proved that our quadratic factor must be of the form x2 − ay2 + q. In

fact each P2 j−1(x, y) = 0 for, if not, select the largest j for which P2 j−1(x, y) 6= 0 and
then (x2−ay2)P2 j−1(x, y) = v(x2 j+1−am y2 j+1), which is impossible. We deduce that

g(x) − amg(y) has no terms of odd degree, so that g(x) can be written as G(x2) for
some G(t) ∈ Q̄[t]. Letting X = x2 and Y = y2, we deduce that X − aY + q is a factor
of G(X) − amG(Y ), and so G has no more than one distinct root by Lemma 2.3.
But then g, and so f , can have no more than two distinct roots, contradicting the

hypothesis.

Remark It is plausible, following the two previous results, that f (x) − c f (y) has no
factor of degree ≤ k when c is not a root of unity, and f has more than k distinct

roots. However we do not see how to generalize the proofs above.

3 Integer Points on f (x) − c f (y)

We will use the following famous theorem due to Siegel, often referred to as Siegel’s
theorem, in what follows. This will involve introducing the idea of points at infinity,
which we now explain. Let h(x, y) be a polynomial in two variables. We will denote
the highest degree part of h(x, y) (which is obtained by homogenizing h(x, y) and

then setting the homogenizing variable to 0) as h̄(x, y). The linear factors of h̄(x, y)
correspond to the points at infinity for the curve h(x, y) = 0.

Siegel’s Theorem (see [6], or Section 2 of [1] for a contemporary account) Let

h(x, y) be an absolutely irreducible polynomial with coefficients in a number field. If

the curve h(x, y) = 0 has more than two distinct Q̄-points at infinity, then there are at

most finitely many integer points (a, b) on the curve h(x, y) = 0.

Using this we can proceed to the proof of Theorem 2:

Proof of Theorem 2 Suppose f (x)−c f (y) factors over Q̄ into absolutely irreducible
factors as

∏r
i=1 hi(x, y), each of which has degree ≥ 2 by Lemma 2.3. We will show

that each curve hi(x, y) = 0 has at most finitely many integer points.

Since
∏r

i=1 h̄i(x, y) = xn − cyn, and xn − cyn has distinct roots, each h̄i(x, y) has
deg hi distinct linear factors and so hi(x, y) = 0 has deg hi distinct points at infinity.
Therefore, by Siegel’s theorem (as stated above) we deduce that there are at most
finitely many integral points on hi(x, y) = 0 whenever deg hi ≥ 3.
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We are left with the case where deg hi = 2. We may assume that hi(x, y) = 0
can be written with rational coefficients, else hi(x, y) = 0 has at most finitely many

rational solutions (corresponding to its intersection with its conjugate curves). Now
h̄i(x, y) divides xn − cyn

=
∏

ξn=1(x − ξαy), where α is the positive real n-th root of

c, so that h̄i(x, y) = (x− ξ1αy)(x − ξ2αy), for two distinct n-th roots of unity, ξ1, ξ2:

• If ξ1 is real then ξ2 is real, since hi(x, y) is real, and thus, since they are distinct real

roots of unity, they must be 1 and −1. Therefore h̄i(x, y) = x2 − ay2 where a is
rational, which is impossible by Lemma 2.4.

• If ξ1 = ξ is not real then ξ2 = ξ̄, since hi(x, y) is real. Moreover, the coefficients

α(ξ + ξ̄) and α2 are rational, and so ξ2 + ξ̄2
=

(

α(ξ + ξ̄)
) 2

/α2 − 2 is rational.
Therefore ξ2 generates a field of degree at most two over the rationals, so that ξ2

is a primitive k-th root unity where k = 1, 2, 3, 4 or 6. Now k = 1 is impossible as

ξ is not real, the case k = 2 gives h̄i(x, y) = x2 − ay2 for some rational a, which is
impossible by Lemma 2.4. The cases k = 3, 4, 6 give h̄i(x, y) = x2−2baxy+4ba2 y2

for b = 1, 2, 3, respectively, where a is rational. Making the change of variables
x = X + aby we find that hi(x, y) = X2 + Ay2 + cX + dy + e where A = b(4− b)a2

is a positive rational number. By further changes of variables to remove the linear
terms, and scaling up to make solutions integers, we find that integer points on
hi(x, y) = 0 correspond to integer points (u, v) on an ellipse of the form u2+Av2

=

N ; evidently |u| ≤
√

N and v ≤
√

N/A so there are finitely many.

4 Large Squares Dividing f (n)

Fix an ε > 0 and a sufficiently large integer y ≤ N1/3. We will show that if N is
sufficiently large then

(4.1) #{n ≤ N : m2| f (n) for some m > y} ≤ εN,

unconditionally if deg( f ) ≤ 2, and assuming the abc-conjecture otherwise.

It follows immediately from Theorem 8 of [3] and the discussion preceding it, that
if we assume that the abc-conjecture is true, then for any fixed c > 0 there are o(N)
integers n ≤ N such that f (n) is divisible by the square of a prime > cN . Of course

if f (x) has degree 1 or 2, then | f (n)| � N2 for all n ≤ N , so that f (n) cannot be
divisible by the square of a prime � N .

The number of integers n ≤ N for which f (n) is divisible by the square of some

prime in the range y < p < cN is, using Lemma 2.1,

≤
∑

y<p<cN

B f

( N

p2
+ 1

)

� N

y
+

N

log N
.

Finally we must consider those n for which f (n) is divisible by the square of some
integer m > y, all of whose prime factors are ≤ y. For each n we select the smallest
such m and we claim that this is ≤ y2: for if not select any prime factor p of m so that
p ≤ y and let M := m/p which is > y2/y = y and such that M2 divides m2 which
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divides f (n), contradicting the minimality of m. Thus using Corollary 2.2, and since
ω(m) � log m/ log log m so that Bω(m)

f = mo(1), we have that the number of such n is

≤
∑

y<m≤y2

Bω(m)
f

( N

m2
+ 1

)

� yo(1)(N/y + y2) � N/y1−o(1).

The result (4.1) follows from combining the last three paragraphs, so long as y

was chosen sufficiently large.

5 Proof of Theorems 1B and 1C

We want to determine the number of distinct squarefree integers d for which there

exists some integer n ≤ N such that f (n) = dm2 for some integer m. Evidently there
are no more than N such values of d. To get a lower bound we remove all cases where
m > y (where y is as defined in section 4), as well as all those d for which there is
more than one such pair m, n with m ≤ y and n ≤ N . In other words, using (4.1),

our quantity is

≥ (1 − ε)N −
∑

m1,m2≤y

#{n1 6= n2 ≤ N : f (n1)/m2
1 = f (n2)/m2

2 is squarefree}.

Note that if m1 = m2 then we are asking for solutions to f (n1) = f (n2) with n1 6=
n2. However for any non-constant polynomial, | f (n)| is monotone increasing for
n sufficiently large, so there are at most finitely many such pairs n1, n2. Otherwise,
assuming without loss of generality that m1 > m2, each pair (n1, n2) gives rise to an

integer point on the curve

f (x) − c f (z) = 0

with c = (m1/m2)2 > 1. By Theorem 2 there are �c, f 1 such points when deg( f ) ≥
3. Therefore for fixed but large y,

∑

m1,m2≤y

#{n1 6= n2 ≤ N : f (n1)/m2
1 = f (n2)/m2

2 is squarefree} � 1,

which completes the proof of Theorem 1C for deg( f ) ≥ 3.

When deg( f ) = 2 we can get more uniform bounds. In that case if f (x) =

ax2 + bx + c, we can complete the square to get 4a f (x) = X2 + ∆, where X = 2ax + b

and ∆ = −(b2 − 4ac). Then, if we fix positive integers m1, m2 ≤ y, take an integral
solution (n1, n2) to f (n1)/m2

1 = f (n2)/m2
2, and let r j = 2an j + b, we obtain an

integral solution (r1, r2) to

(m2r1 − m1r2)(m2r1 + m1r2) = ∆(m2
1 − m2

2).

This has τ
(

∆(m2
1 − m2

2)
)

= yo(1) solutions, where τ (.) is the number of divisors of

an integer. Theorem 1B then follows from the proof in Section 4 with y = log2 N .
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6 Linear Polynomials

Proof of Theorem 1A We wish to find the number of squarefree integers d for which
there exists an integer m such that dm2

= an + b for some n ≤ N . For those d ≡ q

(mod a), we select m to be the smallest positive integer for which qm2 ≡ b (mod a)
if such an m exists. Thus we need to determine

∑

m∈Ma

#{squarefree d ≤ (aN + b)/m2 : d ≡ b/m2 (mod a)}.

By elementary sieve theory we have that the number of squarefree integers d ≡ q

(mod a), when (a, q) = 1, is, writing d = ar + q,

∑

r≤x

∑

g2|ar+q

µ(g) =

∑

g≤√
ax+q

µ(g)#{r ≤ x : g2|ar + q}

=

∑

g≤√
ax+q,(g,a)=1

µ(g)
(

x/g2 + O(1)
)

= x
∏

p-a

(

1 − 1

p2

)

+ O(
√

ax).

Summing up over m ∈ Ma gives the result.

Proof of Theorem 3B If f (x) is a linear polynomial, say ax + b with (a, b) = 1,

then we are interested in the proportion of squarefree integers d ≤ D for which there
exists some integer m such that dm2 ≡ b (mod a). In other words d belongs to one
of a certain set of congruence classes mod a; the number of such congruence classes
being φ(a)/2w(a) where w(a) denotes the number of distinct odd prime factors of a,

plus 2 if 8 divides a, or plus 1 if 4 divides a but not 8. By the estimate in the proof of
Theorem 1A each of these arithmetic progressions contains (D/a)

∏

p-a(1 − 1/p2) +

O(
√

D) such integers d ≤ D, and so we obtain the result.

7 Heuristic

The argument preceding Lemma 1 in the introduction tells us that if f (n) = dm2

with d ≤ D then |n| � D1/(deg( f )−2)+o(1), assuming the abc-conjecture. If |n| �
D1/ deg( f ) then | f (n)| � |n|deg( f ) ≤ D, so that d ≤ D. Therefore we need to explore

further for D1/ deg( f ) � |n| ≤ D1/(deg( f )−2)+o(1). For N = cD1/ deg( f )2 j with j =

0, 1, 2, . . . , J we consider N < |n| < 2N , so that | f (n)| � Ndeg( f ). Then m2
=

| f (n)|/d � Ndeg( f )/D, and obviously m2 � Ndeg( f ). Now there are≤ Bω(m)
f values of

n (mod m2), for which f (n) ≡ 0 (mod m2) by Corollary 2.2. Therefore the number
of such N < |n| < 2N is ≤ Bω(m)

f (2N/m2 + 1). For the heuristic assume the term “1”

is irrelevant at least on average, and recall that Bω(m)
f � No(1). Therefore #{n ≤ N :

m2| f (n) for some m ∈ M} � ∑

m∈M N1+o(1)/m2 �
√

D/Ndeg( f )/2−1−o(1), where
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M is the interval Ndeg( f )/2/D1/2 � m � Ndeg( f )/2. Summing over all such N we get
� D1/ deg( f )+o(1), for deg( f ) ≥ 3, as required.

Added in proof: In March 2002, we received a preprint by Bjorn Poonen, “Square-
free values of multivariable polynomials”, in which he proves our Theorems 1A, 1B,
1C; his proofs are slightly different from the ones in this paper.
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