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ABSTRACT

In this paper we generalize the work of Harris—Soudry—Taylor and construct the
compatible systems of two-dimensional Galois representations attached to cuspidal
automorphic representations of cohomological type on GLy over a CM field with a
suitable condition on their central characters. We also prove a local-global compatibility
statement, up to semi-simplification.

1. Introduction

In the works [HST93] of Harris—Soudry-Taylor and [Tay94] of Taylor, the authors construct
the compatible system of two-dimensional p-adic Galois representations attached to a cuspidal
automorphic representation of cohomological type on GLs over an imaginary quadratic field,
whose central character satisfies a suitable invariance condition. The improvement [BH07] of
Berger—Harcos shows that the Galois representations constructed by [HST93, Tay94| satisfy the
correct equality of Frobenius and Hecke polynomials, outside an explicit finite set of primes. The
aim of the present work is to generalize the results of [BHO7, Tay94] to a general CM field, and to
prove a local-global compatibility statement, up to semi-simplification, at primes not dividing p.

To state the main result of this paper, we set up some notation. Let E be a CM field, with
F' its maximal totally real subfield. Denote by 7 the Galois conjugation of E over F. Suppose
that 7 is a cuspidal automorphic representation on GLa(Apg) (where Ap is the ring of adeles
of E). We assume that 7 is of cohomological type. Denote by w, the central character of 7. In
this paper, we are interested in such cohomological 7, whose central character w, satisfies the
following condition.

(Char) There exists an algebraic idele class character & of A such that
wr = wo Normg,p

(here Normp,p is the norm map from A} to Ay), and @ = @, W, satisfies in addition the
following: the sign w,(—1) takes the same value for all Archimedean places of F'.

Condition (Char) in particular implies that w, is invariant under 7, i.e. that w; o7 = wy. In
the case where E is an imaginary quadratic field, i.e. F' = Q as considered in [HST93, Tay94],
condition (Char) is equivalent to requiring that w, is invariant under 7. But for F' # Q it is
stronger than the invariance.

Now fix an embedding Q — C. Similarly, for each prime p, fix an embedding Q — Qp. Fix
an isomorphism ¢, : Q, = C compatible with these two embeddings of Q.
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As usual, we denote by G, the absolute Galois group of any field L.

THEOREM 1.1. Suppose that the central character of 7 satisfies condition (Char). Then for each
prime p, there exists a continuous irreducible p-adic Galois representation

Pp - GE — GLQ(QZ})

such that, for each finite prime w of E not dividing p, we have the local-global compatibility
statement, up to semi-simplification,

tp WD(pplGs,)** = L, (o @ |det],1/?)%.

Here WD is the Weil-Deligne functor, and Lg, is the local Langlands correspondence for
GLy(Ey). Furthermore, if m, is not of the form Stg, ® x, where Stg, is the Steinberg
representation of GLa(E,), and x is a character of EJ, then we have the full-local-global
compatibility (as usual up to Frobenius semi-simplification)

tp WD(pplais, ) 2 L, (1w @ |det],"/?).

According to general conjectures, since 7 is cohomological, the Galois representation p,
should be geometric in the sense of Fontaine-Mazur, i.e. p, should be deRham (in the sense of
Fontaine) at places of E above p. We are only able to show that p, is Hodge-Tate in general.
More precisely we have the following theorem.

THEOREM 1.2. For each finite prime w of Ef above p, the representation p, is Hodge-Tate at
w, with the correct Hodge—Tate weights (determined by the Archimedean components of 7; see
Theorem 5.17 for the precise statement).

Furthermore, suppose that w is a place of & above p, inert over F', and such that m,, is
spherical, with distinct Satake parameters o, # [3,,. Then p, is crystalline at w.

Suppose that w is a prime above p that splits over F', with conjugate prime w”, such that m,
and m,~ are spherical, with Satake parameters ay,, 3, for wy, and q,«, By for w,r respectively.
Suppose that the elements {ou,, Bw, uwr, Buwr } are all distinct. Then p,, is crystalline at w (and
also at w”).

Remark 1.3. The Galois representation p, is constructed using p-adic limit process from Galois
representations which are geometric. However, taking the p-adic limit process does not in general
preserve the deRham property, which is the reason that we are not able to show that p, is deRham
at primes above p in general. For exactly the same reason, the existence of p, alone does not
imply the Ramanujan conjecture for 7.

We note that the crystalline assertion in Theorem 1.2, under the stated conditions, was
proved by Jorza [Jorl0] in the case where E is imaginary quadratic.

About the proof

As in the case of [BH07, Tay94], the fundamental difficulty in the construction of the Galois
representation is that the group Resg/q GLy/k (Weil restriction of scalars) does not admit a
Shimura variety. The basic idea of Harris et al. [HST93] is that when the cuspidal automorphic
representation m on GLy(Ag) satisfies condition (Char), the representation m admits a lifting IT
as a cuspidal automorphic representation on the group GSp,(A ). One can choose the lifting II
so that it is represented as a holomorphic Siegel-Hilbert modular form. The argument of [BHO7,
Tay94], involving consideration of quadratic twists of 7, allows one to extract the two-dimensional
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Galois representation associated to 7 from the four-dimensional Galois representation associated
to 11, if the latter can be constructed.

One of the difficulties in the construction of the Galois representation associated to I is that it
is not of cohomological type. More precisely, its Archimedean components belong to holomorphic
limits of discrete series. To circumvent this difficulty, we draw on the results of [MT12] (which
is a generalization of the results of Kisin and Lai [KLO05] and Jorza [Jorl10] to the Siegel-Hilbert
case). Suppose first that the cuspidal automorphic representation IT admits Iwahori fixed vectors
at primes of F' above p. Then the main result of [MT12] gives a one-parameter family of p-adic
deformation of II, with the property that there is a Zariski dense set of so-called classical points in
the family, corresponding to cuspidal automorphic representations of GSp, (A r) of cohomological
type (actually having Archimedean components in holomorphic discrete series), and these points
accumulate to II. A standard argument using the theory of pseudo-character allows one to
construct the Galois representation attached to II, if one can construct the four-dimensional
Galois representations attached to a cuspidal automorphic representation on GSp,(A ) (say IT')
that is of cohomological type.

When F' = Q, the Galois representation associated to such a II' can be constructed from the
p-adic etale cohomology of a suitable Siegel three-fold (work of Laumon [Lau05] and Weissauer
[Wei05]). However, when F' # Q, the Galois representation obtained by using the p-adic etale
cohomology of a similar Siegel-Hilbert modular variety would be of dimension 4F:Ql (the same
phenomenon as in the construction of Galois representations associated to Hilbert modular
forms), and is no longer appropriate. Instead, if one has a lifting of IT" to an automorphic
representation II' on GL4(Ap), then the latter would be of cohomological and self dual type,
and the arguments of Sorensen [Sor10] and Chenevier and Harris [CH13] allow one to construct
the Galois representation associated to I , using Galois representations that ultimately come
from etale cohomology of Shimura varieties of unitary groups [Shill].

If TI' is globally generic, then the lifting to GL4(Ap) follows from the work of
Jacquet—Piateski-Shapiro—Shalika (unpublished, see for example [GRS97]) and of Asgari and
Shahidi [AS06]. However, in our case, the members corresponding to the classical points in the
p-adic family are not generic at the Archimedean primes, in particular not globally generic,
and their result does not apply. Instead, we use the result of Arthur [Art, Art04] on endoscopic
classification of the discrete automorphic spectrum of GSp,(Ar), which in our case gives the
required lifting to GL4(AF) (alternatively we can use the result of Arthur [Art] on the generic
packet conjecture, but in any case this is proved using the main results of [Art] on endoscopic
classification).

The above strategy works in the case when II has an Iwahori-fixed vector at primes of F
above p. To treat the general case, we use the patching lemma of [Sor10], together with the result
that we can do base change for automorphic representation on GSp, over solvable extensions.
This latter result again relies on the works of Arthur [Art, Art04], combined with the solvable
base change theorems of Arthur and Clozel [AC89] for general linear groups, and the result of
Shahidi [Sha97] on the non-vanishing of the twisted exterior square L-function at s = 1.

The method of using p-adic deformation is the main difference to the method of [Tay91],
where the method of considering p-power congruences between Il and forms of cohomological
type is used instead. Even though the method of using p-adic deformation is less elementary, it
has an advantage, namely one can prove a local-global compatibility statement for primes of F
not dividing p, up to semi-simplification, for the Galois representation associated to II (which is
not of cohomological type), using the corresponding local-global compatibility statement for the
Galois representations associated to cuspidal automorphic representations on GSp,(Ap) that
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are of cohomological type. The argument is a generalization of Chenevier [Che], and we rely on
the work of Gan and Takeda [GT1la, GT11b], which gives a fairly explicit description of the
local Langlands correspondence for GSp,, and allows us to control the semi-simple part of the
local Langlands parameter at primes not dividing p in a p-adic family via Bernstein components.
Here we are also using the results of Chan and Gan [CG2| to ensure that the local Langlands
correspondence for GSp, constructed by Gan—Takeda is compatible with the trace formula lifting
from GSp, to GL4 in the framework of [Art, Art04]. We note that it seems difficult to obtain the
full local-global compatibility statement (i.e. including the monodromy part) using the p-adic
deformation technique.

Once we have a local-global compatibility (up to semi-simplification) statement for the
Galois representation associated to II, we can use a generalization of the argument of [BHOT],
again involving quadratic twists, to obtain the local-global compatibility statement, up to
semi-simplification, for the Galois representation associated to the cuspidal automorphic
representation on GLga(Afg) that we started with. Since base change arguments are used in
the proof of local-global compatibility (up to semi-simplification), it is crucial that we are able
to do the construction for a general CM field. Finally, the part of Theorem 1.2 on the crystalline
property can be proved as in the work of Jorza [Jor10], using the results of K. Nakamura [Nak11]
and Tan [Tan11] generalize results of Kisin to arbitrary p-adic local fields on analytic continuation
of crystalline periods.!

On the lifting from GLg g to GSpy p. To be precise, the relevant group is the algebraic
group H over F', whose group of F-points is given by

H(F) = GLy(E) x F*/{(z1d, Normg,p 2~ '), 2 € E*}.

We have H = GSO(3,1),r (the identity component of GO(3,1),r). As before, 7 is a cuspidal
automorphic representation on GLo(A g), whose central character w, satisfies condition (Char).
Thus w, factors through the norm map Normp,p, and there are exactly two choices of
Hecke characters w of Aj through which w, factors, corresponding to extensions 7 of 7 to
H(Ar) 2 GSO(3,1)(AF). As in [HST93], one can extend 7 to GO(3,1)(Ar) by considering
auxiliary data (the choice of a suitable sign for each place of F'). One can then consider the
orthogonal-symplectic dual reductive pair (GO(3,1),r, GSpy/p), and hence construct the theta
lifting of 7 (more precisely an extension of 7 to GO(3,1)(AFr)) to GSps(AF). It is proved by
Takeda [Takll] (building on the work of Roberts [Rob01]) that the theta lifting is non-zero
(when [HST93] was written, it was only known that given 7, there is a sufficiently ample infinite
set of quadratic Hecke characters n of A} such that the theta lifting construction applied to
T ® 1 is non-zero).

On the other hand H is one of the elliptic e-twisted endoscopic group of GSpy/p (here € is
the quadratic idele class character of A} corresponding to the quadratic extension E/F', hence
a character of GSp,(AF) via the similitude factor). In the work [Chal0], the lifting of 7 to
GSp4(Ar) is constructed as a trace formula lifting in the framework of e-twisted endoscopy (at
least under some local conditions on 7). In this paper, we will also deduce this lifting as a corollary
of Arthur’s work on endoscopic classification of automorphic representation on GSp,(Ar).

! The first draft of this paper was written in 2011; in the intervening years there has been significant progress in
the construction of Galois representations attached to cohomological automorphic forms on general linear groups
over totally real and CM fields. For the most up to date results the reader should refer to the works of Harris
et al. [HLTT13] and Scholze [Sch13].
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On the use of Arthur’s results. In this paper we crucially rely on Arthur’s works on
endoscopic classification of automorphic representations for the group GSp, (see [Art, Art04]).
At the time of writing, the results in [Art, Art04] are still conditional on the stabilization
of the twisted trace formula; however significant progress in this direction has been made by
Waldspurger and others. We also note that in [Art] the results are worked out for symplectic
and orthogonal groups, though it is sketched in [Art04] how the formalism and results in the
setting of [Art] can be extended to cover the case of GSp,. Thus the results of this paper will be
conditional on the results of Arthur in [Art, Art04].

Organization of the paper

In §2, we summarize the results from Arthur’s endoscopic classification of the discrete
automorphic spectrum [Art, Art04] that we need in the following. We also record a consequence
of Arthur’s results on base change of automorphic representation on GSp, (which was already
known to several earlier authors [Shad7, Sou05]).

In §3 we combine Arthur’s work with the result of Sorensen [Sorl0], and Chenevier and
Harris [CH13], to obtain results on existence of Galois representation associated to cuspidal
automorphic representation on GSp,(Ar) of cohomological type, together with a local-global
compatibility statement. The fact that Arthur’s results imply such statements on Galois
representation is well known, but we record the statements here for reference.

Section 4 is the main technical core of the paper. The goal is to construct the Galois
representation associated to cuspidal automorphic representation on GSp,(Ap), whose
Archimedean components are in the holomorphic limit of discrete series. This uses the technique
of p-adic deformation from [MT12]. We also prove a local-global compatibility statement up to
semi-simplification for the Galois representation constructed, using the idea of Chenevier [Chal0],
together with the results of Gan and Takeda [GT11la, GT11b] and Chan and Gan [CG2].

In §5, we apply the results in §4 to the construction of the Galois representation associated
to a cuspidal automorphic representation on GLy(Afg) of cohomological type, whose central
character satisfies condition (Char), by the method of [BHO7, Tay94]. We show that the
lifting from GL2(AE) to GSp,(Ar) follows from Arthur’s results. The local-global compatibility
statement, up to semi-simplification, follows from the results of § 4, together with a generalization
of the argument of [BH07]. With this comes the proof of Theorems 1.1 and 1.2.

Notation 1.4. In general if F' is a number field, and v a prime of F' (both finite and Archimedean),
we denote by F, the completion of F' at v. We denote by art,, : F,* — Wl‘ﬁi’ the local reciprocity
isomorphism at v, with Wg, being the Weil group of F;,. We generally denote by Frob, a geometric
Frobenius element at v, and art, is normalized so that Frob, corresponds to a uniformizer of
F,. For w € Wp,, we denote by |w|, the absolute value of w induced by the normalized absolute
value on F, under art,. If F;, = R, then the isomorphism Wﬁb >~ R* is induced by sending
z € C* C WRr =C*UC%j to |z|c := |2|> (thus z is the usual absolute value of a complex
number), and j — —1.

If v is finite and w € Wp,, then valuation of w is defined to be the integer r such that
|lw]y, = Nv™", here Nv is the norm of v.

We denote by £, the local Langlands correspondence for GL,(F,) associating an n-
dimensional Frobenius semi-simple Weil-Deligne representation of Wpg to an irreducible
admissible representation of GL,,(F},). We use the normalization as in the works of Harris-Taylor
and Henniart. In this paper we need to use the local Langlands correspondence for GL,(F)
when n = 1,2,4. We denote each of these cases by L, as no confusion can arise.
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We denote by A the ring of adeles of F, and by |- |a, the adelic norm.

We denote by G|, the absolute Galois group of any field L. If E/F is a Galois extension,
with 7 € Gal(E/F), then for any representation p of Gg, we denote by p” the conjugation of p
by 7, given by p"(g9) = p(tgr 1) for g € G.

If on the other hand F and F' are local fields, and = is an irreducible admissible representation
of GL,,(E), then we define the irreducible admissible representation 77 := wo7. We have a similar
definition in the adelic context when E and F' are number fields.

If p is any p-adic representation of G (with F' a number field or a local field), then for n € Z
we denote by p(n) the Tate twist of p by the nth power of the p-adic cyclotomic character. We
employ the convention that the Hodge—Tate weight of the p-adic cyclotomic character is —1.

In this paper, the symplectic similitude group GSp, is defined with respect to the following
skew-symmetric matrix

2. Resume on Arthur’s results on endoscopic classification of automorphic
representation on GSp,

For this section F' will denote a general number field. For any prime v of F' (both finite and
Archimedean), we denote by F), the completion of F' at v.

2.1 Local L and A-parameters
We begin by discussing the local L and A-parameters which are needed to state Arthur’s results.
For more details the reader is referred to [Art04] or [Art, ch. 1].

For each of the local completions F},, we let L, be the SLy form of the local Langlands group
of F,. Thus if W, is the Weil group of F,,, then

Wk, if v is Archimedean
Wr, x SLa(C) otherwise.

For ¢ € Lp,, we denote by |o|, the absolute value of the image of ¢ in W, .

Let N > 1 be an integer. Since we will be working with similitude groups, we consider the
group G noi= GLy x GLq, as an algebraic group over F', whose Langlands dual group can be
taken as Gy = GLx(C) x GL1(C). The dual group Gy is equipped with the automorphism @,
where

a((z,9) = (@* - yy) for (z,) € G

Here 2* = ‘2~ is (up to conjugacy) the unique outer automorphism of GL,,(C).

We denote by ®,(N) the set of admissible homomorphisms from Lpg, to Gy up to GN—
conjugacy

~

gzLFU —>C~¥N.

Elements ¢ € ®,(N) are called L-parameters of Gy (F,), and can be written in the form

$:¢®X7
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where ¢ and x are respectively N and a one-dimensional representation of Lp,. Thus x is a
character of Wy, , which will consequently be identified as a character of F, via local class
field theory, and ¢ is an L-parameter for GLy(F,) (in the usual sense). We also denote by

®y bad (V) C @, (V) the subset of parameters gg whose image in Gy is bounded.
When v is finite, so that Ly, = Wg, x SL2(C), and ¢ : Lr, — GLy(C) as above, we denote
by ¢*° : Wg, — GLx(C), the semi-simple part of ¢, as the homomorphism

X ‘w|11;/2 0
% (w) = ¢ | w, 0 |w\_1/2 for w € Wg,. (2.1)

Now to define the A-parameters we enlarge the local Langlands group and form the group
Lp, x SLa(C) (when v is finite this extra SLo(C) factor of Arthur is not to be confused with
the SLy(C) factor for monodromy action occurring in the definition of Lg, ). Denote by ¥, (),
the set of A-parameters of G ~N(Fy), to be the set of admissible homomorphisms (again up to
éN—conjugacy)

¥ Lp, x SLy(C) - Gy

such that 1; ‘SALz(C) is algebraic, and that ¢|r,. has bounded image. Again such a 1; can be written
in the form ¢ = ¢ @ x, where 1 is an N-dimensional representation of Lp, x SLa(C) such that
Y|sr,(c) is algebraic, and x is a character of W, . As in [Art, Art04] since we do not yet know the
generalized Ramanujan conjecture (for cuspidal automorphic representations on general linear
groups), we have to work with the larger set W;F(NN) consisting of ) as above but without the
boundedness condition on 9|, . If ¢ € W,(N) is trivial on SLy(C) (note that this is not the
SL2(C) that occurs in the definition of Lg, when v is finite), then by definition {bv € @, paa(N).

Given an A-parameter zz =1 @ x, we denote by ¢ : L, - GL,(C) the homomorphism

defined by
o[>0
dp(o) = | o, 0 | |_1/2 for o € Lp,. (2.2)
Olv

For @Z = 1 @ x as above, we will refer to 5{5 = ¢y @ x as the L-parameter associated to the
A-parameter .

We will be interested in the parameters (both L and A) that are stable under the
automorphism &. Thus if {/; =Y @ x € V,(N), then ¥ is G-stable if @ o 4 is conjugate to {/;
under G N, or equivalently the representation

P*® x:0o— Y(o)"-x(o) for o € Lp, x SLy(C)

is equivalent to ® itself, and we refer to this as saying that 1 is x-self dual. Similarly for (the
simpler case of) ®,(N).

Let 1 = ¥ @ x be an a-stable parameter. Thus v is x-self dual and there exists A € GL,(C)
such that

Ve x=AWWA.

We say that {bv is symplectic (respectively orthogonal) type, if A = —A (respectively Al = A).
We now specialize to the case N = 4. Put G := GSp, the algebraic group over F' given

by the symplectic similitude group of a four-dimensional symplectic vector space over F', and

we denote by c¢ the similitude character of GSp,. The Langlands dual group G of G is given
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by G= GSping(C), the similitude spin group in five variables. However, in this case we have the
exceptional isomorphism

GSpin;(C) = GSp,(C)

such that the standard four-dimensional spin representation of GSpins(C) corresponds to the
standard representation of GSp,(C). We will used this identification in the following. We thus
regard G as a subgroup of GL4(C), and hence we have the embedding

G — Gy = GL4(C) x GL,(C)
g = (g,c(9)).

In the context of [Art, Art04] the group G is an elliptic twisted endoscopic group of G, with
respect to @. We note that in the context of [Art, Art04] it is ‘more correct’ to think of G as the
similitude spin group GSpins, . Indeed for general N the group GSpingy 1 ,p (and not GSpyy/p
when N > 2) occurs as a twisted endoscopic group of Gy with respect to @. However since we
have the exceptional isomorphism GSpy,p = GSping,p it does not matter in this case.

We define @, (G) to be the G- conjugacy classes of admissible homomorphisms ¢ : Ly, — G
and @, qd(G) to be the subset of parameters with bounded image. Similarly ¥, (G) is the set
of é—conjugacy classes of admissible homomorphisms ¢ : Lp, x SLa(C) — G whose restriction
to SLz(C) is algebraic, and whose restriction ¢|r,, has bounded image (we also define the set
of parameters ¥;F (G) without the boundedness condition on the restriction to Lg,). These are
the set of local L and A-parameters of G( v) respectively. Given ¢ € ®,(G), the composite of ¢
with the embedding G — G gives a a-stable symplectic type parameter. In fact this identifies
the set ®,(G) with the subset of (equivalence classes of) parameters in ®,(4) that are a-stable
and of symplectic type, cf. [GT11b, Lemma 6.1]. The same remarks apply to ¥,(G).

Given ¢ € ®,((G), one can define the semi-simple part of ¢*° of ¢ as in equation (2.1), and
given ¢ € ¥, (G) one defines the L-parameter ¢, € ®,(G) associated to ¢ as in equation (2.2).

Finally for future reference, given ¢ € ®,(G), we denote by k¢ the L-parameter of GL4(F)
obtained by composing ¢ with the inclusion G — GL4(C).

2.2 The local classification
Denote by II,,(G) the set of (isomorphism classes) irreducible admissible representations of G(F,),
and IT, temp (G) the subset of tempered representations. In this subsection we state Arthur’s result

on the endoscopic classification of II,(G).
Let 1 € U,(G). Put

Sy = centralizer of the image of ¢ in é,
Sy = Sy/S0Z(G).
We denote by SA’w the character group of Sy.

THEOREM 2.1 [Art, Art04]. Given any ¢ € W,(G), there is a finite multi-set Iy (i.e. a set with
multiplicities) consisting of irreducible unitary representations of G(F,), together with a map

Hw—)é\w

T (-, 7)

which is characterized by (twisted) endoscopic transfer.
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In the particular case where 1 = ¢ € ®,144(G), then 1l is actually a set (i.e. with no
multiplicities), and consists of tempered representations of G(F,). The map

H¢ — §¢
is injective, and bijective when v is finite. We have

Hv,temp(G) = H H¢~
PED, bad(G)

For ¢ € ®,144(G), the set Ily is called the L-packet associated to ¢. Thus Theorem 2.1
gives in particular a classification of Il temp(G) by partitioning I, temp(G) into L-packets
corresponding to the set of L-parameters ®,qq(G), and it also describes the elements in the
L-packet corresponding to ¢ € ®,1,q4(G) in terms of the characters of the component group Sy.
In our case with G = GSpy, p, the groups Sy are either trivial or isomorphic to Z /27, so the size of
the L-packets I1 is either one or two. We refer the reader to [Art, ch. 1] for the precise meaning
of the packets Iy and the map II; — §¢ being characterized by twisted endoscopic transfer.
The usual Langlands quotient construction gives the construction of packets II, C II,(G) for
all ¢ € ®,(G). In the following we refer to this classification of II,(G) as the local Langlands
correspondence for G(F,), and we denote by

rec, : I1,(G) = @,(Q)

the surjective map sending 7 € Il to ¢. Under this correspondence, the central character of 7
is equal to the similitude character of the parameter rec,(7) (as usual identified via local class
field theory).

In our particular case with G = GSp,, another construction of the local Langlands
correspondence for GSpy(F,) is given by the works of Gan and Takeda [GT11la, GT11b], using
the method of theta correspondence. We denote by

recST : I1,(G) — ©,(G)

the local Langlands correspondence as constructed in [GT11a, GT11b]. In Chan and Gan [CG2] it
is shown that the local Langlands correspondence for GSp, constructed by Gan—Takeda coincides
with that of Arthur, i.e. rec, = rech, by showing that the L-packets constructed by Gan—Takeda
satisfy the local character relations as in the case of the packets constructed by Arthur.

Finally, for ¢ € ¥,(G), the multi-set Il (commonly called an A-packet in the literature)
pertains to the global classification instead of the local classification, which we describe in the
next subsection. We note that the A-packet II, in general contains representations that belong
to different L-packets (in the sense above). In the case where v is finite and 1 is an unramified
parameter, in the sense that ¢|r, : Lg, — G is unramified (i.e. factors through the projection
Ly, - Wg, = Wg,/IF,), then the fibre of the map II, — §,/, over the trivial character is the
unique spherical representation in this packet with L-parameter ¢, (having no multiplicities).
We refer to [Art, p. 44] for the extension of the construction of packets for parameters in the
larger set U (G).

2.3 Formal global parameters and the global classification
In the absence of the global automorphic Langlands group, we define a global A-parameter
formally [Art, Art04]. We return momentarily to the setting of the group G = GLy x GL;
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(over F'). A global A-parameter for Gy is a formal expression {bv =1 @ x, where x is an idele
class character of A7, and v is a formal unordered sum

b=t B B

where each 1, is a formal expression
Uy = pr Moy

where p, is a cuspidal automorphic representation of GL,,. (Ar), and v, is an algebraic
representation of SLy(C) of dimension n,, such that N = miny + --- + mgns. If all the v,
are the trivial representation of SLy(C), then we say that v is a generic parameter. If on the
other hand s =1, i.e. ¥ = p X v, then we say that ¢ is a simple parameter.

We say that ¢ = ¢ @ x is a-discrete if the v, are all distinct (that is, the pairs (u,, ;) are
distinct), and the cuspidal automorphic representations p, are y-self dual, i.e.

pr @ (x o det) = py,

here p denotes the contra-gredient of p, (this is to mimic the definition of x-self duality for
local parameters in the previous subsection; note that the finite-dimensional representations v,
of SL2(C) are all self dual). We denote the set of such a-discrete global A-parameters of G as
Uy p(N).

In general, given a cuspidal automorphic representation p of GL,(Ar) that is x-self dual,
i.e. satisfies p* ® (x o det) = u, we say that p is of symplectic type (respectively orthogonal
type) with respect to ¥, if the twisted exterior square L-function L(s,u, A? ® x 1) (respectively
the twisted symmetric square L-function L(s, u, Sym?® x~!)) has a pole at s = 1. Under the
condition that p is x-self dual, these two cases are mutually exclusive (here and in the following,
by L-function we only need to work with the partial L-function defined by Euler factors outside
the set of primes where the data ramifies). Slightly more generally, for a formal expression
uwXuv, with g a x-self dual cuspidal automorphic representation of GL,,(Ar), and v an algebraic
representation of SLo(C) of dimension n, then we say that u X v is of symplectic type with
respect to x, if either n is odd and p is of symplectic type with respect to x, or n is even and
u is of orthogonal type with respect to x (noting that an algebraic representation of SLo(C)
of dimension n is symplectic if n is even and orthogonal if n is odd). We similarly define the
condition for u X v to be of orthogonal type, namely that either n is odd and pu is of orthogonal
type with respect to x, or n is even and p is of symplectic type with respect to x.

Then given ¢ = ¢ @ x € ¥ p(N), with ¢» = ¢y B --- H ¢, as above, we define ¢ to be of
symplectic type, if all the v, are of symplectic type with respect to x. One can similarly define
the condition for ¥ to be of orthogonal type.

We now specialize to the case N = 4. With G = GSp4/~F as before, we define ¥ (G) to be
the subset of Wy p(4) consisting of global A-parameters of G4 of symplectic type, and ¥y (G, x)
C Y5 r(G) to be the subset of parameters with similitude character x (if the context is clear
we will then denote a general element of Uy (G, x) as ¢ rather than ¢). Given ¢ =9 & x €
Uy r(G, x), one can define the component group Sy, formally, cf. [Art, §1.4]. If ¢» = ¢ B- - - B,
then Sy, & Z/2°7'Z (again in our case where G = GSp, the value of s is actually either 1 or 2).

A parameter ¢ = ) & x € Uy (G, x) has a localization Yy € WH(4) for each place v of
F. Indeed if ¢ = ¢y B --- H s, with ¢, = p, ¥ v, as above, the local v-component (g ),
of u, is an irreducible admissible representation of GL,,, (F},) that is self dual with respect
to xy. Denote by L,((pr)y) the L-parameter corresponding to (u,), under the local Langlands
correspondence for GL,,,, (F},). We then define the local parameter 1, (as an honest representation
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of LFU X SLQ(C))

hy = Ev((ﬂl)v)N& v @ @ Lo((ps)o) Mus,
% = % P Xo-

We then have ¢, € U} (4), and 1, € ®,(4) if 1 is generic.
In [Art, Art04] it is shown that if ¢ € Uy(G, x), then ¢, € ¥ (G). Similarly if ¢ is generic
then 1, € ®,(G). One can also define a localization map on the component groups

S¢ — S¢v

S > Sy.

Given ¢ € ¥y p(G, x), we then define the global packet II,, associated to v as
/
Iy = ® 1Ly,
= {71 = ®/7TU | Ty € 1Ly, for all v, (-, m,) = 1 for almost all v}

(as in the local case if 1) is not generic, then Il is to be regarded as a multi-set). If = € I, then
7 defines the character (-, m) on Sy via s+ [] (54, 7y) for s € Sy.

We can now state Arthur’s global classification of the discrete automorphic spectrum in the
particular case of G = GSp,. Denote by L3, .(G(F)\G(AF),x) the discrete spectrum of the L?

space of (essentially) square-integrable functions on G(F)\G(Ar) with central character .
THEOREM 2.2 [Art, Art04]. We have a decomposition

LglsC(G<F)\G(AF)7X) = @ @ T
YeVs r(G,X) <7T€>Hw
LT)=€y

where €y, is a certain sign character of Sy, defined in terms of symplectic root numbers (which is
trivial if 1) is a generic parameter).

In particular, if ¢ € ¥y p(G, x) is a simple generic parameter, then both Sy, and €, are trivial,
and so all the elements in the global packet II; occur in L2 (G(F)\G(AF),x). In the case of
G = GSp,, we refer to [Art04] for a list of the possible types of parameters 1. The only case
where €, is non-trivial is the Saito-Kurokawa type.

For our purpose we will be mainly interested in the cuspidal subspace L2, (G(F)\G(AF), x).

cusp
If ) € ¥y (G, x) is a simple generic parameter, and if € I1, so 7 occurs in L3, (G(F)\G(AF),
X), then it is expected that 7 actually occurs in the cuspidal spectrum Lgusp(G(F NG(AF), x).

This statement is not recorded in [Art, Art04]. However for our applications, we have the following
result of Wallach.

THEOREM 2.3 [Wal84, Theorem 4.3]. Suppose that 7 occurs in L2 (G(F)\G(AF),x), and up

disc
to twist w tempered at all the Archimedean places of F'. Then w is cuspidal.

We now draw a corollary from Arthur’s classification Theorem 2.2 which will be needed in
§4, on base change of automorphic representations on GSp,(A ). Such a result has already been
noted by Shahidi [Sha97] and Soudry [Sou05].
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PROPOSITION 2.4. Let 1 € Wy p(G,x) be a simple generic parameter corresponding to a x-
self dual cuspidal automorphic representation p on GL4(Ap). Suppose that F'/F is a cyclic
extension. Assume that the Arthur—Clozel base change [AC89] i of 1 to GL4(Afr) is cuspidal.
Then p' defines a simple generic parameter ' € Wo p/(G,X') (here X' = x o Npr/p).

Proof. The base change lift 1/ of p exists by the main result of Arthur—Clozel [AC89], which
under assumption is a cuspidal automorphic representation on GLg(Ap/). That u is self dual
with respect to x’ follows easily from the x-self duality of  (for example using strong multiplicity
one and the relation between the Satake parameters of ;1 and u' at the unramified places). All
we need to check is that p is of symplectic type with respect to x/, i.e. that the twisted exterior
square L-function L(s, ', A2 ® (x')~!) has a pole at s = 1. However we have the factorization:
denoting Cpr/p := AL /F* Np/jpAf,, we have

Lis, i/, = [[ Lemt’en " n).
ne@F//F
The term with 7 being trivial contributes a pole at s = 1, while for the other terms, the main

result of [Sha97] asserts that, since u is cuspidal, the twisted exterior square L-function L(s, u,
A? ® (x~!-n) is non-zero at s = 1. This concludes the result. O

Remark 2.5. By [AC89] the condition for y' to be cuspidal is that

@ (nodet) £ p (2.3)

for any non-trivial character n of Cp//p.

3. Galois representations attached to cusp forms on GSp,(AFr) of
cohomological type

For the rest of the paper, F' will denote a totally real number field. In this section we state the
result on Galois representations attached to cuspidal automorphic representations on GSp, (A )
of cohomological type that is needed for the constructions in §4.

3.1 Archimedean L-parameters
We begin by defining some Archimedean L-parameters. Recall that Lc = We = C*, and Lg =
Wgr = C*UC*j, with j2 = —1, and jzj~! =% for z € C*.

We first begin with the case of GLa(R) and GLo(C). For integers w,n with n > 0 and
n=w+1 mod 2, define

¢w,n : WR — GLQ(C)
2 |2 <(Z/Z>”/2

" <<—1>” H)'

When n > 1 the L-parameter ¢, corresponds to the (essentially) discrete series
representation of GLg(R) with central character a — a~*, and are cohomological representations.
The case n = 0 corresponds to the limit of discrete series representation (up to twist).

(z/z)_”/2> for z € C* (3.1)
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For GL2(C) we define the parameters ¢, : We — GL2(C) (again with n = w +1 mod 2)
by the same formula

bwn:z— 2|7

(7 o)

When n > 1, the parameter ¢, , corresponds to an irreducible admissible representation of
GL2(C) which is cohomological (there are no discrete series representations for GLa(C)).

Now we come back to GSp,(R). Let w,mj,my be integers such that m; > mg > 0 and
my +mg =w+1 mod 2. We denote by ¢(y;m, m,) the L-parameter given by

Pwimyma) * 7 >
(o/7) 4722
= (Z/g)(ml—mz)/Q
(/) m=ma)2
(z)Z)~ (m1+ma)/2
for z € C* (3.2)
and
+1
S ) () = coen | (33)

(_1)w+1

The image of ¢(yim, m,) lies in G= GSp,(C), with similitude character given by the character
z > |2|g" = |2[7?¥, and j — (—1)¥. It thus defines an element of ®g(G). The Archimedean
L-packet of GSpy(R) corresponding to ¢ (,.m, m,) has two elements

w H
{Tr(U);mhmg) ) 7T(w;ml,mg)} (3.4)

whose central character is given by a — a=% for a € R*.

The representation 71'2/5 m1,ma) is the generic representation in the packet (With W standing
for Whittaker), while 7r(w m1,ma) is the non-generic one. When my > 1, both 7r(w m1,m2)? wsma ma)
belong, up to twist, to the dlscrete series of GSp,(R) and are cohornologlcal representations, with
v the generic discrete series and aH in the holomorphic discrete series (hence the

(w,ml,m?) (w,mmz) H c e .
superscript H). When mgo = 0 the representations T lwimy,0) ™ (wima,0) belong to the generic limit
of discrete series, and holomorphic limit of discrete series respectively (again up to twist). These
constitute up to twist the non-degenerate limit of discrete series of GSp,(R).

. W H . . . .
. .The r?presentat‘lons T (awsmasma)? T (wima ma) (including both discrete series and non-degenerate
limit of discrete series) are essentially tempered, and tempered when w = 0.

In the holomorphic case it is common to introduce the Blattner parameter

ki=mi+1, ko=mo+2, (3.5)

thus k1 > ko > 2 and the cohomological condition corresponds to kg > 3. The parameter (ki, k2)

corresponds to the minimal K-type of the representation w{fy mamg) (ere K = U(2) is the

maximal compact subgroup of GSp,(R)), given by the representation

Sym*1*2 C% @ (det)®*2.
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3.2 Results on Galois representations
For the rest of this section II will denote a cuspidal automorphic representation of GSp,(A )
with central character x. We make the following hypotheses on II: there is an integer w € Z,
such that for all Archimedean places v of F', the component of x at v is given by x, : ¢ —> a=%.
Assume that for any such v, the component II,, is a (essentially) discrete series belonging to the
L-packet defined by the parameter ¢(w;m1,v,m2,v) with mq, > mo, > 1 and w+1 = my, + ma,
mod 2.

In this subsection we state the result on Galois representations associated to II. The key case

is when II belongs to a global simple generic parameter, so we begin with this case.

THEOREM 3.1. Suppose that II belongs to a simple generic parameter. Then for each prime p,
there exists a continuous semi-simple Galois representation

Rp : GF — GL4(QP>

which is unramified outside the primes of F' dividing p and where Il is not spherical, and satisfy
the local-global compatibility condition: for any prime v of F', we have

tp WD(Ry|Gp, )T 2 krec, (1, ® [cf;2/7).

Furthermore at each place v of F' dividing p, the representation R, is deRham. If we identify the
embeddings F' — Q,, with the Archimedean places of F' via v, : Q, = C, then the Hodge—Tate
weights at the embedding corresponding to v|oco are given by

{51)» by + m2 v, 0y + miw, 0y + miy + mQ,v} (36)

where 6, = %(w+3—m1ﬂ, —may). If11, is spherical at v|p then R, is crystalline at v. Furthermore,
denoting by Pﬁr;js(X ) the inverse characteristic polynomial for the crystalline Frobenius on the
crystalline representation R,|c,, , and by Qu, the inverse characteristic polynomial of the
geometric Frobenius on the unramified Weil-Deligne representation k., rec,(Il, ® |c|, 3/ 2), we
have the equality

Py (X) = Quo(X).
In the above we recall that if ¢ is an L-parameter of G(F,), then we denote by k.¢ the
L-parameter of GL4(F},) obtained by composing ¢ with the inclusion G — GL4(C).

Remark 3.2. Here we are identifying an L-parameter ¢ : Ly, = Wg, x SLy(C) — GL,(C)
with the corresponding Frobenius semi-simple Weil-Deligne representation in the usual way:
corresponding to ¢ is the Weil-Deligne representation (r, N), where r, the semi-simple part of
the Weil-Deligne representation, is given by the semi-simple part ¢*° of ¢ as in equation (2.1),

1.e. i/2 .
r(g) = ¢*(g9) = ¢ (g, (’9’0 ’g’vl/Q))

for g € Wg,, and the monodromy operator NV is given by

)

Proof. This theorem is essentially proved in [Sor10], except that when [Sorl0] was written, the
results of Arthur [Art] and that of [BGGT12, BGGT, Carl2b, Carl2a, CH13] were not yet
available, so extraneous hypotheses on 7 were made in [Sor10]. So we just indicate a few main
points.
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(1) In [Sorl0] IT is assumed to be globally generic in order to apply the results of Jacquet—
Piateski-Shapiro—Shalika and Asgari-Shahidi [AS06] in order to lift II to an automorphic
representation II' on GL4(Ar) (assumed to be cuspidal). In our case, in the context of Arthur’s
global classification theorem, this assumption is not needed, and by definition the lifting IT" is
given by the global parameter classifying II.

(2) In [Sorl0] the local Langlands correspondence for GSp, as constructed by Gan and
Takeda [GT11la, GT11b] was used for the local-global compatibility statement, and where the
following fact is used [GT11b]: when II is globally generic the lifting IT — II' (with II' being
cuspidal) is compatible with the local Langlands correspondence for GSp, constructed by Gan—
Takeda, and the local Langlands correspondence for GLy4, at all places. Again in our case in
the formalism of Arthur’s classification this is tautological, provided we use the local Langlands
correspondence for GSp, as constructed by Arthur in the context of the local classification
theorem (of course in any case by the main result of Chan and Gan [CG2] these two give the
same local Langlands correspondence for GSpy).

(3) The Galois representation R, associated to II is by definition the Galois representation
associated to II'. The arguments of [Sorl0] construct the latter if we use the result of [CH13]
in the argument of [Sor10]. The part of the local-global compatibility statement concerning the
monodromy operator in [CH13] is completed in the works [BGGT12, BGGT, Carl2b, Carl2al,
while the assertion on the equality of the crystalline Frobenius polynomial and the Hecke
polynomial when IT is spherical at v|p is proved in [Che].

Remark 3.3. (1) As in [Sor10] a Baire category argument shows that the image of G lies in
GL4(L) for some finite extension L of Q.

(2) For the applications in §4 we will only use the local-global compatibility statement up
to semi-simplification at primes of F' not dividing p.

(3) The main theorem of Bellaiche and Chenevier [BC11] gives the result that the image of

pp lies in GSp4(Qp). For our purpose we do not need this more precise result.
(4) The irreducibility of R, is now known by Calegari and Gee [CG1].

For completeness we state the result for Galois representations when the parameter classifying
7 is not of simple generic type. This essentially reduces to the Galois representation associated
to cuspidal automorphic representations on GLa(Ap) of cohomological type, i.e. to Galois
representations associated to Hilbert modular forms.

We first consider the case where the parameter classifying II is still generic but not of simple
type (i.e. endoscopic type). In this case the parameter 1) = ¥ @ x classifying II has the form ¢ =
w1 B g, where pg, po are distinet cuspidal automorphic representations of GLa(A p) with central
character x. In [Art04] it is called a parameter of Yoshida type. We can arrange 1, po so that
at any Archimedean place v of F', the L-parameter of uq at v is given by P(wimy o tma,,)s While
that of uo is given by ¢(w;m1,v—m2,v) (both are discrete series parameters since my , > mag, > 1).

It follows that both p; and ps are of cohomological type, and hence we can associate Galois
representations

p#hp . GF — GLQ(QP)

for ¢ = 1,2, such that for any prime v of F', we have the local-global compatibility statement
tp WD(pp plcin, )% 2 Lo((p)o @ |det], /). (3.7)

The Galois representations p,, , are deRham at all places of v of F' above p, and crystalline at
v if p; is spherical at v (in this case of Yoshida type packet we have II, being spherical if and
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only if both p; and pg are spherical at v). The Hodge-Tate weights of j; at an embedding of F
into Q,, that corresponds to an Archimedean place v of F' (under ¢, : Q,, = C) is given by

{71): Yo + M1y + m2,v} (3.8)
where v, = %(w + 1 — (M1, +may)). For pg the Hodge-Tate weights are given by

{7070 + M1y —may} (3.9)

with 7}, = $(w+1—(m1,,—may)). It follows that if we define the Galois representation associated
to II to be

Ry := puy p(—1) © ppy p(—1) (3.10)

then all the assertions in Theorem 3.1 hold for R, in this case also (that the Hodge-Tate weights
of R, are also given by (3.6) follows easily from (3.8) and (3.9)).

Finally we treat the case where the parameter 1 = ¢ @ x is not generic. In our case II
is cuspidal. So if II belongs to the packet whose parameter is not generic, then II is a CAP
representation, which were classified by Soudry [Sou90]. In our case where we assume that II
is of cohomological type, the only possibility that can occur is the case where the parameter
classifying II is of Saito—Kurokawa type, where v is of the form

Y =pBAR(2),

where 1 is a cuspidal automorphic representation of GLo(A r) with central character y, and A an
idele class character of A} satisfying x = A2, and v(2) is the algebraic representation of SLy(C)
of dimension 2, cf. [Art04, p. 79]. Note that for any finite place v of F, the local L-parameter
by, of G(F,) associated to 1, is given by (as in equation (2.2))

5,(0) = Lo() (@) ® Ao(0)|o],/* ® A (0) o[,/ (3.11)

for o € Lp,.
In our case where II is cohomological the Archimedean L-parameter has to be in specific
form: more precisely we must have

M1y — Moy = 1. (3.12)

In particular since we have the condition w + 1 = m1, + m2, mod 2 we see that w has to
be even, and hence the idele class character A is an algebraic idele class character, and u is of
cohomological type, namely that for each Archimedean place v of F', the L-parameter of p, is
given by @wimy ytma,) = Pw;2mi,,—1)- We define the Galois representation R, associated to II
to be

Ry = pup(—1) ® AGH (1) @ AT (~2), (3.13)

where )\gal is the p-adic Galois character of G associated to the algebraic idele class character A.

In the case where the parameter is not generic, then in general one does not have the full local-
global compatibility statement, but only local-global compatibility up to semi-simplification: for
any finite prime v of F' not dividing p, we have

1y WD(Ry| G, )% 22 ki rec, (IT, @ ||, /%)%, (3.14)

v

In order to establish (3.14) we first recall from §2.2 that when we have a local A-parameter
1y, then in general the local A-packet corresponding to v, will contain representations that
belong to different L-packets. However, we still have the following proposition.
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PropPOSITION 3.4. Suppose v is a global formal parameter of Saito-Kurokawa type. For each
finite prime v, let 1), be the local A-parameter of GSp,(F,) given by the localization of 1 at v.
Denote as before by 11, the local A-packet classified by 1,. Then the semi-simple part of the
L-parameters of the representations in the A-packet Il have the same semi-simple part as that

of ¢¢v .
Proof. See Appendix A. O

Hence by (3.11) and Proposition 3.4, we have
ko rec,(IL, ® |c|573/%)% 2 L, (1y @ |det|73/2)% @ L,(A, - |det|; ) @ Lo(Ay - [det|72). (3.15)

From this we see that (3.14) follows from the local-global compatibility statement for p, ,
(as in (3.7)).

If II is spherical at v, then both p and A are spherical at v, so R, is clearly crystalline at v in
this case. Finally one sees again (using (3.12)) that the Hodge—Tate weights are given by (3.6)
(noting that the Hodge—Tate weight of A at the embedding of F' into Qp corresponding to any
Archimedean place v of F' is given by w/2, while the Hodge-Tate weights of p,, are given by
the same formula as in (3.8)).

We summarize the discussion of this section as the following theorem.

THEOREM 3.5. Suppose that II is a cuspidal automorphic representation on GSp, (A ) satisfying
the hypotheses in the beginning of § 3.2. Then for each prime p, there exists a continuous semi-
simple Galois representation

Rp . GF —> GL4(QP)

which is unramified outside the primes of F' dividing p and where 11 is not spherical, and satisfy
the local-global compatibility condition, up to semi-simplification: for any prime v of F', we have

1o WD(Rylc, )** 2= o recy (1, @ [ 9/2),

If in addition 11 is classified by a global generic parameter (i.e. Il is not a CAP representation),
then we have the full local-global compatibility

Lp WD(Rp|GFU)F_SS >, recy (T, ® || /?).

Furthermore at each place v of F' dividing p, the representation R, is deRham. If we identify the
embeddings F' — Q,, with the Archimedean places of F' via v, : Q, = C, then the Hodge-Tate
weights at the embedding corresponding to v|oo are given by

{51)’ oy + ma,v, 0y + miw, oy + miy + m2}1}} (316)

where 6, = %(w—i—?)—ml,v—mgm). If11, is spherical at v|p then R, is crystalline at v. Furthermore,
denoting by Pﬁrf(X ) the inverse characteristic polynomial for the crystalline Frobenius on the
crystalline representation Ry|c,. , and by Qu, the inverse characteristic polynomial of the
geometric Frobenius on the unramified Weil-Deligne representation k, rec,(IL, ® |c|, 3/ 2), we
have the equality

P (X) = Qmo(X).
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4. The case of holomorphic limit of discrete series

As in the previous section IT is a cuspidal automorphic representation on GSp, (A r), with central
character x. As before we assume that there is an integer w such that for any Archimedean
place v of F, the local component of x is given by x, : a = a~%. In this section we assume
that the local components II, of IT at all v|oco are given by either holomorphic discrete series

or the holomorphic limit of discrete series, belonging to the L-parameter @y m, ,, where

mo.y)?
miy > ma, = 0and w+1=mg ,+ma, mod 2 for all v|oo. In particular it can be represyer)lted (up
to twist) as a holomorphic Siegel-Hilbert modular form with Blattner parameter (ky ,, k2,,) where
k1o =miy+1,koy = ma, + 2, for any v|oco (see equation (3.5)). For the applications in §5 we
are mainly interested in the case where II,, belongs to the holomorphic limit of discrete series for
all v|oo. The goal of this section is to construct the four-dimensional p-adic Galois representation
associated to II, using ideas similar to [CH13], and to prove a local-global compatibility statement
up to semi-simplification (at primes away from p), using the technique of p-adic deformation and

the results on Galois representation associated to forms of cohomological type from § 3.

Remark 4.1. A usual Cebotarev density and Brauer—Nesbitt argument shows that the semi-
simple p-adic Galois representation associated to II depends only on the global packet to which
IT belongs. In particular the results of this section apply to II whose Archimedean components
belong to a non-degenerate limit of discrete series (i.e. generic or holomorphic), as long as the
packet containing II contains a representation that is a holomorphic limit of discrete series or
holomorphic discrete series at all v|co. This will be the case for example when II is classified by
a simple generic parameter (which is the case in §5).

First we make the following hypothesis.

HypoTHESIS 4.2. The representation II has Iwahori-fixed vectors at all primes of F' above p with
respect to the standard Iwahori subgroup J, C G(OF,) = GSp,(OF,).

Here the Iwahori subgroup J, is defined with respect to the standard Borel subgroup of GSp,.
If II satisfies Hypothesis 4.2 then in particular IT satisfies the finite slope condition [MT12] at
all primes of F' above p.

We need the following result from [MT12], which is a generalization of the result of Kisin
and Lai [KLO05] and Jorza [Jor10] to the Siegel-Hilbert case. To state the result we need some
notation. For each finite v denote by H5"" the spherical Hecke algebra of G(F,) = GSp,(F,)
with coefficients in Z, defined with respect to the hyperspecial maximal compact subgroups
K, = GSp,(OF,). Choose a local uniformizer w, of O, at each finite v. We also denote by S,

pr = ® /Hv

vgSp

the set of primes of F' above p, and

with H, the full Hecke algebra of GSp,(F),) with coefficients in Q.
Denote by S a finite set of primes of F outside of which II is spherical. Put HPh9P =
®;¢ Sus, b We have the natural inclusion HSP™SP C 1P (elements of the former embed into

the latter whose components at v € S\S, are given by the identity element of Hf,ph). Also
as in [Tay91] (cf. [Tay91, p. 316]) we have the following elements T}, Sy, R, € H3P" for each
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finite v:
1
T, = K, : K,
Wy
Wy
Wy
w.
S, = K, . K, (4.1)
v
Wy
1
R, = K, v _ Ky + (1= Nv?)S,.
v
w,

We now state the result on p-adic deformation. We note that the method of proof as well as
the validity of the conclusion relies crucially on the assumption that II is of holomorphic type
instead of being of generic type at the Archimedean places.

THEOREM 4.3 [MT12]|. Under Hypothesis 4.2 on II, there is a one-dimensional rigid analytic
affinoid disk D C A} ;, defined over some finite extension L of Q, centered at the origin 0 € D,
a ring homomorphism

B HPRSP 5 O(D) (4.2)

and a Zariski dense subset Z C D(L) accumulating at 0 € D, with the points t € D(L)
corresponding to integers; identifying Z as a subset of the integers one has 0 € Z and Z C N.
Furthermore, there exists a positive integer hg, satisfying the following conditions.

(1) We have B(H®MSP) ¢ O(D)S!, where O(D)S' € O(D) is the subring of elements with
norm bounded by one.

(2) For each t € Z, there is a cuspidal automorphic representation I1(t) on GSp,(A ), with
I1(0) = I1, such that II(t) is spherical outside S U S, and whose Archimedean components II(t),
at an Archimedean place v of F' is given by ’/Tgu ( . Here

£)ima,o(t),ma,v (1))
w(t)=w+2(p—1)-ho-t,
miy(t) =miy+@—1)-ho-t, may(t) =moy+(p—1)-ho-t,
the central character of 11(t) is given by a character x(t), such that for any Archimedean place
v of F, we have x(t), : a = a~*®). Thus it is a ‘parallel weight’ deformation.
(3) Define the polynomial Q,(X) € HiP"[X] as
Qu(X)=1-T,X + (NvR, + 2Nv3S,)X? — Nv3T,S, X3 + NvSS2 X4 (4.3)
Then for each t € Z (in particular including t = 0 where II(0) = II), and each v ¢ SU S, we
have, denoting by ev, : O(D) — L the evaluation map at t,
eV« e Qu[X] = 1 Qu e[ X] (4.4)

where @, .[X] is the inverse characteristic polynomial of the unramified Weil-Deligne
representation ki rec,(I1(t), ® |c|, 3/ 2) evaluated at the geometric Frobenius element Frob, at v
(in other words Q,(Nv~(+3/2))=1 js the standard local L-factor for TI(t) with respect to the
standard representation of G= GSp,(C) at the spherical place v).
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We note that in the context of Theorem 4.3, the points t € Z correspond in addition to the
system of Hecke eigenvalues a choice of refinement data for TI(t), at primes v of F dividing p.
Since this extra data plays no role in the construction of the Galois representation associated to
II below, it is suppressed in the statement of the theorem above.

We now apply Theorem 4.3 to the construction of the Galois representation associated to
IT when Hypothesis 4.2 is satisfied. We refer to [Tay91, § 1] or [BC09, ch. 1] for the notion and
basic property of pseudo-character (a brief discussion follows after Theorem 4.4 below).

THEOREM 4.4. There is a continuous pseudo-character
T:Grsp— O(D)S (4.5)

of dimension 4, with G, being the Galois group of the maximal extension of F' unramified
outside S U Sy, such that for any prime v ¢ SUS,, we have

T'(Frob,) = B(Ty) (4.6)

(the dimension of a pseudo-character is simply the value of the pseudo-character at the identity
element).

Proof. The proof is a standard application of the theory of pseudo-characters, the results of § 3,
together with Theorem 4.3. See for example [BC09, Corollary 7.5.4]. O

We can also do slightly better. For this we need some notation (cf. [BC09, §§1.2.1-1.2.2]). In
general if T': G — A is a function on a group G (topological or otherwise) with values in some
Q-algebra A, which is central (i.e. T'(xy) = T'(yz) for all z,y € G), define, for each integer k > 0,
the function

Sp(T): GF — A
S(T)(x) = ) e(0)T7(x)
oeS;,

(with the convention Sp(7") = 1). Here Sy is the symmetric group in k letters, and e(o) for
o € S, is the sign of this permutation. The function 77 : G¥ — A is defined as follows. Let
x = (w1,...,7) € GF. If 0 is a cycle, say o = (j1,...,jm), then set T7(z) = T(xj, ...x;,)
(well defined by the central property). In general if ¢ = o1...0, is the cycle decomposition
of o (including the cycles with one element) then we set T'(z) = [[;_,; 7% (z) (in particular
Si(T) =T).

Then the identities defining 7" to be a pseudo-character of dimension m are:
(1) T(zy) = T(yz) for all z,y € G;
(2) T'(e) = m, where e is the identity element of G;
(3) Spa1(T)(x) =0 for all x € G™HL.

We have the following (cf. [BC09, §§1.2.1-1.2.2]): if p : G — GL,,(A) is a representation,
then

1
ySk(T)(g, ...,9) =tr(A*p)(g) forall g € G. (4.7)
Recall the elements Ty, Sy, R, € Hf,ph as in equation (4.1).
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PROPOSITION 4.5. With T the pseudo-character as in Theorem 4.4, for any finite prime v ¢ SUS),
we have the identities

B(T,) = S1(T')(Frob,),
B(NvR, + 2Nv3S,) = %SQ(T)(Frobv, Frob,),
_1
3!
B(Nv®S?) = %S&;(T)(Frobv, Frob,, Frob,, Frob,).

B(NvT,S,) S3(T)(Frob,, Frob,, Frob,),

Proof. This is proved by the same kind of argument used to prove Theorem 4.4, by using
equations (4.4) and (4.7). O

THEOREM 4.6. As before Hypothesis 4.2 is in force. There is a continuous semi-simple p-adic
Galois representation

Ry:Grsp— GLi(Q,) (4.8)
such that for any prime v ¢ S U S,, we have
Py(X) = 1,' Qu(X) (4.9)

where @, (X) is as in Theorem 4.3(3) with t = 0, i.e. the inverse characteristic polynomial of the
unramified Weil-Deligne representation ki rec,(Il, ® |c|, 3/ 2) evaluated at Frob,, and P,(X) is
the inverse characteristic polynomial of Ry(Frob,).

Proof. Denote by Tj := evg 1" the L-valued pseudo-character of G5, of dimension 4 obtained
by composing T with evy. By Taylor’s theorem [Tay91, Theorem 1] there exists a unique
continuous semi-simple representation

Rp . GF,S,p —> GL4(Qp)

such that Ty = tr R,,.
Hence by equation (4.9) for any g € Gr,s,

4 ok 4
S0, )X = 31 (A Ry (9)XF = det(Ls — By(g)X). (410
k=0 ) k=0

In particular this holds for ¢ = Frob,. We thus obtain the result by using Proposition 4.5 and
equation (4.4) (with ¢t = 0). O

As usual Cebotarev density and the theorem of Brauer—Nesbitt implies that equation (4.9)
characterizes the continuous semi-simple p-adic Galois representation R, associated to II.

We now prove a local-global compatibility statement, up to semi-simplification and at primes
away from p, for the Galois representation R, associated to II, which can be regarded as
generalization of (4.9) to primes where IT is not spherical. The argument is a generalization
of Chenevier [Che] to the setting of GSp,, which entails replacing the spherical Hecke algebra
by the centre of a Bernstein component. Again Hypothesis 4.2 is in force.

Thus let v be any finite prime of F' not dividing p. Let B, be the Bernstein component of
G(F,) = GSp,4(Fy) to which the irreducible admissible representation II, belongs. The Bernstein
component is indexed by (M, o), where M is a Levi subgroup of G, and o is a supercuspidal
representation of M (F,) (which we take as a base point of B,). We can choose a finite extension
FE of Q such that the Bernstein component B, is defined over E.
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Denote by 3, = E[B,] the affine coordinate ring of B, over E, the Bernstein centre of B,.
We can identify 3, as a commutative subalgebra of H, ®q . For any irreducible m belonging to
B,, we denote by z(7) the character of 3, given by the action of 3, on 7 (more precisely on eBvm
where eBv € H, ®q F is the idempotent corresponding to By).

We need the following refinement of Theorem 4.3.

PROPOSITION 4.7 [MT12]. In the setting of Theorem 4.3, suppose that II, belongs to the
Bernstein component B,,. Then we can take D, and Z C D(L) and L/Q,, such that E — L, and
such that for any t € Z, we can take II(t) such that I1(t), belongs to the Bernstein component
B,. Furthermore, the ring homomorphism (4.2) (when restricted to H*®»SY{v}P) extends to a
ring homomorphism

8 HPSUD @y 5, O(D)

such that for any t € Z, the map
evt,*(ﬁ‘ﬁv) v L
is the character z(I1(t)) giving the action of 3, on I1(t).
We first prove the following theorem.

THEOREM 4.8. There exists a pseudo-character (of dimension 4)
T8 : Wg, — 3, = E[B,]
such that for any irreducible w belonging to B,,, we have
evz(ﬂ),*TB“ = tr(kx recy (m)%), (4.11)
where ev, () is the evaluation map on 3, = E[B,] at z(r).

Proof. We need to use the description by Gan and Takeda [GT11a, GT11b] of the local Langlands
correspondence recST for GSp,(F,), which by the result of Chan and Gan [CG2] is the same
as the local Langlands correspondence rec, for GSp,(F;,) constructed by Arthur as in §2.2. For
clarity we will use rechT to emphasize the dependence on [GT11a, GT11b] in this proof.

First consider the simple case where M = G, thus o is a supercuspidal representation of
G(Fy,). Then we have B, = G, (defined over E), identified as the group of unramified characters
of FX, hence of G(F,) via the similitude character c¢. Any 7 belonging to B, is of the form c ®£oc
(for an unramified character £ of F,*). Hence we can define for any g € W,

T8 (g)(&):=tr(k.recy” (0)*(9)) - £(arty, ' (9))
=tr(k,recST (0 ® £ 0 ¢)(g)) (4.12)

(up to replacing o by an unramified twist and enlarging F we can assume without loss of
generality that ki rec,(c) is defined over E). Then T5*(g) € E[B,] for any g € Wg,, and T%
satisfies equation (4.13).

We next consider the case where M = My is the Levi component of the Klingen parabolic
subgroup @ of G. In this case we have Mg = GL;/p X GLy/p, where

a
(a,A)GGLl/FXGLQ/F»—) A EMQ
a tdet A

Take Y = Gy, X Gy, identified as the group of unramified characters of M (F,) via the identity on
the factor GL1(F),) and the determinant on the factor GLy(F,). We can write the supercuspidal
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representation o on Mq(F,) as x X7, where 7 is a supercuspidal representation on GLy(F},) and
X is a character of F*. The Weyl group A C'Y x W)y, of this Bernstein component (here Wy,
is the Weyl group of Mg relative to G, which is of order two) can be defined as follows: we have
the following action of Wy, on Y, where the non-trivial element wg of Wiy, acts via

wq - (61,6) = (§ 1, 6&) for (4,&) €Y

and hence we have the following action of Y x Wy, on Y by extending the multiplication action
of Y on itself, i.e.,

((V17 ’/2)7 wQ) : (517 §2) = (V1§1_17 V2€1§2)'
Then A is the subgroup of elements ((v1,v2),t) of Y x Wy, such that

TOQUNET, =1
when ¢t = e, and
TR XETQR U9, x21/151

when ¢ = wg. Put B, = A\Y. Then from the theory of Bernstein components we have a surjective
map B, — B, with finite fibres. The Bernstein centre E[B,] is then given by the affine coordinate
ring E[B,] = E[Y]? of B,.

Now from Table 1 of [GT11a, §14] (the classification in this case follows from the work of
Sally and Tadic [ST93]), we see that if m belongs to this Bernstein component then there are
three possibilities (in the notation of [ST93]), here below (£1,&2) € YV

(1) ™= Jo(xé1, 7 ® &) with x& # 1;

(2) = is an irreducible subrepresentation of Io(1,7 ® &) (i.e. x&1 is trivial; in this case (1,
T ® &2) is semi-simple);

(3) ™= St(xp, 7)), where 7 = 7 ® 2| det|11,/27 while x{ := x& - |- ;! is non-trivial and satisfies
@ xbp 2 7 and (x4)? =1 (see [GT1la, Lemma 5.1]).

One sees from [GT1la, Lemma 5.1], together with the recipe for L-parameter in [GT1la,
§13], that in all the above cases, the semi-simple part of the L-parameter k, reCUGT(ﬂ) has the
same semi-simple part as

Ly(1® x&162) © Lo(T @ &2). (4.13)

In fact in cases (1) and (2), the L-parameter is given by (4.13), while in case (3), the
L-parameter is given by £, (7)) Xv(2), where v(2) is the two-dimensional algebraic representation
for SL(C) (here this is the SLy(C) of Lr, = Wg, x SL2(C)). One sees immediately using (2.1)
and the condition in case (3) that it has the same semi-simple part as the parameter (4.13).

Hence in this case we can define T8¢ (g) for any g € W, by the rule: for any (£1,&) €Y,

TP (g)(&1, &2) = tr Lo(T @ X)(9) - Eaéa(art, ™ (9)) + tr Lo(7)(9) - &a(art,, ' (9))

(again by replacing 7,y by unramified twists and enlarging E we may assume that £,(7) and
L,(T® x) are defined over E) which is easily seen to be (as a function on Y) in E[Y]* = E[B,].
It is a pseudo-character because for any z € B,,, we have evz,*TB” is the trace of a representation.

Next we consider the case where M = Mp is the Levi component of the Siegel parabolic
subgroup. One has Mp = GLy/r X GL;/p, where

(A,G)GGLQ/FXGLl/F‘—) <A GMP.

o)
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Again take Y = G,, X Gy, identified as the group of unramified characters of Mp(F,) via
the determinant on the factor GLa(F,) and the identity on the factor GL;(F,). We can write the
supercuspidal representation o on Mp(F,) as 7y, where 7 is a supercuspidal representation on
GLa(Fy) and x is a character of F,*. The Weyl group A C Y x Wy, of this Bernstein component
(here Wy, is the Weyl group of Mp relative to G which is again of order two) can be defined
similarly to the Klingen case: define the action of Wy, on Y where the non-trivial element wp
of Wy, acts via

wp - (61,&) = (§1,6&) for (G,&) €Y

and as before extend this to an action of ¥ x Wy, on Y.
Then A is the subgroup of elements ((v1,12),t) of Y x Wy, such that

TRV ET, =1
when t = e, and
Vo =W;, TRWV =T

(which implies in particular that (w;11)? = 1) when t = wp. We have a surjective map from B,
to B, := A\Y with finite fibres, and as in the previous case E[B,] = E[B,] = E[Y]?.

From Table 1 of [GT11a, §14] (again, this follows from the work of [ST93]), we see that if m
belongs to this Bernstein component then there are two possibilities (in the notation of [ST93)),
here again (£1,&2) € Y

(1) m=Jp(T ® &1, x&2);
(2) ™= St(1y, xp), where 1) =7 ® §1|det|;1/2, while xg == x&2 - | - |11,/2, such that 7 has trivial
central character (see [GT1la, Lemma 5.2)).

In case (1) the L-parameter k, recS' (7) is given by [GT11a, Lemma 5.2] by

(wrx&iéa) oarty ' ® Ly(1 ® x&1&2) @ (x&2) 0 arty ! (4.14)

while in case (2) the L-parameter is given by
Ly(70© x0) @ xo W v(2)

which again has the same semi-simple part as (4.14).
Hence in this case we can define T5v(g) for any g € W, by the rule: for any (£1,&2) €Y,

TP (9)(&1,&2) = wex(art, ' (9)) - E1&a(art, ' (9) + tr Lu(T ® X)(g) - &1&a(art,  (g))
+x(art, ' (9)) - &(art, ' (g)) (4.15)

which is in E[Y]® = E[B,] as is easily seen from the rule giving the action of A. Again this

defines a pseudo-character.
Finally we consider the case where M is the maximal torus 7' of G (i.e. the parabolic in this
case is the Borel subgroup B of G). We have T'= GL;/p X GLy/p x GL;/p, where

(a,b;t) S GLl/F X GLl/F X GLl/F

a

b
el eT.

ta!

The supercuspidal representation o on M (F,) = T(F),) is thus given by a character y; X xo Xy,
where x1, x2 and x are characters on GLj(Fy).
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In this case we have Y = G, X G,, X G,,, and we can similarly define the Weyl group
A CY x W of this Bernstein component (here W = Wy is the usual Weyl group of G).

From Table 1 of [GT11a, §14] we see that if m belongs to this Bernstein component, then
there are 5 possibilities (here below (£1,&2;¢) € Y):

(1) ™= J(x1&1, x262; X§):

(2) m = Jo(X,7), where X # 1, and 7 is a twisted Steinberg representation of GLa(F,) of
the form 7 = Star, ® X° (here X and x° are characters of GL1(F,), satisfying: x1&1 = X,
xa€o = |- I x€ = X0 1);

(3) m is an irreducible subrepresentation of the semi-simple induced representation Ig(1,7),
with 7 a twisted Steinberg representation 7 = Stqr, ® X", such that x1& = 1, x2é2 = ||, %,
XE =" %

(4) = Jp(r, x€) with 7 a twisted Steinberg representation of GLy(F},) given by 7 = Stgr, ®X°
(here x* is a character of GL;(F,) such that y1&; = x°| - ];1/2, and ya2&o = \°| - 11,/2)

(5) ™= Stpasp, ® X, a twisted Steinberg representation of GSp,(F) (cf. [GT11a, Lemma 5.1]).

)

In each of the above cases we see that 7 belongs to the Bernstein component (7', x1 X x2 X y)
using induction by stages. Furthermore from [GT11a, Lemma 5.1] we check directly that in each
of these cases, the semi-simple part of the L-parameter is given by

(1@ x161 ® X282 ® x1x26162) - XE) o artt.
(In case (5) above we have x1&; = |- |2, xaéo = | |, £ = | - ‘;3/2-)

Hence we can take, for g € Wg,, and (£1,&2;¢) € Y,

T5 (9)(&1,&2:€)=((1 + x1&1 + X2&2 + X1X261&2) - X€) o art . (4.16)

We have TB(g) € E[Y], and we needs to show that it lies in E[B,], i.e. that (4.16) is
invariant under the action of A. Since this involves no new ideas, we leave the verification to the
reader. O

Remark 4.9. The proof of Theorem 4.8, together with Propositions 3.4 and 4.10, is the only place
where we are using the explicit description of L-parameters for GSp,. It would be of interest to
have proof of these results without case by case enumeration.

For later use we also draw one corollary from the work of Gan—Takeda.

PROPOSITION 4.10. Suppose that ¢ is an L-parameter for GSp,(F,) whose semi-simple part is
unramified. Then there is a representation in the L-packet classified by ¢ that has Iwahori-fixed
vectors.

Proof. This again follows from the description of the L-parameters for GSp, given in Table 1
of [GT11a, § 14], using the fact that m has Iwahori-fixed vectors if and only if it is a subquotient of
the parabolic induction from the Borel subgroup B with unramified induction data. Furthermore,
we see from [GT1la, §14] that in fact if the semi-simple part of ¢ is unramified, then all the
representations in the packet of ¢ have Iwahori-fixed vectors, except in the case where ¢ has the
form

o= A" U(Q) @ Ao - 2}(2)
where A1, A2 are distinct unramified characters of GLq (F,) such that A? = A3, in which case the L-
packet corresponding to ¢ contains a supercuspidal non-generic representation, while the generic
representation in the packet is given by (notation as in the proof of Theorem 4.8) Jgo(AA; L
Star,) ® A2, which has Iwahori-fixed vectors. O
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With Proposition 4.7 and Theorem 4.8, we can now prove the following theorem.

THEOREM 4.11. Let R, be the Galois representation associated to Il as in Theorem 4.6. Assume
Hypothesis 4.2. Then for any finite prime v of F' not dividing p, we have local-global compatibility
up to semi-simplification

1y WD(Rplcp )™ 22 ks ecy (IT, @ |e|;3/2)%. (4.17)

Furthermore, if we identify the set of embeddings of F’ into Qp with the set of Archimedean places
of F via 1y : Q, = C, then the Hodge-Tate-Sen weights of R, at the embedding corresponding
to v|oo is given by the same formula as (3.6), i.e.

{(5117 0y + ma ., 0y + miw, 0y + miy + m2,v}

with
Oy = %(w +3 —miy —Mmay).

Proof. We follow the arguments of [Che|. As above denote by B, the Bernstein component of
GSp,(F,) to which II, belongs, and assume that B, is defined over some finite extension E of
Q. And we are in the setting where Theorem 4.3 and Proposition 4.7 apply. In particular the
finite extension L/Q,, is chosen large enough so that E < L. Denote by

T8 : Wp, — O(D)
the pseudo-character defined by the rule: for any g € Wg,,

T8 (g) == B(TP*(9)) - gl /%,

where T8> : Wr, — 3, is the pseudo-character as in Theorem 4.8. Then by construction, for any
t € Z C D(L), we have

v TB = L;l tr (k. recy, (TI(t), @ |¢|7%/2)%*).

On the other hand recall the pseudo-character T' : Gpg, — O(D) of Theorem 4.4. We
continue to denote by 7" the pseudo-character obtained by pre-composing 7" with the map Gp —
GFr.sp. By [BC09, Lemma 7.8.11], there exists a reduced quasi-compact separated rigid analytic
space ) and a morphism f : ) — D satisfying the following properties.

(1) The morphism f is proper and surjective.

(2) There exists a admissible open U C D that is Zariski dense and such that f~1(U) — U
is finite etale.

(3) There exists a locally free Oy-module M of rank four, with a continuous linear action
of G, whose trace is given by the pull-back of T' by f. For any y € ), we denote by M, the
evaluation of M at y (a four-dimensional representation of G over the residue field L(y) of Oy
at y).

(4) For any y € f~1(U), the representation M, is semi-simple.

In particular Z’ := f~4(U N (Z\{0})) is Zariski dense in ). We also see by conditions (3)
and (4) for any z € Z’ with ¢t = f(z), we have M, = R;, as a representation of G (recall that
R; , is the Galois representation associated to II(t)), and if yo € Y with f(y) =0 € Z C D, then
MyS = R,

Now by [BC09, Lemma 7.8.14], the action of Gp, — Gp on M admits a Weil-Deligne
representation WD (M |g,, ). By functoriality of the construction of Weil-Deligne representation
we have WD(M|q,, )y = WD(M,|q,, ) for any y € .
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Now denote by TWP» : Wr — O(Y) the O())-valued pseudo-character given by TWPv =
tr WD(M|gp, )*°. We claim that N
VO (7#),75

where f# : O(D) — O(Y) is the map induced by f. Indeed, by Zariski density it suffices to prove
this equality evaluated at any point z € Z’. But if z € Z’ with ¢t = f(2) € Z\{0}, then
v, TV = tr (WD (M. |y, )**) = tr(WD(Ryplcp, )*)
Since II(t) is cohomological, we have by Theorem 3.5 that
(WD (Replap, )**) = 1" tr(rec, (T1(t), ® [el;*/)**)

which is equal to evt,*TVBv by the above, which is exactly what we want to prove.
In particular choose yo € Y such that f(y) = 0 € Z C D. Then evaluating the equality
TWDe — (f#),TBe at yy we obtain
tr(WD(Rplap,)*) = tr(WD(Mylay,)™)
= tr(WD(My, |G, )**) = €vyo s TV = evyo o (f#)T5 = evo . T
= L;l tr (ks rec, (IT, @ |c|;%/2)%*).

We hence conclude (4.17) by Brauer—Nesbitt.

We now prove the assertion on Hodge-Tate—Sen weights. We identify the set of embeddings
of F into Qp with the Archimedean places of F' via ¢ : Qp =~ C. Let v be an Archimedean place
of F, and denote by p the prime of F' above p that is associated to the embedding to F' into Q,,
corresponding to v. We assume without loss of generality that L is chosen large enough so that
L contains all the Galois conjugates of F}, over Q.

For each y € ), denote by P;°"(X,y) € L(y)[X] the Sen polynomial at v (in the indeterminate
X)) of the representation M, restricted to G'r,, whose roots are the Hodge-Tate-Sen weights of
Myla F, ab the embedding F' — Q,, corresponding to v. By Sen’s theory [Sen93], there exists a
polynomial

P,(X) € O)[X]
such that for any y € ), we have ev, . P,(X) = P;*" (X, ).
On the other hand, consider the polynomial P,(X) € O(D)[X] defined by
N 4
Py(X) = [[(X = kin(®))
i=1

where k;,(t) € O(D) are given by

{105 K2,00 63,0, K40} = {00(t), 80 (t) + mau(t), 6u(t) + mau(t), 6u(t) +miu(t) +mau(t)},
O () = 3 (w(t) + 3 — may(t) — ma,(t))

with w(t), m1,(t), ma,(t) as in the statement of Theorem 4.3.
A similar argument as above shows that (using the assertion on Hodge—Tate weights in
Theorem 3.5 about the representations Ry, for t € Z\{0}),

Pv(X) = (f#)*ﬁv()o

Hence we obtain the result again by evaluating at y = yq. O

We now remove Hypothesis 4.2 in Theorems 4.6 and 4.11, using the argument of [CH13]. We
need the following result from [CH13] which we also use several times implicitly in §5.
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PROPOSITION 4.12 [CH13, Lemma 3.2.1]. Let S be a finite set of primes of F', and w ¢ S another
finite prime, and M /F be any finite extension. Let L, /F, be a finite Galois extension of F, for
every v € S. Then there exists infinitely many totally real solvable Galois extensions F'/F in
which w splits completely, with F' linearly disjoint from M over F, and such that for every
prime v’ of F' above a prime v € S, the extension F), /F, is isomorphic to L., /F,. Furthermore,
there is a constant ju({L,},es) independent of w, such that the degree [F' : F] can be assumed
to be less than u({Ly}ves)-

PROPOSITION 4.13. Let II be a cuspidal automorphic representation of GSp,(A ) that belongs
to a global packet corresponding to a simple generic parameter j. Assume that I1 is essentially
tempered at all the Archimedean places of F. Let S be a finite set of primes of F, and w ¢ S
be another finite prime. Let M/F be any finite extension of F'. Then there is a constant p(II)
independent of w, and a totally real solvable Galois extension F'/F with [F" : F| < p(II) in which
w splits completely, such that the Arthur—Clozel base change 1" of i to GL4(A pr) defines a global
simple generic parameter of GSp,(Ap), and such that there exists a cuspidal automorphic
representation Il in the packet defined by ', with the property that g has Iwahori-fixed
vectors at all primes of F' above p. If 11 belongs to the holomorphic limit of discrete series (or
holomorphic discrete series) at the Archimedean places of F' (up to twists), then we may also
assume the case for g .

Proof. For each prime v € S, choose a finite extension L, /F, such that, if ¢, is the L-parameter
classifying II,, then the restriction of the semi-simple part ¢3° to W, is unramified. We choose
the constant u(IT) = u({L,}ves) as in Proposition 4.12 above, which is independent of w. Then
by this proposition, we can choose one (in fact infinitely many) finite solvable totally real Galois
extension F’ of F, with [F’ : F| < u(IT) in which w splits completely, such that for any prime
v' of F' above v € S, the extension F,/F, is isomorphic to L,/F,. By Proposition 2.4 (and
Remark 2.5), we can choose an F” such that the Arthur—Clozel base change p' of p to GLy(Ap)
(defined by successive application of cyclic base change) is cuspidal and defines a global simple
generic parameter of GSp,(Ap). For any representation ITps in this packet defined by u', we
have for any prime v’ of F’ above v € S
k. rec, ((HF/)U/) =Ly (Mi}’)

= £U(IU"U)’WF// = ¢v’WF/, = ¢’U|WLU' (4.18)
In the above we make use of the fact that Arthur—Clozel base change is compatible with local
Langlands correspondence (for GLg4). By construction it follows that the semi-simple part of
recy ((I1gr),) is unramified, and hence by Proposition 4.10 the local L-packet containing (I ),
contains a representation that has Iwahori-fixed vectors. Since the parameter y’ is simple generic,
it follows that all the representations in the global packet defined by i’ occur in the discrete
spectrum of GSp,(A ).

Now by assumption the Archimedean components of I are essentially tempered. This implies
that the Archimedean components of u, and hence those of y’, are essentially tempered. In
turn this implies that all the representations of GSp,(Af) in the global packet defined by 1/,
have essentially tempered Archimedean components, thus by Theorem 2.3 they are cuspidal. In
particular we can choose a representation that occurs in the cuspidal spectrum and has Iwahori
fixed vectors at all primes of F’ dividing p. The remark about limit of holomorphic discrete series
(or discrete series) follows from similar reasoning. O
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It follows from [Sorl0, Lemma 2] that the collection Z of extensions F’' of F as in
Proposition 4.13 is S-general and has uniformly bounded heights (cf. [Sorl0, pp. 649 and 654]
for these notions). We now take S = S, to be a set of primes of F' above p. This is enough to
achieve our goal.

THEOREM 4.14. Let II be a cuspidal automorphic representation on GSp,(Ar) satisfying the
conditions in the beginning of § 4, and belonging to a global packet defined by a simple generic
parameter. For each prime p, there exists an unique continuous semi-simple p-adic Galois
representation

Rp : GF — GL4(Qp)

which is unramified outside the set of primes of F' dividing p and where 11 is not spherical, and
such that for any finite prime v of F', we have

1y WD(Rplap, )™ 22 ks ecy (IT, @ [ef;3/2)%. (4.19)
Furthermore the Hodge-Tate-Sen weights of R, are given as in Theorem 4.11.

Proof. For each extension K € T of F' above we choose a cuspidal automorphic representation Il
on GSp,(Af) as in the statement of Proposition 4.13. By Theorem 4.11 applied to IIx (which
applies because by construction IIx has Iwahori fixed vectors at all primes of K above p), we
have a continuous p-adic Galois representation

RK,P . GK —> GL4(Qp) (4.20)
such that for any prime v’ of K not dividing p, we have
i WD(Ri plare )™ = b recy (g ) @ el /7). (4.21)

By the patching lemma of [Sor10, Theorem 7], since the collection Z of extensions K of F
is S-general and has uniformly bounded heights, there exists a unique continuous semi-simple
p-adic Galois representation Ry, : Gr — GL4(Q,) satisfying

Rylax = Ricp (4.22)
for all extensions K € Z, provided the following conditions are satisfied:
(1) R, = Ri,p for all K € T and all 6 € Gal(K/F);
(2) Rr,plag = Riyplay, forall Ky, Ko € Z, and K' := K - K».

Both are standard arguments. As in the proof of Proposition 4.13 denote by px the global
simple generic parameter classifying IIx, which is the base change of the global simple generic
parameter p classifying II. Now we have

lp WD(RK,MGKw)SS =~ k* I'eCw((H?()w ® ’C|;3/2)SS
= Lo((prc)w @ |det|?/2)%.

In particular take any finite prime w of K not dividing p such that Iy is spherical. Then R
is unramified at w. By considering Satake parameters, we see that for any § € Gal(K/F), we
have the isomorphism of unramified Weil-Deligne representation

lp WD(R%,p’GKw)F_SS = ﬁw((/‘%)w ® ‘det|;3/2).

But since px comes from base change from GL4(A ), we have puf = px [AC89]. Hence for such
w we have
WD(Rg{,p|GKw )F—ss = WD(RKJO’GKU, )F_SS

and we obtain condition (1) by Cebotarev density and the Brauer—Nesbitt theorem.
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For condition (2), let w be any finite prime of K’ = K; - K3 not dividing p, and let w; be the
prime of K; below w for i = 1,2, with v being the common prime of F' below w1, ws. Then by
the compatibility of base change with the local Langlands correspondence for GL4 we have

Lp WD(RKZ,,p]GKT,ﬂ ) =1p WD(RK“p]GKiM )SS|WK7,H
> Lo (11, @ [det]¥2) oy,
= Ly(po ® ’det‘;3/2)58|WKi7wi ’WK{U
= L4(o @ [det];%/2) v,
which does not depend on i. Hence again for such w we have
WD(RK17P|GK{U ) = WD(RKz,p|GK{U )%

so we again conclude by Cebotarev density and Brauer—Nesbitt.

To deduce (4.19), choose K € T as above. Then since v does not divide p, we have by
construction v splits in K. Let v’ be a prime of K above v. Then since Rk p = Ry|q,, we have
by (4.21)

tp WD(BylGr, )™ = tp WD(RK,p‘GKv/ )%
=k, recv/((HK)vl ® |C|;,3/2)SS _ ‘Cv’((ﬂK)v’ Q |det|*3/2)ss

,Ul

>~ L, (o ® |det|3/2)% = k, recy, (11, ® |c|;%/%)%.

Finally for the assertion on Hodge—Tate—Sen weights, again choose any K € Z as above.
Then R,|q, = Rp i, and by Theorem 4.11, R, ¢ has Hodge-Tate-Sen weights given as in the
statement of Theorem 4.11. By ‘invariance of Hodge—Tate—Sen weights under finite extension’
[Fon04, Remarque, p. 31], we conclude the same for R,,. O

Remark 4.15. For our applications in §5, we will only need the case where II is classified by a
global simple generic parameter. The argument of §3 shows that if the parameter classifying II
is not simple generic, then it reduces to the properties of Galois representations associated to
Hilbert modular forms.

To end this section we state the following result, that can be proved exactly as in [Jor10],
using the generalization by Nakamura [Nak11l] and Tan [Tanll] on Kisin’s results on analytic
continuation of crystalline periods and combining with base change arguments.

PROPOSITION 4.16. Let I be as before satisfying the conditions in the beginning of § 4. Assume
that II is classified by a simple generic parameter. Suppose that Il is spherical at a prime v|p.
Denote by Qr(X) the inverse characteristic polynomial of the geometric Frobenius on the
unramified Weil-Deligne representation k, rec,(Il, ® |c|, 3/ 2). Assume that the (inverse) roots of
Qi (X) are all distinct. Then Ry, is crystalline at v.

5. Main theorems

We now return to the setting of the introduction, where we denote by 7 a cuspidal automorphic
representation on GLa(Apg), with E' a CM extension of the totally real field F'. Denote by w the
central character of 7. We make the following hypotheses on 7: there is an integer p such that for
any Archimedean place w of E, the local component at w of w is given by z — |z]5" = (22) 710,
and for such a place w, the local component m, is an irreducible admissible representation
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of GL2(C) corresponding to the Archimedean L-parameter ¢, n, of Lg,, with n, > 1, and
such that n, = po+ 1 mod 2 for all w|oco. We also denote this value as n, where v is the place
of F' below w.
In this section we prove Theorems 1.1 and 1.2 of the introduction. Thus for the rest of the
paper we assume that the central character w satisfies the condition (Char) as in the introduction.
First we notice that there are two cases for which Theorems 1.1 and 1.2 follow readily:

(1) 7 ®§ = 7 for a non-trivial quadratic idele class character ¢ of A%;
(2) (r®B)” = 7@ for an algebraic idele class character 3 of Aj.

If case (1) occurs then m = AT¥ (y® |det|X§) where L is the quadratic extension of E cut out
by 4, and x an algebraic idele class character of A¥ with x # x7, and AIE is the automorphic
induction from GL1(ApL) to GLa(Ag). In this case we have p, := Ind¥ Xz(fal where ch);al G —
Q; is the p-adic Galois character corresponding to y. The assertions in Theorems 1.1 and 1.2
are then the standard consequences of the dictionary between algebraic idele class character
and compatible systems of p-adic Galois characters, together with the fact that automorphic
induction is compatible with local Langlands correspondence of GLs.

In case (2), the twist 7 ® 8 would then arise from (Arthur—Clozel) base change of a cuspidal
automorphic representation on GL2(A ) of cohomological type, and in this case both theorems
reduce to known assertions about Galois representations associated to Hilbert modular forms (in
any case this is a special case of the result of [CH13]), together with the compatibility of base
change with local Langlands correspondence.

Henceforth we assume until the end of §5.2 that 7 is in neither case (1) nor case (2).

5.1 Lifting to GSp,(Ar)

Under the assumption (Char) on the central character w there are exactly two algebraic idele
class characters wy,wy such that w = w; o Ng/p. We have w; /Wy being equal to the quadratic
idele class character € of A% corresponding to the quadratic extension E/F. Hence there will
be exactly one of the two w;, that we will denote as w, for which w,(—1) = (=1)*0 for all
Archimedean places v of F'; equivalently for each Archimedean v the local component w, is given
by a — a0,

We denote by II' the representation

Il := AT% (7 ® |det|a,) (5.1)
where ATL is the automorphic induction from GLa(Ag) to GLy(AF) in the sense of Arthur and

Clozel [AC89]. We are assuming that 7 (and hence 7 ® |det|s ) does not arise as base change
from GLa(AF), so IT is cuspidal automorphic by [AC89].

GLiZZTeWgO}EZSgn put 7’ =7 ® |det|a,,w =w- |- |2AE,@’ =w-|- |?AF' Then since 7’ is on
() ow =2 (5.2)
which implies readily that
Iy oo =1 (5.3)

(for example using strong multiplicity one and the relation between the Satake parameters of 7/
and AIL(7’). Thus I’ defines a simple generic parameter Wy (4) which is self dual with respect
to @'. It is in fact of symplectic type, i.e. I defines a simple generic parameter of W5 (G, &), which
is demonstrated as follows (the author is grateful to Wee Teck Gan for pointing the identity (5.4)
below).

553

https://doi.org/10.1112/50010437X13007665 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007665

C. P. Mok

PROPOSITION 5.1. We have that II' is of symplectic type with respect to &', i.e. the twisted
exterior square L-function L(s,Il', A?> ® (@')~') has a pole at s = 1.

Proof. We have the following factorization formula of L-functions
L(s, IV, A? @ (@) 71) = Cr(s) - L(s,€) - L(s, 7', Asaiy p @(@) 7). (5.4)

Here (p(s) is the usual Dedekind zeta function of F' which contributes a pole at s = 1, while €
is as before the quadratic idele class character of Ay corresponding to E/F, and L(s,€) is the
usual Hecke L-function of €, which does not vanish at s = 1. The term L(s,n’, Asai s (@1
is the twisted Asai L-function of 7’ (to be precise there are two Asai L- functlons the (+) and
the (—) Asai L-functions and here we are using the (—) one). The non-vanishing of L(s, 7,
AsalE/F®( @')~1) at s = 1 follows from Shahidi’s theorem [Sha81]. See [Rob01, p. 302] for the
discussion. Indeed, we can choose an idele class character x of A} such that x| A= = &'. We then
have L(s, 7', Asai, . @ (') = L(s,7 @ x! AsalE/F) Wthh reduces to the standard Asai
L-function to Wthﬁ the non—vanlshlng result of [Sha81, Theorem 5.1], applies.

Identity (5.4) can immediately be verified directly by computation with Satake parameters.
Hence we conclude the result. O

Thus in particular by Arthur’s global classification theorem, IT" and the similitude character
&' define a (global) simple generic parameter in Wo(G,&"), which hence corresponds to a global
packet of cuspidal automorphic representations of GSp,(A ). For any representation II in this
packet, the central character of II is given by &’, whose local component at any Archimedean v
of F is given by & : a — a=Ho+2,

PROPOSITION 5.2. For any Archimedean place v of F, the local component 11, belongs to the
Archimedean L-packet defined by the L-parameter ¢, _s.n, 0y (notation as in §3.1). Thus it is
a limit of discrete series.

Proof. For each Archimedean place w of E, the local component ), = (7 ® |det|a,)w has
L-parameter given by ¢(,0—2,,,)- The L-parameter of IT}, = (ATE (7)), for a place v of F below
w, is thus given by the induction of ¢(,,_24,) from Wg,, to Wg,, i.e. given by

(22l
2> |z THOT2. (z/7) "/

(/2) "l
(/22

for z € Wg,, = C*, and

+1
+1

This is thus the L-parameter of the irreducible admissible IT,, of GSp4(F,). Recall that n,, = po+1
mod 2, and we set n,, = n,. Hence it is easy to see that this is equivalent to the parameter

¢(N0_2§nv70)' U

Remark 5.3. As mentioned in the introduction the above lifting result can also be obtained using
the method of theta correspondence, with the non-vanishing of the theta lifting being completed
by Takeda [Tak11]. Under some local conditions on 7 the result is also obtained by Chan [Chal0)].
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In particular we can pick a representation II in this packet whose Archimedean component
at all Archimedean places of F' is given by holomorphic limit of discrete series. This is the
representation to which we will apply the results of §4.

5.2 Quadratic twists
Thus once again fix a prime p. The hypotheses for Theorem 4.14 are all satisfied for II. Thus we
see that attached to II is a continuous semi-simple four-dimensional Galois representation

Rp . GF — GL4(Qp)

unramified outside the places of F' dividing p and the places where II is not spherical, and such
that for any place v of F' not dividing p, we have

1y WD(Ry| G )% 22 ks rec, (IT, @ ||, /%)% (5.5)
Recall that IT is classified by the simple generic parameter II' of GL4(A ). So (tautologically)
we have
k. recy (I, ® |¢|;3/%) =2 £,(I, @ |det|;3/?).
Hence

(IT, ® |det] /%)
(AL ) @ [det];1/?)* (5.6)

(recall that TT' = AIL(7') = ATL (7 ® |det|a,,)). If we take S, to be the set of finite primes w of
E where m,, m}, or E,/F, ramifies (here v is the place of F' below w), and Sy 7 the set of
places of F' lying below Sy, then II is spherical outside S r, and hence R, is unramified
outside the set of places dividing p and Sy p. Note that by (5.6), together with Cebotarev
density and the Brauer—Nesbitt theorem, the Galois representation R, depends only on 7 and
not on the choice of the cuspidal automorphic representation Il belonging to the global packet

defined by the parameter IT'.
Now since II' = ATL(7') it satisfies

II' 2 II' ® (e o det), (5.7)

tp WD(Bplap,)™ = Lo
Ly

12

where as before e is the quadratic idele class character of A corresponding to E/F.
Equation (5.6) thus implies

WD((Bp @ €)lap,)* = WD(Ry|cp, )™ (5-8)

(here we abuse notation and we regard e as a Galois character of G by class field theory). By
Cebotarev density and the Brauer—Nesbitt theorem, we thus have

R, ®e=R,. (5.9)
PROPOSITION 5.4. There exists a continuous semi-simple two-dimensional representation
pp: Gp — GLa2(Q,) (5.10)
such that
R, =Tnd% p,. (5.11)
Hence
Rplay = pp ® pj- (5.12)

In particular p,, is unramified at w if w does not divide p and w ¢ S.
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Proof. The proof is exactly the same as in [BH07, Lemma 4.1], so we just recall the gist of the
argument. Suppose first that R, is irreducible. Now by (5.9), we have Homg,, (¢, End R,) # 0.
Since € is non-trivial but the restriction of € to G is trivial, we see that dimg Homg, (1,
R,|Gp) = 2. By Schur’s lemma, we see that Ry|q, is reducible. Let p, be a subrepresentation
of Rp|c,, of minimal dimension. Then by Frobenius reciprocity Indg pp is a subrepresentation of
R, hence by the irreducibility of R, we must have R, = Indg pp and hence p,, is of dimension 2.

The cases where R, is reducible can be treated exactly as in [BH07, Lemma 4.1]. O

Remark 5.5. In fact p, is always irreducible (see Proposition 5.9 below), and under our
assumption that 7 does not arise as base change from GLy(Ap), we will see that we have
pp % p,, (Proposition 5.10 below), so in fact R, = Indg pp is irreducible.

Remark 5.6. Note that (5.11) does not specify p, uniquely as we can replace p, by pj,. For the
moment we choose either one for p,. We will pin down this choice more precisely later.

PROPOSITION 5.7. For any finite place w of E not dividing p, we have

tp WD(pplG, )™ & 1p WD (pplag, )™
~ Lo(mp @ |det|5/2)% @ Lo((77 ) @ |det|;1/2)%. (5.13)

Proof. This is a direct computation. Let v be the prime of F' below w. Then

lp WD(RP|GFU)SS‘WEU, =lp WD(RP|GEU,)SS
= 1p WD(pplap, ) ® t,p WD(pplap, )™ (5.14)

On the other hand by (5.6) and the compatibility of the local Langlands correspondence with
base change, we see that the left-hand side of (5.14) is isomorphic to

L,((ATG )y ® [det] /%) |6, = Lo(BCE(AIL 7)) @ |det],,'/2)*
=Ly(mB17)y ® |det|;1/2)35
= Lop(T0 @ |det|712)% @ Ly((77 ) @ |det|;1/2)%. (5.15)

(In the above 7 H 77 is the isobaric sum of 7 and n7 as an automorphic representation of

GL4(AF)) O

In order to separate the contributions p, and pj, in (5.13), we follow [BHO7] by considering
twisting of m by quadratic characters. Denote by M the set of quadratic idele class characters of
A E (we allow 7 to be trivial). Note that for any n € M, the cuspidal automorphic representation
T ® (n o det) satisfies the same hypotheses as those for 7 in the beginning of §5. Hence we
may apply the same constructions above to 7 ® (1 o det): denote by pp and Rj = Ind% pj} the
corresponding two-dimensional Galois representation of Gg and four-dimensional representation
of G respectively, given by the construction above with 7 being replaced by 7 ® (n o det) (here
pp is not to be confused with p,, which is the conjugate of p, by 7).

Proposition 5.7 applied to m ® (1 o det) gives the following result (to ease notation we have
written 7 ® n for 7 ® (n o det)).

PropoOSITION 5.8. For any finite place w of E not dividing p, we have

v WD(p5lap, )™ © 4 WD((pp)" |G, )™
2 Lo(mw @ - |- 157%)* @ Lu(mg, @17, -] - 151%)% (5.16)
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Our goal is to show that we can choose p and the p"” compatibly so that in fact p7 = p®@n
for all n € M (here we have abused notation and regard n as a Galois character via class field
theory). To do this we need some preparation, following the lines of arguments in [BHO7].

First we need the following key result.

PROPOSITION 5.9. The representation pjl|c, is irreducible for any quadratic extension L of E
(in particular p;} is irreducible).

Proof. This can be proved exactly as in [BH0O7, Lemma 5.1] using the argument in [Tay94, §3].
This is where we need to use the assumption that we are not in case 1 discussed in the beginning
of §5. O

Now for any n € M put é, :=n-n". Denote by Ls, the quadratic extension of £ cut out
by d. Twisting equation (5.16) via n,' = 7, and denoting p, := pp ® n~1, we obtain, for any
finite place of E not dividing p

v WD(p)lap, )™ @ 1p WD((p))" @ 0y)lag, )™
2 Lo(Tw @ |- [52)% & Lu((75, ® (G)w - | - [7%)* (5.17)
Now by Proposition 5.9 the restriction of p, to G, 5, 18 irreducible, hence semi-simple (in any
case being the restriction of a semi-simple representation of Gg to an open normal subgroup is
semi-simple). Since by definition the restriction of §, to G, 5y is trivial, we see that by using the

restriction of equations (5.13) and (5.17) to the various decompositions groups of L, at primes
not dividing p, together with Cebotarev density and the Brauer—Nesbitt theorem, we have

Filaw, © ) low,, = prlar, @ Alas, - (5.13)

By Proposition 5.9 again each summand of (5.18) is irreducible. Hence we either have
polcr, = pplar, »or play, = ppla,, - If the latter case occurs, we replace pj by (pp)7 (which
n

is legitimate; note that 77|GL: = 77T|(;L: ). With this choice, we then have for all n € M
n n

pylGr, = pplay, - (5.19)
Again by irreducibility of p, and py, equation (5.19) implies that
P12 py @ iy (5.20)
for a quadratic character 1, of Gal(Ls, /F), and hence 1), is either trivial or equal to J;. In other
words, pp = p, @0 or pp = p, @17
PROPOSITION 5.10. Let n € M, and 0 be a quadratic character of Gg. Then we have:
(1) pp® 8 % p) for 6 non-trivial;
(2) pp®d % (pp)7 in all cases.
Proof. This again can be proved exactly as in [BH07, Lemma 5.2]. However we would like to
give some details to clarify some part of the argument in [BH07, Lemma 5.2].
For part (1), if p} ® § & p} for some non-trivial quadratic §, then Homg,, (6, End pj}) # 0.
Denoting by L the quadratic extension of E cut out by J, one then has dima Homg,

(1,End(pp|c,)) = 2. Schur’s lemma implies that pp|q, is reducible, contradicting Proposition 5.9.

For part (2), first consider the case where § is non-trivial. Thus assume that p} ® 6 = (p)7.

Applying 7 to this isomorphism we obtain (p})” ® ™ 2 pj}, and hence we have p) ® §~ 157 = pj).
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By part (1) just proved above, this then implies 67 = . So twisting equation (5.16) by d,, = J},
we obtain

tp WD((pp ® 0)lcy )“@LpWD(( p ®0))lag, )™
= Lu(mw @ (- 0)w - |- |y 1/2)”69E (M ® (7 67)w - |- 173,

But by assumption p) ® § = ( »)7 so we obtain

LpWD pZ|GEw) @LPWD((pp) )‘GEM,)SS
> Lop(Tw ® (- 0w - |+ [,2)*° & Lu(mg, @ (0767 - | - 151>

Combining with equation (5.16) we thus obtain
Lo((r@n)Bren |- [5"%)* = Ly((ron-8)B (-6 |- [,'/?)*

Hence by strong multiplicity one for isobaric automorphic representations (theorem of
Jacquet and Shalika [JS81]) we have

(ren)B(ren) =(ren-6)B(ren-J)".

So we have either tT®@n=7®@n-d,ie. r®d=m orm®@n = (r®n-06)". The former case
is already excluded as the case (1) at the beginning of §5, because ¢ is non-trivial. So we have
TRn=(ren-0)".

Now recall that ¢ satisfies 7 = . Hence 0 (as a quadratic idele class character of Ay) can
be written as § = do V. g/ F for some quadratic idele class character § of A7 In particular § A is
trivial. The argument on [Hid06, p. 529] shows that we can write § = v/v” for some finite order
idele class character v of Aj. Thus we have

Tn-v=(mren-v).

Thus 7 ® n - v arises as base change from GLy(Af). But this is the case (2) that we excluded in
the beginning of § 5.

Finally we treat the case where § is trivial, i.e. we assume that p) = (p)". Recall that for
any 7' € M (including this particular n that we are considering) we have either p; pp ® n' or
o= pp @ (n)T. It follows that for any 1’ € ./\/l there are at most four possibilities: pp’ = pl@n/,
p;Z" ~ pp @ &g’y pp" = pp @ 6,(n')" or pgn =~ pl @ (n')". A computation shows that assuming

pp = (pp)™ we would have (in all possible cases)
(" )" = pp" @ oy

for all € M. In particular if we choose 1’ so that d,, is non-trivial, then we obtain a contradiction
to the case just proved above. O

PROPOSITION 5.11. We have either p)} = p, @ n for alln € M, or p} = p, @ 0" for all n € M.

Proof. We already know that for each n € M, we have either p} = p,®n or p} = p,@n". Suppose
that we have p;* = p,@nf for some ny € M with g # g, i.e. 5770 not trivial. Equivalently in (5.20)
we have ¢, = d,,, non-trivial. We are going to show that p) = n, @ 5" for all n € M.

Denote by L, ,, the quadratic extension of E cut out by 4, - d,,. Thus 6 \GL“ "o dne ‘GL,] o
By considering the restriction of (5.17) for both n and 79 to the various decomp081t10n groups of
G Ly, b primes not dividing p, we see that (again by Cebotarev density and Brauer—Nesbitt)

P, @ (@Y ®dnles,, =Ples,, © (PP @by, -
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iq 3 3 =N o~ 270 i o~ (570
This implies that we have either p, |GLWO = PPJGLW,,, ) OF e have py |GL7mo >~ (b )”%95770 |GLn,no .
If the latter case were to occur, we would have p, @9 = (p°)” ®4,,, for some quadratic character

¢, which would in turn imply by (5.20) that p, ® ¢’ = pJ for some quadratic character v/,
contradicting part (2) of Proposition 5.10. Thus we have ﬁ}?\GLn o = p/f);,7°|GL77 4o hence

Py = Pp° @ Yy, (5.21)

for some quadratic character ¢, », of Gal(Ly p,/E). Thus ), ,, is either trivial or equal to dy - 6y, .
We claim that

Ynmo = Un - Ung (5.22)
(where vy, ¢y, are as in (5.20)). Indeed combining (5.21) and (5.20) (for both 7 and 79) we have

Pp = pp @ (T/fn,nowﬁl"‘ﬁno)

whence the claim by part (1) of Proposition 5.10.

Recall that we are assuming that 1, = J,, is non-trivial. By (5.22) we see that 1), ,, and
1, cannot both be trivial, i.e. we have v, p, = 0, - 0y, or 1, = 0y. By (5.22) again these two are
equivalent, so we have 1, = 0, in all cases, i.e. pp = p, ® 7 as required. O

Thus, if the latter case of Proposition 5.11 occurs, then we just replace p, by p;,, and pp by
(pp)7 for all n € M. With these choices we then have p} = p, ® n for all n € M.

COROLLARY 5.12. For any n € M, and any finite place w of E not dividing p, we have

tp WD(pp ®@ |G, )" © tp WD(((pp @ 1)7)lGp, )™
2 Lo(Tw @ N - | /)% @ Lo(ml, @ 0] - |- [H2)%. (5.23)

Proof. Use Proposition 5.8. O

5.3 Proof of main theorems
With Corollary 5.12 in our hand we can now prove the main Theorems 1.1 and 1.2 from the
introduction.

First we set up some notation. For any finite prime w of E not dividing p, and element
o € Wg,, denote by Py (X, o) the inverse characteristic polynomial (in the variable X) of the
semi-simple part of the Weil-Deligne representation ¢, WD(pp|a, VE'=95 evaluated at the element
o. Similarly denote by Q. (X, o) the inverse characteristic polynomial of the semi-simple part
of the Weil-Deligne representation Ly, (m, ® |- \;1/ 2) evaluated at 0. The same notation of course
applies. with 7 replaced by 7" or ™ ® 7.

PROPOSITION 5.13. Let w be a place of E not dividing p, and splits over F'. Then for any element
o € Wg, of odd valuation, we have the identity
Pﬂ’:w(X7O-> = Qﬂ',w(Xvo')- (524)

Proof. The argument is similar to [BHO7, §5]. Choose an 1’ € M which is unramified at w
and w7, such that n'(w) =1 and n'(w™) = —1 (here 7'(w) is the value of n at a uniformizer of
E,, and similarly for n’(w™)). Denote by {«a, 5} and {/, 5’} the inverse roots of Pr (X, o) and
P+ (X, 0) respectively. Similarly denote by {v,d} and {7/, 4’} the inverse roots of Qr (X, o)
and Qr (X, o) respectively.
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Equation (5.23) applied to the case where 7 is trivial gives the following identity of multi-sets
(i.e. sets with multiplicities)

{a,8,d/,8'} = {,6,7,0'} (5.25)
and hence
a+B+d +f =v+5++"+0". (5.26)

Similarly (5.23) applied to the case where 7 = 7’ gives (this is the place where we need to assume
that ¢ has odd valuation)

{o,8,=a/, =} = {7,0,—, =&} (5.27)
and hence

at+B—ad - =v+5—-+ -7 (5.28)
Once can then deduce (5.24) from (5.25)—(5.28) as in [BHO7, §5]. O

As before let Sy be the set of finite places w of E such that my, (77),, or E,/F, ramifies (v
being the place of F' below w), and put S, to be the union of S and the set of places dividing p.
Then p, is unramified outside Sy ;. In particular we obtain, for w ¢ Sy ,,, with w splits over F,
the identity

Pr (X, Froby) = Qrw(X, Froby). (5.29)

Here Frob,, denotes a lift of the geometric Frobenius element of Wg,,.

When w is inert over F, then in general we have no relation between m,, and (77),,. However,
when 7 is spherical at w then we do have 7, = (77),, as is immediately seen from the classification
of spherical representation. Similarly if p,, is unramified at w then we have p}|cp = pplay, - Hence
equation (5.23) (with n being trivial) implies that for w inert over F', w € S,, identity (5.29) also
holds. Thus to conclude we have the following corollary.

COROLLARY 5.14. For w ¢ Sy, we have
Pr (X, Froby) = Qrw(X, Froby). (5.30)

As usual (5.30) characterizes the Galois representation p, by Cebotarev density and Brauer—
Nesbitt. This completes the construction of the Galois representation p, associated to .

To complete the cases of Proposition 5.13 where o is of even valuation or when w does
not split over F, we use base change arguments. For any solvable CM extension E’ of FE, let
7' = BCE () be the Arthur-Clozel base change of m to E’. Assume that n is cuspidal. Then
7’ satisfies all the hypotheses at the beginning of §5 (of course if 7’ were in case (1) or case (2)
discussed at the beginning of § 5, then Theorems 1.1 and 1.2 are known for 7’ anyway). Denote
by prp and pr, the Galois representations associated to m and 7’ respectively. Using (5.30)
applied to 7 and 7', a standard argument, using Cebotarev density and the relation between the
Satake parameters of m and 7, shows that

Prrp = Prply, (5.31)
PROPOSITION 5.15. For any finite prime w of E not dividing p and splits over F', and 0 € Wg,,,
we have
Prw(X,0) = Qrw(X,0). (5.32)
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Proof. First consider the case where o has non-zero valuation, i.e. ¢ ¢ I, . Write the valuation
m of ¢ in the form m = 2%u, where u is odd.

Now choose a solvable totally real extension F’ of F' such that for the solvable CM extension
E' = E - E' of E we have:

(1) 7' = BCE (x) is cuspidal;
(2) thereis a place w’ of E' above w, such that the extension E! , /E,, is the unramified extension
of E,, of degree 2%.

With this choice we see that o € WE/ and has odd valuation with respect to WE/ Note also
that w’ splits over F’ because w sphts over F. Hence by (5.24) applied to 7’ and w’, we obtain

P (X,0) = Qr (X, 0). (5.33)

Now by (5.31) we have Pr . (X,0) = Prw(X,0), and similarly by the compatibility of base
change with local Langlands correspondence we have Q. (X,0) = Qrw(X,0). Hence we
obtain (5.32) from (5.33).

Thus (5.32) holds when ¢ has non-zero valuation. In particular, denoting by rGal and rA“t the
semi-simple part of the Weil-Deligne representations of t, WD(pp|c,, )¢ and £w(7rw ® |- |w1/ 2)
respectively, we have

tr S (o )—trrAUt( ) (5.34)

W

for all o0 € Wg, with non-zero valuation. An argument of Saito (argument in part 1 of Lemma 1
of [Sai97]) then shows that this implies that (5.34) holds for all o € W, . Thus by Brauer—Nesbitt
we have r$% = 2% In particular (5.32) holds for all o. O

PROPOSITION 5.16. For any finite place w of EX not dividing p, and any o € Wg, we have
Pﬂ’:w(X7O-) = Qﬂ—’w(X,O'). (535)

Proof. Let v be the prime of F' below w. Choose a solvable totally real extension F of F', such
that the solvable CM extension E' = E - F’ satisfies:

(1) for any place u of F’ above the place v of F' we have E,, = F;
(2) 7' = BCE (x) is cuspidal.

By condition (1) we see that we can choose a place w’ of E' above the prime w of FE such
that £/, = F,, and such that w’ splits over F”. In particular o € WE/ Hence Proposition 5.15
apphed to " and w’ gives

Pﬂ’,w’(Xaa) = QW’,w’(Xa U)'
As in the proof of Proposition 5.15 we have P . (X,0) = Pr(X,0) and QW (X,0) =
Qrw(X,0), hence we conclude the result. O

Proof of Theorem 1.1. With the proof of Proposition 5.16 we see that the statement of local-
global compatibility up to semi-simplification at primes of E not dividing p follows from (5.35)
together with Brauer—Nesbitt. The assertion on the full local-global compatibility, in the case
when 7, is not of the form Stg, ® x, where St is the Steinberg representation of GLa(F,,) and
X a character of E, follows from the statement already proved. Indeed, from the classification
of irreducible adm1881ble representations of GLy(E,) we See that the monodromy operator of
Loy(7y @ |det|w ) has to be trivial and that £, (7, ® |det|w ) is not a twist of the semi-simple

8§ v

part of the spemal Weil-Deligne representation of Wg,, . Since we know that , WD(pp|a,, )*° =

Loy(my ® |det|;1 2)55, it follows that the monodromy operator of ¢, WD(p|GEw)F % has to
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be trivial also (by the classification of two-dimensional Frobenius semi-simple Weil-Deligne
representations). O

We now prove Theorem 1.2, which we state more precisely as Theorems 5.17 and 5.18 below.
Recall that the central character w of 7 has local component wy, : a — |a|d"® = (a@)#0 for
a € E for all Archimedean places w, and that the Archimedean L-parameter of m, is given by
®uo,ne Where ny,, > 1 and pg + 1 =n,, mod 2.

Identify the embeddings of F into C and the embeddings of E into Qp via ¢p : Qp =~ C.
Under this identification a conjugate pair of embeddings of £ into Q,, (under 7) can be identified
with an Archimedean place of E.

THEOREM 5.17. The Galois representation p, associated to m is Hodge-Tate at primes of F
above p. The Hodge-Tate weights of p, at the conjugate pair of embeddings of E into Q,
corresponding to the Archimedean place w of E is given by

{0w, 0w + 1y} (5.36)
where §,, 1= %(1 + o — Nyy)-
Proof. Recall that as in Proposition 5.4 we have

R, = Ind; p,

where R, is the p-adic Galois representation associated to the cuspidal automorphic
representation II of GSp,(Ar), that belongs to the global packet classified by the simple generic
parameter I’ = A% (7 ® |det|a ) together with the similitude character &' as in the discussion
in the beginning of §5.1 (&’ is thus the central character of IT). Recall that we have chosen &’
so that for any Archimedean prime v of F we have &/, given by a — a=#°*2_ and that the local
component II, at v is classified by the Archimedean L-parameter ¢,,—2 5,0y (Proposition 5.2;

recall that we have denoted n, = n,, for the place v of F' below w). o
By Theorem 4.14, the Hodge-Tate-Sen weights of R), at the embedding of F' into Q,, that
corresponds to the Archimedean place v of F' is given by

{6117511751; + Ny, Oy +nv} (5'37)

where
6o = 2((Ho —2) +3 —ny) = $(L+ po — n).

Now since Ry|c, = pp®py, it follows that the Hodge-Tate-Sen weights of p,®p;, at the conjugate
pair of embeddings of E into Q,, corresponding to the Archimedean place w of E is also given
by (5.37).

In any case (5.37) is a multi-set of the form {a,a,b, b} with a,b being unequal integers. Now
we note that if {z,y} (respectively {z’,y'}) are the Hodge-Tate—Sen weights of p, (respectively
p,) at the pair of embeddings corresponding to w, then z + y (respectively 2’ 4+ y') is the
Hodge-Tate-Sen weight of det p, (respectively det ,0;) at the same pair of embeddings. But
we have det p, = det p, since w = w”. Hence we have x +y = ' + 3. It follows that the
Hodge-Tate-Sen weights of p, at this pair of embeddings must be {a,b}, i.e. given by (5.36).
Finally since the Hodge—Tate—Sen weights are distinct integers, it follows that the Sen operator
is semi-simple and so p, is Hodge-Tate. O
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THEOREM 5.18. Suppose that w is a place of E above p, inert over F', and such that m, is
spherical, with distinct Satake parameters o, # B,,. Then p, is crystalline at w.

Suppose that w is a prime above p that splits over F, with conjugate prime w”, such that
and T+ are spherical, with Satake parameters au,, By for my, and qu,r, By for m,r respectively.
Suppose that the elements {cy, Bw, 0wy, Buwr } are all distinct. Then p,, is crystalline at w (and
also at w”).

This follows from Proposition 4.16, and is the same as the proof of [Jor10, Theorem 5.3.1].

Remark 5.19. Even though we do not know that the compatible system {p,}, is pure (in the
sense of Galois representations), Theorem 5.17 suggests that the motivic weight of the compatible
system {pp}, should be 1+ . In the case considered in [BHO7, Tay94], we have po = k — 2,
corresponding to modular forms of weight k over E' (with E being imaginary quadratic in [BHO7,
Tay94]).
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Appendix A. Proof of Proposition 3.4
In this appendix we prove Proposition 3.4. Recall the statement.

Proposition 3.4. Suppose ¢ is a global formal parameter of Saito—Kurokawa type. For each
finite prime v, let 1, be the local A-parameter of GSp,(F),) given by the localization of 1) at v.
Denote as before by IL,, the local A-packet classified by 1),. Then the semi-simple part of the
L-parameters of the representations in the A-packet IL;, have the same semi-simple part as that

of ¢¢,U .

Thus let ¢ = p B (AKX v(2)) be a global formal parameter of Saito-Kurokawa type, where
p is a cuspidal automorphic representation of GLo(Ap), and A is an idele class character of
A7, satisfying w, = A? (with w, being the central character of ). In this case the local and
global A-packets corresponding to v are constructed by Schmidt [Sch05], using the method
of theta correspondence (strictly speaking in [Sch05] the results are stated only for the group
PGSp,, but the arguments in [Sch05] apply verbatim to the case of GSp,). See also [Gan08,
Propositions 5.5 and 5.6]. To state the results we first set up some notation: denote by GSO(2, 2)
and GSO(4,0) the identity component groups of GO(2,2) and GO(4,0) respectively (notation
as in [GT11la, GT11Db]). For any (finite) prime v, we have

GSO(2,2)(F,) = (GLy(F,) x GLao(F,)) /(2,27 Y) 1 2 € EX},
GSO(4,0)(F,) = (DX x DX)/{(2,27Y) : 2 € FX}

where D, is the quaternion algebra over F,. We denote by 8, respectively 1, the local theta lifting
from GSO(2,2)(F,), respectively from GSO(4,0)(F,), to GSp,(Fy). Then according to [Sch05],
the local A-packets of GSp,(F,) associated to the local A-parameter 1, are given as follows:
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if u, is not a discrete series representation of GLa(F,), then the A-packet corresponding to 1,
is a singleton {0(u, X \y)}; here to ease notation we have written ), instead of A\, o det for the
corresponding one-dimensional representation of GLy(F},). On the other hand, if p, is a discrete
series representation of GLa(F,), denote by pJ% the irreducible admissible representation of D
that corresponds to GLa(F},) under the Jacquet—Langlands correspondence. Then in this case the
A-packet corresponding to 1, is given by {8(u, ®A,), 07 (u¥X\,)} (here again for 67 (p)X X \,)
we ease notation by writing A, for A, o Nrdp, ,p,, where Nrdp, /p, is the reduced norm from D,
to Fy).

Using the results of [GT11a] we can compute the L-parameters of the representations in these
A-packets to verify Proposition 3.4. There is nothing to prove when p, is not a discrete series
representation, since the corresponding A-packet is a singleton, and is equal to the singleton
L-packet corresponding to ¢, . In any case the L-parameter can be computed from [GT11a] as
follows. In the notation of [GT11a, §14], since pu, is not a discrete series representation, we have
py = J(m(x,, xv)) where x,, X, are characters of F,¢, while we have \, o det = J(mw(\,] - 1/2,
Aol - ];1/2)). Hence by Table 2, row fof [GT11a, §14], the representation 6(u, X \,) is given by
I (A|- |11,/2X171, Aol o 1/2X1717Xv) By Table 1, row e for N.D.S. of [GT11a, §14] (N.D.S. for non
discrete series) the representation Jp(A,| - |11,/ 2 Xo b Mol o Y 2)(; !:xv) has L-parameter given by

(- (L@ X| - [0 T @ Al - 7200 @ APx,?) o art, !

= (xveax;@/\vl~ V2 |- |51/2) o art; !

which is the L-parameter ¢y, (to see the last equality use the fact that the condition w,, = A2
in this case is o X, = A\2).

Next suppose that p, is either supercuspidal or a twisted Steinberg representation Stgr,, ® X -
Then by Table 2, row e of [GT11a, § 14] the representation (1, X \,) is equal to Jp(, @A, |- |1/2,
Aol - |_1/ ). Denoting by 7, the representation ju, ® A\, |- |1/2 Table 1 of [GT11a, §14] shows that
the L-parameter of the representation Jp(7y, Ay| - |v Y 2) is given by

~1/ 2) oart, !

(wr Aol - %) oarty @ Lo(7o © Ao| - 15772) @ (Mol -
= (M| - [/%) 0 arty T @ Lo(pn) @ (Ao - [57?) 0 art ! (A1)

(here we are using wy, = A2). Next we consider the representation 07 (u)" &K \,). We first make
the assumption that p, is not of the form Stgr, ®\,. Then by Table 3, row b of [GT11a, §14]
the representation 6 (u;) JLR A v») is a non-generic supercuspidal representation, and by Table 1,
row ¢ for S.C. of [GTlla §14] the L-parameter of 0% () X \,) is given by

Ly(1y) @ Ly(Star, @Ay). (A2)

It is clear that (A1) and (A2) have the same semi-simple part. Furthermore, if p, is supercuspidal,
one sees from Table 1, row b of D.S. the L-packet corresponding to the L-parameter (A2) contains
the other representation St(u, ® A; 1, \y). If 1y = Star, ®xw» with x, # Ay, then from Table 1,
row a for N.D.S. of [GT11a, §14] the L-packet corresponding to the L-parameter (A2) contains
the other representation Jo(xuAy L, StaL,) @ Ay

It remains to treat the case where u, = Stgr, ®A,. Then by Table 3, row a of [GT11a, § 14]
the representation 0% ()" K \,) = 67 (A, ® \,) is (in the notation of [GT11a, §14]) given by
Tng(Hv) = Tng(Star, ®Ay) (non-generic representation), hence by Table 1, row ¢ for N.D.S. of
[GT11a, §14] has L-parameter given by

Ev(StGLg ®)\v) ¥ E’l}(StGLQ ®)\v) (A3)

564

https://doi.org/10.1112/50010437X13007665 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007665

GALOIS REPRESENTATIONS ATTACHED TO FORMS ON GLo

i.e. the same as (A2) with p, = Stgr, ®\,, and hence has the same semi-simple part as (Al).
We also see from Table 1, row b for N.D.S. of [GT11a, §14] that the L-packet corresponding to
the L-parameter (A3) contains the other representation mgen(Star, ®A,) which is generic.
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