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ON BERNSTEIN ALGEBRAS WHICH ARE TRAIN ALGEBRAS

by SEBASTIAN WALCHER

(Received 9th May 1990)

The class of non-associative algebras over a field of characteristic zero named in the title is studied using a
result of Ouattara [9]. As an application, the differential equation for overlapping generations in the time-
continuous model is solved.

1980 Mathematics subject classification (1985 Revision): 17D99.

1. Introduction

A commutative non-associative algebra A of finite dimension over a field K is called a
Bernstein algebra if there is a nontrivial homomorphism a>:A—*K and if the identity

x2x2~co{x)2x2 = 0 (1)

holds in A.
This class of algebras was introduced by Holgate [4], following the original work of

Bernstein [2] and subsequent investigations by Lyubich [5] on idempotent quadratic
maps from a real simplex into itself. A summary of known results on Bernstein algebras
(up to 1980) is given in Worz-Busekros [8], which will also be used as a basic reference
on algebras in genetics. All definitions not explicitly stated here can be found in this
monograph.

Bernstein algebras are not necessarily genetic algebras in the sense of Schafer [6];
indeed there are Bernstein algebras which are not even train algebras, cf. Worz-Busekros
[8].

In this note Bernstein algebras which are train algebras are considered. K is assumed
to be of characteristic zero throughout, although this hypothesis could be weakened for
some of the results.

As follows from a result of Outtara [9], the rank polynomial of a Bernstein train
algebra is uniquely determined by its degree. This result admits an interpretation as a
"stationarity principle" which is different from (1), and this in turn enables us to solve
the differential equation for overlapping generations in the time-continuous model (for
K = IR) in closed form. In particular, the long-term behaviour of the solutions can easily
be determined.

I thank the referee for valuable comments and suggestions.
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2. The rank equation

For every x e i we define L[x)eHom(A,A) by L(x)y: = xy. Powers of an element x
are defined by xk: = L(x)k~lx for all

Linearizing (1), one obtains

x2(xy) =

and in particular

2 2 ' + io;(x)'x2 (2)

for all x e A and all i 2:2.
We will frequently use differentiation ( = linearization) of polynomial maps as a tool.

Since K is infinite, this causes no problem. The "product rule" for differentiation of
maps stemming from multilinear maps will be used without further mentioning.

For k^ 1 let pk(x): = xk. For (c^2we have

in every commutative algebra; in particular

Dpk(x)x2 = 2xk+1+ ^ L(x)J(xk'J-l-x2).
J = 0

For Bernstein algebras, we obtain from (2)

DPk(x)x2 = 2xk + l+i £ LLxy(aj(x)k-J-lx2) + l X L(x)J(co(x)2xk-J-1)
j=o ;=o

and finally

* - 3

x2 = 2xk+l+\ X oj(x)k-J-lxJ+2+^(k-2)co(x)2xk~l (3)

For any polynomial ^(T) = YJ=oPix> m one indeterminate, we define g:A-*A by
g(x)=Y/UoPMx)"~ixi. In particular, for r k 3 let

Theorem 2.1 (Ouattara [9]). Let A be a Bernstein train algebra, and the degree of its
rank equation equal to r ^ 3 . Then the rank equation is given by fr(x)=0.
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This is actually not quite the theorem stated by Outtara [9, Thm. 2.5], which starts
from a nilpotency condition on certain elements of iV: = Kerco. We will show that in a
Bernstein train algebra L(x)|,y is nilpotent for every xeN, thus Ouattara's additional
condition always holds. We abbreviate M(x): = L(x)|JV for xeA.

Since xr = 0 for all x e N, we obtain by differentiation

r-3

2M(x)r'1+ £ M(x)JM(xr--''-1) = 0 (4)
j = 0

for all xeN.
On the other hand, M(x2)M(x) = 0 for all xeN follows from the linearization of (1),

and we will show that

M(x')M(x)'-l=0 (5)

holds for all i: ^ 2 by induction.
Indeed, starting from (5), differentiating and applying to x2 we obtain, using

x2 = 2pi+1(x) for x

) £ M(x)J'M(x2)M(x)''-2-'• = ()

j = 0

and

2M(x' + 1)M(x)'-1+M(xI)M(x)'-2M(x2) = 0
from M(x2)M(x) = 0. Multiplying by M(x) from the right completes the induction.

Thus, multiplying (4) by M(x)r~2 from the right shows M(x)2r"3 =0.
We note that the only possible rank equation of degree 2 is x2 — a>(x)x = 0, thus the

picture is complete.
The polynomial maps /((/^3) have an interesting property in arbitrary Bernstein

algebras. First we note

/,+1(x) = x/,(x)-iw(x)/,(x) for all 1^3. (6)

Lemma 2.2. Df,{x)x2 = 2x • f,(x) for all I g 3.

Proof. For 1 = 3, this is elementary, and we proceed by induction. Let /((T) =
' = 2y,/T' a n d note XS=2V,-.i J

Df, + , (x)x2 = x2 • f,(x) - iw(x)2/,(x) + x • (Df,(x)x2) - M

= x2 • ft(x) - icj(x)2/,(x) + 2x • (x • /,(x)) - w(x) (x • /(
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where the induction hypothesis has been used.
The third and fourth terms on the right hand side combine to 2x-//+1(x), using (6),

the first term, by virtue of (2), equals

r,M+h ( E y-, Mx)1 ~ >co(xy\x2 = i«(x)2/((x).

Thus the assertion is proved.

Now define recursively

1 *
go(.x): = x,gk + l(x): = ——.- £ gj(x)gk-j(x). (7)

k + 1 j r;o

In particular, gi(x) = x2 and g2(x) = :)c3- Note that gk is homogeneous of degree k + l.
Easy induction shows

Dg,(x)x2=(fc+l)^ + 1(x) (8)

for all x e A and all k ̂  0. (This is true for any commutative algebra.)

Lemma 2.3. For every Bernstein algebra and every 1^.2 the identity gt(x) —
co{x)gl_, (x) = (2' - 7/!)/, + 1 (x) is sfltisyicd.

Proof. For 1 = 2 we have

We proceed by induction. Differentiate

2
) - co(x)g, _! (x) = — fi +1 (x)

and apply to x2. The left hand side yields, observing (8),

- (o(x)Dgl _, (x)x2 - co(x)2g, _ x (x)

(g,(x) - (o(x)gl _! (x))

2 / - l

= (/ + 1) (gl + 1W - 0>(x)ft(X)) + OJ(X) • - y p / , + ! (X)
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by induction hypothesis.
Using Lemma 2.2 and (6) we obtain on the right hand side

Comparing both sides completes the induction.

Since fr(x) = 0 implies /,(x) = 0 for all l>r, we have:

Theorem 2.4. / / the Bernstein algebra A satisfies a train equation of minimal degree
r ^ 3 , then gk(x) — co(x)gk-l(x) = Ofor all xeA and all k^r—l.

Remark. Trivially, this is also true for r = 2. Obviously a Bernstein algebra satisfies a
train equation if and only if the identity gi(x) — co(x)g,_1(x) = 0 holds for some /.

In applications interest is restricted to elements of the hyperplane H = {x e A: co(x) =
1}. Theorem 2.4 shows that in a Bernstein train algebra gr-i(x)=gr(x) = - - for all xeH.
Thus one has another "stationarity principle" for these algebras. An application will be
discussed in the following section.

3. Application to continuously overlapping generations

In this section we assume K = U. If heredity in a population is described by squaring
in the algebra A and if generations overlap continuously, then, according to Andreoli
[1] and Heuch [3] the behaviour of the population is governed by the Riccati
differential equation

y=y2-y (9)

on the (invariant) hyperplane H. For Schafer genetic algebras Heuch [3] showed that
this equation can be solved with elementary functions (although his explicit formula
needs a few corrections). For Bernstein algebras the solution of (9) seems to be
unknown. In the following we find the explicit solution for a Bernstein train algebra.
This solution is interesting even for genetic algebras because the longterm behaviour of
solutions cannot directly be found from Heuch's results. (In general, there are train
roots equal to ^.)

We first consider the homogeneous equation

y=y2 (io)

in the algebra A. Some of the results cited in the following are taken from [7]; they can,
however, also easily be verified by direct inspection.
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Denote by G(x, t) the solution of (10) with initial value x at f = 0.

Lemma 3.1. Let A be a Bernstein algebra. Then

(i) G(x,t) = ^=ogk(x)tk.

(ii) Iffr+l (x) = 0 for allxeA, then

Proof, (i) is correct for any commutative algebra. Note that the existence of a power
series expansion for G(x, t) is guaranteed by the Cauchy-Kovalevsky theorem. The
assertion then follows by substituting this series into (10); cf. [7].

(ii) By Lemma 2.3 and Theorem 2.4 we have gr+l(x) = (4x)l+lgr^l{x) for all /^0 .
Hence

^ kG(x, t) = ^ gk(x)t
k = O

the assertion follows.

It is known that the solution of (9) can be found from the solution of (10); cf. [7].
Let y(t) be a solution of (9) with y(0) = x Define z(t) by y(t) = e~'z(t). Substituting into

(9) yields — e~'z(t) + e~'z(t) = e~2'z(t)2 — e~'z(t), hence z(t) satisfies the non-autonomous
equation

z = e~'z2 (11)

and z(0)=x.
It is immediately verified that z(t) = G(x, 1— e~') is the solution of the given initial

value problem and we have y(t) = e~'G(x, 1 — e~'). Restriction to H and combination of
the results shows:

Theorem 3.2. Let the Bernstein algebra A satisfy fr+l{x)=0. Then the solution of (9)
for the initial value xeH is

Corollary 3.3. For t-*oo,

It follows from general theory that gr-i(x) is a stationary solution of (9), i.e. an
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idempotent of A. This can also be found directly (for arbitrary K) from the recursion
(7).

Finally, let us indicate that the results of Section 2 also allow to find the solution of
(9) for an arbitrary Bernstein algebra in a (somewhat) closed form: From Lemma 2.3
one has by induction for xeH gl(x)=gl(x) + f3(x) + --- + {2l~1/ll)fl+l(x) for all / ^ 2 ;
furthermore fl+l(x) = S(x)fl{x) with S(x) — L(x) — \ld for all / ^ 3 , according to (6) and
hence

1-2

This shows for the solution of (10):

i—t

when xeH. The solution of (9) follows as before.
For given x, determination of the solution involves evaluation of the series for S{x).

This can be done, at least in principle: Note

= :y(z) for all zeC.

Then y(B) can be found for any BeHom(A,A), provided the Jordan canonical form
of B is known. In this sense, the solution of a given initial value problem is reduced to
linear algebra. Of course, it is hard to obtain global information from the given formula;
hence results about special cases are still valuable.
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