H. Katsurada
Nagoya Math. J.
Vol. 146 (1997), 199-223

AN EXPLICIT FORMULA FOR THE FOURIER
COEFFICIENTS OF SIEGEL-EISENSTEIN SERIES
OF DEGREE 3

HIDENORI KATSURADA!

Abstract. Using an induction formula of local densities by Kitaoka, we give an
explicit formula for the Fourier coefficients of Siegel Eisenstein series of degree
3.

§1. Introduction

Let k be an even integer such that £ > n + 2 and

Ex(Z)= > |CZ+ D|-k.
{C,D}

Siegel Eisenstein series of degree n and of weight k, where {C, D} runs over
all representatives of the equivalence classes of coprime symmetric pairs of
degree n. Then Ey(Z) has the following Fourier expansion:

Ey(Z)= Z c,(C) exp(2mi Tr(CZ)),
C

where C runs over all semi-positive definite half-integral matrices of degree
n over Z, and T'r denotes the trace.

The Fourier coefficient of Siegel-Eisenstein series is one of the most
important subjects in number theory, and many contributions have been
done to it. But we have no explicit formula for it except for a few cases.
The case of degree 1 is well known. In [Mal], [Ma2], Maa8 gave an explicit
formula for the case of degree 2. In [Ki2] Kitaoka essentially gave an explicit
formula for cx(B) when n = 3 and B is Zy-maximal using his recursion
formula in [Kil] (for the definition of Zj-maximal see Section 2). Partial
results for the case where B is not Zg-maximal were given in [O-W].
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200 H. KATSURADA

In this paper, using the recursion formula in [Kil] we give an explicit
formula for ¢ (C) for any positive definite half-integral matrix C of degree 3.
To state our main result explicitly, we introduce the notion of the “scheme”
of a symmetric matrix of degree 3 with entries in the field Q,, of p-adic num-
bers. For a commutative ring R, let My,,(R) be the set of (m,n)-matrices
with entries in R, GL,(R) the group of invertible elements in M,,(R), and
S, (R) the set of symmetric matrices of degree n with entries in R. Further
for an integral domain R, let H,,(R) denote the set of half-integral matrices
of degree n over R, that is, Hy(R) is the set of symmetric matrices (a;;) of
degree n with entries in the quotient field of R such that a;; (: = 1,...,n)
and 2a;; (1 < i # j < n) belong to R. We note that H,(R) = S,(R) if
R contains the inverse of 2. Let A, B be elements of S,(R). We say A is
equivalent to B over R if we have B = 'T AT for some T € GL,(R), and
write A =2 B.

X 0
Y 0
be the ring of p-adic integers, and Zj the group of p-adic units. Let p # 2;

For two square matrices X and Y we write X LY =

. Let Z,

then for a non-zero element a = p"c € Q, with r € Z, ¢ € Z; define
c
Xp(a) = (5) or 0

according as r is even or odd. Here (-) is the quadratic residue symbol
p
modulo p. Let p = 2; for a non-zero element a = 2"c € Qs with r € Z,
c € Z5 put
+1 ifr=0mod2,c=1mod8
xz2(a) =4¢—1 ifr=0mod 2, ¢c=5mod8
0 otherwise.

Further let (, ), denote the Hilbert symbol over Q.

For a non-degenerate symmetric matrix B of degree 3 with entries in
Qp we define five invariants mi,(B), maop(B), map(B), np(B), &(B) of B
as follows. As is well known, if p = 2, B has one of the following Jordan

decompositions:
. 0 1/2 1 1/2
s t * —
(1)2b1_L2KW1th blezzaK‘_ (1/2 0 ) or (1/2 1 ) and
s > t,
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(2) 2°K 12%by with by € Z5, K — ( 1(;2 1(/)2 ) or ( 1}2 1{2 ) and
s>t+2,
(3) 27y L2%by L 2%b3 with by, by, by € Z%, and r > s > ¢,
and if p # 2, B has the following Jordan decomposition:
(4) p"by Lp®by Lplbs with r > s > t, by, b, b3 € z,

We note that we here arrange the Jordan components of B in a different
order from the one in [Ki4 Chap. 5]. Further we remark that the matrix B
in (1) ~ (4) is half-integral over Zs if and only if we have t > 0.

First let B be of type (1). Then we put

mlz(B) =1, ng(B) = 2t, mgg(B) =s+ 2t

and
n2(B) = (xa(— det K))*~*.

Further we define £3(B) by
&(B) = x2(—det K) or 1

according as s >t + 1 or not.
Next let B be of type (2). Then put

mlg(B) =1, mgz(B) =t+s+2, TT),32(B) =t+2s,
m2(B) = (x2(—det K))*™,

and
&(B) =1.
Thirdly let B be of type (3). Then we put

m12(3)=t, mQQ(B):8+t+2, m32(B)=T‘+8+t+2,

and
n2(B) = (=27 *bybg, —2°*babs)a.

Further we define £>(B) by

€a(B) = x2(—25""hobs), x2(—2"'bob3)?, or 1
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according as r > s+ 3, r = s + 2, or not.
Finally let B be of type (4). Then we put

myp =t%, Mo =8+t mgp=r+s+t

and

np(B) = (—p""*b1bs, —p* tbobs)p.

Further we define &,(B) by

&p(B) = xp(—p°"babs) or xp(—p° tbobs)?

according asr > s+ 1lorr=s.

If p 5~ 2, by the uniqueness of Jordan decomposition these five quantities
mip(B), mop(B), msp(B), np(B), &(B) are clearly invariants of B. If p = 2,
the Jordan decomposition of B is not necessarily unique. However by easy
observation, we see these quantities are also invariants of B. We remark
that we can define these invariants in more intrinsic way. In fact, we have

— ; 1-65p . — ; 3-6i; 3. .
mip(B) = i, ord(2° 7% b;), mep(B) =  Juin_ ord(2°7°9 B;;),

mzp(B) = ord(4 det B),

and
Mp(B) = (=1)% hy(B),

where ord denotes the normalized p-adic order of Q,, é;; is Kronecker delta,
Bi; is the (3, j)-th cofactor of det B, and hy(B) is the Hasse invariant of B
(for the definition of Hasse invariant, see [Ki4, Chap. 3]). Similarly the
invariant &,(B) can be also defined without using Jordan decomposition.
But to make a calculation smooth we adopt the above definitions. The 5-
tuple (mip(B), map(B), msp(B), np(B), £p(B)) of invariants of B is called
the scheme of B.

Now let B be a non-degenerate half-integral matrix over Z of degree 3.
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Then for each prime number p and integer k we define F, ;(B) by

my [(m2—62p—1)/2]—i

Fpu(B) = ( Y p(5=2K)5) (3R

=0 7=0
my [ma/2]-62p—i
+ mp(B)pTImom T m AT S S ST
=0 j:n’
m3z—2ma+my my
+ p(6=2k)lm2/2]—=(2=k)m1 3 p2Wig (BYi+? Zp(2—k)j’

where m; = mp(B) (i = 1,2,3) and n’ = n,(B) is the number defined by

1 if p # 2 and mg = 0 mod 2,
np(B)z orif p =2, m3g—2mg+m; = —4, and mo = 0 mod 2
0 otherwise.

1 ifp # 2and B = p"b; Lp®by Lp'bs with by, by, b3 € z;,
r>s>tand s =tmod 2
ny(B) = orif p=2and B = 2°K12%3 with K = Hor Y,
bs € Z3,s >t+ 2 and s =t mod 2
0 otherwise.

Remark that the set {F}, ;(B)}, is a genus invariant of B as explained above.
Further remark that Fj, (B) is expressed explicitly as a polynomial of pk
of degree msp(B), and in particular it is 1 for almost all p. Then our main
result in this paper is

THEOREM 1.1. Let B be a positive definite half-integral matriz over Z
of degree 3. Then we have
(—1)k/225=Fkk(k — 1)(det 2B)*—2
| Bk Bag—2|

cx(B) = II Fx(B),

plddet B

where B; is the i-th Bernoulli number (for the definition of Bernoulli num-
bers see, for example, Miyake [Mi, Chap. 3]).

It should be remarked that cx(B) can be completely determined by the set
{(mip(B), map(B), m3p(B), np(B),&p(B))}p of schemes of B. To state the
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outline of the proof, for a half-integral matrix S of degree m and symmetric
matrix T of degree n with entries in Q,, put

AT, S) = #{X € Myun(Zy)/0 Myn(Zp); SIX] — T € pHa(Z,)},
B.(T,S) = #{X € A.(T,S); X has the maximal rank mod p},

and
ap(T, ) = lim plmmntn(ntD)/2)e g (T, §),
By(T, S) = ehngo pomntn(nt)/2ep (7 gy
k
——
where for two matrices 7', X, T[X] denotes ‘XTX. Let H, = HL..lH
with H = 1(/)2 162 Then it follows from Maafl [Mal] that for a

positive definite half-integral matrix B of degree 3, we have

2 k—i/2
_ — s
cx(B) = (=1)*?2%¢"D(det B)* 2 T] Th=i/2) 11 ap(B, Hy),
1=0 p

where I'(2) is the gamma function, and p runs over all prime numbers. Thus
our main theorem can be reduced to the following.

THEOREM 1.2. Let the notation and the assumption be as above. Then
for any non-degenerate half-integral symmetric matriz B of degree 3 over
Z, we have

ap(B, Hy) = (1—p *)(1 = p* ), 1(B).

Theorem 1.2 for the case p # 2 has been treated by Kitaoka in [Ki2]
though it has not been formulated in the above form (cf. Section 4). The
value ag(B, Hy) for a Zg-maximal matrix B of degree 3 is well known
(cf. Proposition 2.2). Thus Kitaoka essentially proved Theorem 1.1 in this
case. The crutial part of this paper is the proof for the case p = 2. The
method we adopt is similar to that in [Ki2], but we give a more concise
formula than that by introducing the notion of the scheme. Fixing 7,(B)
and &,(B) we temporarily write A,(m, ma, m3) for op(B, H,). Then first
we give an explicit formula for A,(0,mg,m3) when mg = 0, 1, 269, or
269p+1 (cf. Theorem 3.1.3). Next we express Ap(0, ma, m3) using A, (0, ma—
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2[(mg —262;,) /2], m3—4[(mg—262;) /2]) by a certain induction formula when
mg > 28p (cf. Theorem 3.2.1). Thirdly we give an induction formula by
which we can express Ap(mi,mg, m3) using A,(0, mg — 2mq, mz — 3my)
(cf. Theorem 3.3.1), and finally combining these results, we complete the
proof. The proof is rather long but comprehensible, and our mehtod is ap-
plicalble to Siegel-Eisenstein series of any degree, and a lot of information
on the Fourier cofficients of it can be obtained. Further we remark that the
same result in this paper can be obtained by using a modification of our
recursion formula in [Kal] and [Ka2]. In fact, in the first draft of this paper
we have obtained the main result using it. The detail will be published in
a subsequent paper. We also remark that D. Zagier conjectured some in-
duction formulae similar to ours. The author thanks Professors Y. Kitaoka
and T. Ibukiyama for many helpful discussions and suggestions. He also
thanks the referee for valuable comments.

§2. Kitaoka’s recursion formula

In this section we review Kitaoka’s recursion formula for local densities
following [Kil]. Put

p 0 0 1 p7la 0
fi= 0 1 0|, fal)=]1 0 pt 0 (a=0,...,p—1),
0 01 0 0 1
1 0 pla
f3(aaﬁ): 01 P_lﬁ (a,ﬂ:O,l,. ‘)p_]-))
00 pt
pt 0 0 pt 0
g=| 0 p*t 0}, ga=| 0 1 pla |,
0 0 1 0 0 p!
1 pta piB
g3, B)=10 pt 0O
0 0 pt

Further put

F= {fl,fQ(a) (0520,1,...,p— 1)7 f3(aaﬁ) (a’ﬁ:()a“'ap_l)}7
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and

g = {glaQQ(a) (a = 07 1’ - D — l)a g3(a7ﬂ) (a7ﬁ = Oa EEREY Zia 1)}
Then by [Kil, Theorem 1] we have

THEOREM 2.1. Let B be a non-degenerate half-integral matriz of de-
gree 3 over Z,. Then we have

ap(B, Hy) = p* 2 Y~ o (BIf], Hy) — 2% o (Blg), H)
feF g€eg

+p'° "%, (Blp™ B3], Hi) + Bp(B, H),
where E3 denotes the unit matriz of degree 3.

For two symmetric matrices B and B’ of degree n with entries in Q,,
we write B’ < B if there exists a non-degenerate non-unimodular matrix
X of degree n with entries in Z, such that B’ = B[X]. This defines an
order in S,(Qp). We call B Z,-maximal or simply maximal if it is maximal
in H3(Zp). From now on we simply write a,(B) and (3,(B) instead of
ap(B, Hi) and B,(B, Hy), respectively, and put

d=d,=(1—p*)(1-p*%).
The following proposition is well known.

PROPOSITION 2.2. (1) Let H be the matriz defined in Section 1, and

1 1/2
1/2 1

Z, to one of the following forms:

Y = . Then a mazimal matriz B in H3(Zg) is equivalent, over
2’01 LK, withr=0,1,K =H orY,b; € Z3,

by L2Y with by € Z}

(2) Let p # 2. Then a mazimal matriz B in H3(Zy) has one of the following
Jordan forms:

p'by byl by with r=0,1,by,be,b3 € Z;,
pb1 Lpby Lbg with by, by, bs € Z7, —byiby ¢ Z72.

Further in (1) and (2), for such a matriz B we have

ap(B) = Bp(B)-
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Remark. Let by, ba, b3 be elements of Z3, and K = H or Y. Then we
have
2" (by Lby Lbg) = 270! 127 FLK!

where b} € Z3, and K’ = H or Y according as 12(2"(by Lby L b)) =1 or —1.

Now by [Ki3, Lemma 9] we have

PROPOSITION 2.3. Let B be a non-degenerate half-integral matriz of
degree 3 over Zy, and my,(B) and others be the invariants of B defined in
Section 1. Then we have

d if mip(B) = map(B) = map(B) =0
d(1+p* "¢, (B)) if mip(B) = may(B) =0 (B) > 1
ﬁp(B) = d(l . p4—2k) Zf mlp(B) 0 mQP(B) .>_3§; -
and ms,(B) > 1
d(1 = p* )1 +p*7F) if mip(B) 21

COROLLARY. Let B and B’ be two half-integral matrices of degree 3
over Z, with the same scheme. Then we have

Bp(B) = Bp(B').

83. Proof of the main result

In this section we prove Theorem 1.2. Let d = (1 — p~*)(1 — p?~2)

be as stated in Section 2. Put I' = GL3(Z,), and for two elements f, g of
GL3(Qp) we write
f=gmodT

if we have f = gh with some h € T. Further we write £ = FUGU {p~1E3},
where F and G are the subsets of GL3(Qp) defined in Section 2.

3.1. First step
LEMMA 3.1.1. (1) Let p=2. Let by, by, b3 € Z% and K = H orY.
(1.1) Let B = by Llbylbs or B =2K 1bs. Then we have

az(B) = d(1 + m(B)2* ).
(1.2) Let B = 2by Lby Lbs. Then we have

az(B) = d(1 4 n2(B)2°73F).
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(1.3) Let B = 2b1 12by 1 bs. Then we have
az(B) = d(1 4 n2(B)287%F).

(2) Let p # 2 and B = pby Lpby L bg with by, bz, b3 € Zy. Then we have
ap(B) = d(1+1p(B)p*~*").

Proof. First let B be as in (1.1). If we have n2(B) = —1, the assertion
(1.1) for this case holds by (1) of Proposition 2.2, the remark after Propo-
sition 2.2 and Proposition 2.3. If we have 7n5(B) = 1, again by the remark
after Proposition 2.2, B is equivalent to by 12H with b; € Z%. Then by
Theorem 2.1 we have

aa(B) = 25"y (b, LH) + B2(B).
Thus the assertion (1.1) holds again by (1) of Proposition 2.2 and Proposi-

tion 2.3. The other assertions can be similarly proved.

LEMMA 3.1.2. (1) Letp=2. Let by, by, b3 € Z3, and K = H orY.
(1.1) Let r > 0, and put B =2"by LK. Then we have

_dz x2(— det K)227k)i,

(1.2) Let r > s,s = 0,1. Further assume that —bybs # 1 mod 4 if s = 0.
Put B = 2"b1 12%b3 1 b3. Then we have

as(B) =d(1+ n2(3)2(ord(det B)+2)(2~k)).

(1.3) Let r > 0, and assume that —bgbs = 1 mod 4. Put B = 2"by 1 by Lbs.
Then we have
r—2
OAQ(B) _ d(l + ,)72(B)2(ord(detB)+2)(2—k)) + 25—2kd Z(XZ(_b2b3)22—k)i‘
=0
(2) Let p # 2. Let by, ba, b3 € Zj,.
(2.1) Letr > 1. Put B =p"by LpbyLbs. Then we have

ap(B) = d(1 + mp(B)prd@et BIC k),
(2.2) Let r > 0. Put p"by Lby Lbs. Then we have

r

ap(B) = dY_ (xp(—babs)p” ).

=0
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Proof. (1.1) By Theorem 2.1, for r > 1 we have
Ozz(B) = 24_2ka2(2r_2b1J_K) -+ ﬂQ(B)

Thus the assertion follows from (1) of Proposition 2.2 and Proposition 2.3.
Here we give the following remark, which is a direct consequence of

(1.1):
(%) a(2b LK) — 2272k (22 LK) = d(1 4 22 Fxo(— det K))

for r > 1 and b, b’ € Z3.
(1.2) The case r < 1 follows from Lemma 3.1.1. Assume r > 2, and
s =0 or 1. Then similarly to (1.1) we have

Oéz(B) = 24_2k052 (2T_2b1J_2sb2J_b3) -+ BQ(B)
Thus the assertion can be proved by Proposition 2.3 and Lemma 3.1.1.

(1.3) Let r > 2. Then by Theorem 2.1 we have

(%) az(B) = 24" ap(B[f1]) + 2% Y aa(B[fs(e, 1))
a=0,1

~29" % ay(Blga2(1)]) + Ba(B).

Then we have
B[f1] = 2" %b; Lby L b3,

and
Blg2(1)] = 2" %, LK/,

where K’ = H or Y according as —bobs = 1 mod 8 or not.
First let » = 2. Then by easy calculation we have

Blfs(a, 1)] 46 (@) LK (@)
for « = 0, 1, where V) (a) € Z} and K'(a) = H or Y according as —bybs =
4a+1 mod 8 or = 4a+5 mod 8. Thus the assertion follows from Proposition

2.3, Lemma 3.1.1, and (1.1).
Next let r > 3. Then we have

Blfs(a,1)] = 276 () LK’
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for a = 0, 1 with b} (a) € Z3. Thus the assertion follows from Proposition
2.3, Lemma 3.1.1, and (x).

(2) The assertion can be proved similarly to (1) by using Theorems 2.1
and 2.4, Propositions 2.2 and 2.3, and (2) of Lemma 3.1.1.

Summarizing the above results, we have

THEOREM 3.1.3. Let by, by, bg and K be as in Lemma 3.1.2. Let B =
P b1 LpSbolby withr > 8,0 < s<1, or 2"07LK withr > 0, and By be a
symmetric matriz of degree 2 such that B = p"b; | By. Then we have

m3—2ma

ap(B) = dp®= N7 £, (B) R
i=0

0 if 4det By s unit
d(1 + np(B)p™3 =R otherwise,

where I =0 or by according as p =2 and By = K, or not.

3.2. Second step
Now for a non-degenerate symmetric matrix B of degree 2 with entries
in Qp and b3 € Z, put

’?(Bl, bg) - Q{p(p2Bl_l_b3) - p5—2k0ép(B1J_b3).
Now fixing an element by € Z7, we define a subset H5(Z2)(b3) of S2(Qp) by
H5(Z2)(bs)
= {Bl;Bl = 2T61_L2_2b2 with r > —1, by, by € Z;, —bsobs 7_é 1 mod 4}
U {Bl; B, = 2rb1l2_1b2 with » > 0, by, by € ZE}
@] {Bl; By 22"b112"by with r =0, -1, =2, by, by € Z;}
U{By;B; 22K withi=0, -1, K = H, Y},

and by

Hé(zp)(bg) = {Bl; By gp_lbl_Lp-QbQ with by, by € Z;‘,}
U {Bl;Bl gprbl_l_p~1b2 with r > —1, by, by € Z;;}
U {Bl; B = by by with by, by € Z;}

for p # 2. We note that 271b; 1 272b, with by, by € Z3 belongs to H5(Z2)(b3)
even if —bybs = 1 mod 4, and H5(Z,)(b3) is independent of b3 if p # 2.
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THEOREM 3.2.1.  Let by € Z; and B1 an element of Mz (Z,) U
H4(Zp)(b3). Put B = ByLbs. Then we have

3(By, bs) = d(1 + np(B)pmsBI+(2-k)),
To prove the theorem, we need some preliminary result.

PROPOSITION 3.2.2. The assertion in Theorem 3.2.1 holds for bs € Zy
and By € H5(Z,)(b3).

Proof. Firstlet p =2. If By ¢ K and B; % b, 1by the assertion follows
immediately from (1) of Lemma 3.1.1 and (1.2) of Lemma 3.1.2 remarking
that a(B;Lbs) = 0. Next let B; = K. Put

-1 -1
f{=<20 ‘f), fé(a)=<(1) 22_?)<a=o,1>,

X = {f1, £2(0), f5(1)}.
Then by Theorem 2.1 we have

and

a2(4Bl J_b3) = 24—2kz a2(4Bl [X]J_bg) — 29_4ka2(31J_b3) + 62(431_“)3),
XeXx,

ag(ByLb3) = B2(B11b3) = d,

and
Bo(4B1 Lbs) = d(1 — 247%F),

Remark that B;[X] € H5(Z3)(bs) but
Ct2(B1 [X]_Lb3) =0
for any X € X;. Thus we have

H(Bi,bg) = 272 N §(Bi[X],b3) + d(1 - 27%).
XeX,

Thus the assertion follows from the above. Similarly the assertion holds for
B; = by Lby. The assertion can also be proved for p # 2 by using (2) of
Lemmas 3.1.1, and 3.1.2.

https://doi.org/10.1017/50027763000006267 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006267

212 H. KATSURADA

Proof of Theorem 3.2.1. First let p = 2. Let “<” be the order in
Ha(Zs) U HY(Z2)(bs) defined in Section 2. We prove the assertion by in-
duction on this order. Clearly all maximal matrices in Ha(Z2) UH5(Z2)(b3)
belong to H4(Z3)(b3). Thus the assertion holds for all maximal matrices
By € Ha(Za) U HY(Zs3)(bs) by Proposition 3.2.2. Assume that B is not
maximal in Ha(Z2)(bs) U H5(Z2)(bs) and that the assertion holds for any
Bj such that By < Bj. In view of Proposition 3.2.2 we may assume that
By ¢ H,(Z2)(bs); then we have

By 22761 12%9 (r >5>0),=2"0;12"by (r>1)or Z2"K (r > 1).
First let By = 2"by Lby with » > 0, —bobs = 1 mod 4. Then by Theorem 2.1

we have
a2(4Bl_ng) = 24“2ka2((4Bllb3)[f1]) -+ 24_2k Z ag((4Bl_Lb3)[f2(a)])
a=0,1
— 2974, (4B Lb3)[g1]) + B2(4B; Lb3)
and
a(ByLbs) = 240y ((B1Lbs)[f1]) + 2472 > an((B1Lbs)[fs(e, 1)])

a=0,1
— 2974 0y ((B1Lb3)[g2(1)]) + Bo(B1Lbs).
Clearly we have

(4°By Lb3)[f1] = 4'By[f1]Lbs (i = 0,1),

where f{ is the matrix defined in the proof of Proposition 3.2.2. For a = 0,
1, put B(a) = (4B1Lb3)[f2()]. Then clearly we have

B(a)[f1] = (4B1Lbs)[g1] = By Lbs.
Thus we have

(B, bs) = 272%5(By[f{], b3)

2 fag(B(@) - 2 Han Bl@)Ifl) - 2 Faa(Bla) (0, D)

— 2" ay(B(a)[f3(1, 1)) + 27 *az(B(a)[g2(1)])}
+ 257 {aa(B() [f3(0, D)) + a2(B(@) [ f3(1, 1))

a=0,1
— 227 ay(B(a)[g2(1)]) — 202(Blf3(ex, 1)])
+ 27" ay(Blg2 (D))} +d(1 - 27%)(1 - 2°7%F).
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By Theorem 2.1, the second term on the right-hand side is

24—2k Z /82(3(01)) — 25~2kd(1 _ 24~2k).
a=0,1

We claim the third term is 0. To prove this we remark that
Blfs(0,1)] 2 27y LK', Blga(1)] = 226 LK,  B(0)ga(1)] & 27by LK’

and i
B(0)[f3(B,1)] = 2""2by LK’

for any 8 = 0, 1, where K’ = H or Y according as —bsbs = 1 mod 8 or
= 5 mod 8. Thus by (*) in the proof of Lemma 3.1.2 we have

aa(BO)[3(0, 1)) + a2(BO)[f3(1, 1)]) — 25 as(B(0) [ga(1)))
— 202(B[f3(0, 1)]) + 2° s (Bg(1)]) = 0.

On the other hand, we have
B()[f3(8,1)] ¢ H3(Zs), = 27256, LK” or = 2" 2p 1 K’
according as 7 = 1, 2, or not, and
B(1)[g2(1)] ¢ H3(Zs), = 2756y LK" or = 27b; LK’

according as 7 = 1, 2 or not, where K” = Y or H according as —bgbs =
1 mod 8 or = 5 mod 8. Further

Blfs(1,1)] ¢ H3(Zz), 22750 LK" or =227b) LK’
according as r = 1, 2 or not, and
Blg2(1)] ¢ H3(Z2), or =27 2b; LK’
according as r = 1 or not. Thus again by (*) we have

aa(BO)If5(0, 1)) + as(B1)[fs(1, 1)]) — 2 Fan(B(1)[g2(1)])
— 202(Blf3(1,1)]) + 2 *as (Blg> (1)) = 0.

Thus the claim has been proved, and therefore, the assertion holds by the
induction hypothesis.
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Next assume that By = 27611256, with r > s > 0, By = 2"b; L by with
r > 0 and —bgb3z # 1 mod 4, or By = 2"K with r > 0. Since for by, by € Z3
we can find b}, by, € Z3 such that 2b) 1b5 = 2b; Lby and —b5bs = 1 mod 4,
we may assume that r» > 2 if s = 0 in the first two cases. Then by Theorem
2.1, we have

az(4'ByLbg) = 24723 " ap(4' By [X] Lbs)
XeX,;

— 29740y (471 By Lbs) + (2(4¢ By Lbs3)

for ¢ = 0, 1, where X; is the set defined in the proof of Proposition 3.2.2.
Thus we have

Y(B1,bs) = 2472 N "5(By[X], bs) — 297 *5(47 ' By, bs)
Xex;

+d(1— 2472k (1 — 2572k),

Thus by the induction hypothesis the assertion holds for the first two cases.
The assertion also holds for the case By = 2"K with » > 0. Similarly the
assertion can be proved for p # 2.

The following corollary can be easily derived from the induction formula
in Theorem 3.2.1.

COROLLARY TO THEOREM 3.2.1. For the matriz B in Theorem 3.2.1,
let mg = mop(B), m3 = mgp(B) be the invariants defined in Section 1.
Then we have

ap(B) = ap(B[p~l(m2=2520)/2 B, | 1))p(5—2k)(Im2/2~62p)

[ma2/2]—b2p—1  [m2/2)~82p—1 .
+ dnp(B)p3~kIma=(3=2k)(Im2/2]~62—1) 3 P32k g 3 52800
1=0 i=0

where FEy denotes the unit matriz of degree 2.

3.3. Third step
For a non-degenerate symmetric matrix B of degree 3 with entries in
Qp’ put

v(B) = ap(pB) — (0°7%* + p* *)ap(B) + p* "y (p 7 B).
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We define a subset Hj(Z2) of S3(Qz) by

H5(Zo) = {B; B = 27by Lby 1 271b3 with r > 0, by, by, by € Z3}
U{B;B=2"by 127 by 127 3
with r > 0, by, bg, b3 € Z5, —babs # 1 mod 4}
U{B; B~ 2"K 12°bs
with b € Z3, (r,s) = (0,-1), (—1,0), (0,0), K = H, Y}.

We remark that any element of H3(Z2) N 'H5(Z2) is equivalent over Zy to
b LK.

THEOREM 3.3.1. Let BEH3(Z,)UH,(Z,). Here we understand HY(Zy)
is the empty set if p # 2. Then we have

v(B) = d(1 + p2~Bms+3)yy (B)),

where mz = mzp(B).
To prove the theorem first we have

LEMMA 3.3.2. For B € H4(Zs), the assertion in Theorem 3.3.1 is true.

Proof. The assertion follows from Theorem 3.1.3 except for by LK. If
B = b1 LK then we have by LH for some b} € Zj, and therefore we may
assume K = H. Then by (1) of Proposition 2.2, Proposition 2.3, and
Theorems 2.1 we have

(2B) = 2472 ay(H Lbs) + d(1 — 2472%)(1 + 2°7%) and ay(B) = d.
Thus again by Proposition 2.3 the assertion holds.

Proof of Theorem 3.3.1. The assertion for p # 2 has been proved in
[Ki2], and thus we treat only the case p = 2. But we remark that the
case for p # 2 can be proved similarly to the case of p = 2 by using our
method. We prove the theorem by induction on the order defined in Section
2 in H3(Z2) U H5(Z2). Clearly any maximal element of H3(Z2) U H5(Z2)
belongs to H5(Z2). Thus by Lemma 3.3.2 the assertion holds for all maximal
elements in H3(Zs2) U H5(Z3). Assume that B is not maximal and the
assertion holds for any B’ such that B < B’. The proof is divided into four
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cases:
(1) B € Hg(ZQ) (2) B € Hg(Zg) but 2-1B ¢ H3(Z2) (3) 2-1B ¢
H3(Z2) but 2728 ¢ Hg(Zg) (4) 272B ¢ 'H3(Z2).

Case (1) The assertion holds by Lemma 3.3.2.

From now on let by, bg, b3 € Z5 and K = H or Y.

Case (2) In view of Lemma 3.3.2 we may assume B % by LK. Thus in
view of the remark after Proposition 2.2 we may assume B = 2°K | b3 with
s >0, 2"b; 12%bg L bg with 7 > s > 0, 2"by Lby Lbg with » > 0, or 2"by L K
with » > 0.

First let B = 25K 1b3 with s > 0 or B = 2"b1 12°b3 L b3 with r > s > 0.
Then by Theorem 2.1, we have

a2(2'B) = 27 % ay(2'B[f1]) + 27 ) aa(2'Blf2(a)))
a=0,1

— 297%ay(2'Bg1]) + 2(2'B)
for 1 =1, 0. Further by Proposition 2.3 we have
B2(B) = d(1—2°%),  B,(2B) = d(1 — 242%)(1 4 2°),
Thus we have

(B) = 272y (B[f1]) + 272" 3 v(Blf2(a)])

a=0,1
_ 29—4k,y(B[gl]) + d(]. _ 24—2k)(1 _ 25—2]())'

By assumption all the B[f1], B[f2(0)], B[f2(1)], and B[g1] belong to H3(Z2)
U H%(Z3). Thus by the induction hypothesis and the case (1) we have

,Y(B) — 24—2kd(1 + 2(2_k)(m3+1)772(B)) + 25—-2kd(1 + 2(2—k)(m3+1)n2(3))
_ 29—4kd(1 + 2(2—k)(m3—1)n2(B)) + d(l _ 24—2k)(1 _ 25—2k:)
= d(1 + 22~ Rma+3)p, (B)).

Next let B = 2"b; Lby Lbg with » > 0. Then by Theorem 2.1, we have

a2(2'B) = 24 ay(2'B[f1]) + 2% Y a2(2'B|f3(e, 1))
a=0,1

— 297 y(2'Bg2(1)]) + B2(2°B).
Further by Proposition 2.3 we have

Bo(B) = d(1 — 2°72%) 5, (2B) = d(1 — 27 %F)(1 + 237%).
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Thus we have

(B) =24 (BIA)) + 27 Y 4(Blf2(a)])

a=0,1

— 274y (Blgr]) + d(1 - 2'2)(1 - 2572%),

Thus the assertion can be proved similarly to the first case.
Thirdly let B =2"b; L H with r > 0. Then by Theorem 2.1, we have

02(2B) = 24"y (2B[f1])
+ 2173 (2B fa()] + 247 Y as(2B[f(@,0)])

a=0,1 a=0,1
— 29740, (2B[g1]) — 29 **ay(2Bg2(0)]) + B2(2B),

and

ay(B) = 2*"*ay(B[f1]) + B2(B).

By easy calculation we have
2B(fa(a)] 2 2771 (0) LH,  2B[fa(e,0)] = 270 (o) LH,

and

2Bg1] = 2B[g2(0)] = 2" 1o, LH,

where b/ (o), V) (a) € Z3. Further by Proposition 2.3 we have
Ba(B) = d(1+2°7F),  B2(2B) = d(1 - 27%)(1+2°7).

Thus the assertion can be proved by (%) in the proof of (1.1) of Lemma
3.1.2.
Finally let B = 276y LY with » > 0. Then by Theorem 2.1, we have

@2(2'B) = 2%y (2'B[f1]) + B2(2'B)
for ¢ = 0, 1. Further by Proposition 2.3 we have
Ba(B) = d(1 - 227%),  By(2B) = d(1 — 252K)(1 4 25Ky,

Thus the assertion holds.
Case (3) It suffices to prove the assertion for the case B=2"by 125b5 1 2b3
with r > s> 1, 2"K12b3 with r > 1 or B =2"b1 12K with r > 1.
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First let By = 2"K with v > 1 or B; = 2"b112%b with r > s > 1, and
put B = B;.12bs. Then by Theorem 2.1, we have

a(2'B) = R(2'B) + 24 %0y (2'B[f1]) + 2472 Z (2B f2()])
a=0,1
— 29740y (Blg1]) + B2(2(27by L2°by Lb3))
for i =1, 0, —1, where

R(2'B) =272 Y as(2B[fs(e, B)]) — 2°7* Y 2(2B[ga(a)))
a,B=0,1 a=0,1
- 29_4k Z 052(2B[g3(aa ﬂ)]) + 215_6ka2(2_lB)a
a,B=0,1
or 0 according as i = 1 or not. Put B(a, 3) = 2B[f3(c, 8)] for any o, 8 = 0,
1. Clearly we have
92(8) = fs(e, B) f1, g3( ) = f3(a, B) fo()

and 271 F3 = f3(a, 8)g; mod T
for any «, 3, @’ =0, 1. Thus we have

2Blg2(8)) = B(o, B)[f1],  2Blgs(e/, )] = B(a, B)[f2(a)])

and

2B[27 ' Es)] = B(a, 8)[g1]

for any a, 3, o/ =0, 1. By easy calculation for any o, 8 = 0, 1 we have
B(aa ﬂ) = 2Bl (Oé, /B)J—bg(a, /8)

with Bi(a, 8) € 2H2(Z2) NGL2(Qz2) and b3(«, B) € Z3. On the other hand
we have B(a, 3)[X] ¢ H3(Z2) for a, 3 =0, 1 and X € E\{f1, f2(/) (/! =
0,1),91}. Thus Theorem 2.1 and Proposition 2.3 imply

R(2B) =2"%* 3" B(B(a,B)) = 257 2d(1 — 247 %),
«,3=0,1
Thus by the induction hypothesis and Proposition 2.3 we have
7(B) = R(2B) + 2* % 4(B[f1]) + 2*%* Y _ v(B[f2(a)]) — 2°~**~(Blg1])
a=0,1

+82(2B) — (237% 4 25728) 3, (B) + 283k 3, (271 B)
= d(1 + 2@~Pmat3y, (B)).
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Next let B = 2"b; 12by 1 2b3 with » > 1. Then Theorem 2.1 implies

a2(2'B) = R(2'B) + 24" %0y (2'B[f1]) + 272 ) _ a2(2' B[ f3(ex, 1)])
a=0,1

— 297%qy(2'Blg2(1)]) + B2(2°B)

fori =1, 0, —1, where

R(2'B) =22 3" ay(2B[fa(@)]) + 2472 3 ap(2B[f3(e, 0)])

a=0,1 a=0,1
— 297%ay(2B]g2(0)]) — 27" *az(2B[g1])

_ 29~4k Z a2(2B[gg(a,[3)]) + 215_6ka2(2_lB),
«,3=0,1

or 0 according as ¢ = 1 or not. Similarly to the above case, Theorem 2.1
yields

R(2B) =242 3" ,(2B[fa(a)]) + 2% Y By(2B]f3(e, 0)]).

a=0,1 a=0,1

On the other hand, easy calculation shows
B[fz(a)] = By(e) Lbs(c),  2B[f3(ex,0)] = By (a)Lb5(ex),

where B{(«), B} (@) € 2H2(Z2) N GLy(Q2) and bs(«), bi(a) € Z5. Thus by
Proposition 2.3 we have

R(2B) = 25-%kq(1 — 2472k,

Thus the assertion holds.
The rest of the cases can be treated in the same way.
Case (4) Theorem 2.1 tells us

21,B 24 2k Z a2 21 29—4k Z a2(22B[g])
feF geg

for i = —1, 0, 1. By assumption B[X]| € H3(Z2) for any X € £. Thus by
the induction hypothesis, the case (3), and Proposition 2.3 we have

v(B) =7 x 2472 d(1 + 2B~ Rmstlpn, (B))
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— 7 x 2974 4(1 4 2@~R((ma=D)p, (B))

+ 215—6kd(1 + 2(2—]9)(mg,—3),r]2 (B))

+ d(l _ 24~2k)(1 + 23——k)(1 _ 23—k _ 25—2k + 28—3Ic)
= d(1 + 2@~ Rma+3)p,(B)Y).

Thus the assertion holds by induction.

By the induction formula in Theorem 3.3.1 we easily see

COROLLARY. The notation being as above, we have

mi1—1 mi—1—1

mi
ap(B) = ap<p—m1 B)p(?’_k)ml Zp(z"k)J +d Z Z p(5—2k)_7p(3——k:)2
=0 i=0  j=0

mi—1 mp—1—1

+ dnp(B)p(z—k)m3—(3—2k)(m1~1) Z z p(3—2k)jp(2—k)’i’
1=0 j=0

where mi = mqp(B).

3.4. Final step

Now in this subsection we complete the proof of Theorem 1.2. Let
my = mlp(B)7 ma = mZP(B)ﬁ m3 = m3P(B)’ n = np(B)’ { = gP(B)’
n' = n;,(B) be as in Section 1.

First let B = p™ (p" By Lb3) with r > 0, By € Ha(Zy), b3 € Z;. Then
by Theorem 3.1.3 and Corollary to Theorem 3.2.1 we have

oy (p™ B) = dfa(By)
mz—2mo+m1

+ p(5—2k)62p Z p(2—k)i€i+2}p(5—2k)([m2/2]—m1 —b2p)
1=0
[m2/2]—m1 ~§2p—l )
+ dnp(2——k:)(m3—3m1)—(3—2k)([m2/2]—m1 ~b2p—1) Z p(3—2k)z
1=0

[ma/2]—m1—62p—1

+d Z p(5—2k)i ,
=0

where

0 if p # 2 and my is even
_J1 if p=2,myiseven and By = K
a(Bl) - 1 +p(m3_4[m2/2]+m1+4§2p)(2—k)n

otherwise.
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Thus we have

[m2/2] —mi1—82p —m'

ap(p™™B) =d 3 =2k
j=0

[7712/2]_7”1_5211

1 dp(Hme=(3-2K)(Ima /A=) =G—Rmsyy 5 (3~2k
j=n'

m3—2ma+mi

+ dp—2k)([m2/2]—m1) 3 p2R)igit?,
=0

where m’ = m;(B) = 1 or 0 according as p # 2 and mg is even, or not.
Clearly we have [mg/2] — §2p — m/ = [(mg — 2p — 1)/2]. Thus the assertion
can be derived from Corollary to Theorem 3.3.1 by remarking that we have

[m2/2]—~m1—52p—m’ m

1 mi1—1 mi—1—3
d Z p(5-—2k)]p(3——k)mlzp(2~k)z + dz ( Z p(5—2k)_7)p(3—k)1,
7=0 =0 =0 7=0
my [ma/2]—62p—m'—i
—aY ( S 52K\ (3=F)i
i=0 j=0
and
[m2/2]—b2p—ma my
dnp(2—‘k)m3—(3—2k)([m2/2]—-52p)—(3—k)m1 Z p(3—~2k)jp(3—k)m1 Zp(2—k)i
j=n’ i=0

mi—1 mi—1—1

+ dyp2—k)ms—(3=2k)(m1 1) Z( Z P32y (2-h)i
i=0  j=0

my [m2/2]—62p—i
= dnps B E(ma At SN a2k

i=0 j=n!

Next let p = 2 and B = 2™ (276 LK). Then by Theorem 3.1.3, we

have
m3—2ma+my

a(27™B)=d Y. (277R¢)

=0

Thus the assertion also holds in this case.
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84. Comments

We give Theorem 1.2 in more concise form. First let p # 2. Then a non-
degenerate symmetric matrix B of degree 3 with entries in Z, is equivalent,
over Zp, to a matrix of the form (4) in Section 1. Then we have

t [(s+t—1)/2]—i

FapB) =3 Y O

i=0 j=o
t [(s+t)/2]—i . ‘
+(—pr_tb1b3, _ps—tb2b3)pp(2—k)('r‘+s+t)—(3—2k)[(s+t)/2] Z Z p(3—2k)jp(2—k)z
i=n’ j=0
+u(B),

where n’ = 1 or 0 according as s — t is even or odd, and

T

w(B) = p= 2R H/2- (=R SV (2 (st gy ZP(Z B3 op 0

|
»

IS
Il
o

according as s — t is even or odd. This coincides with [Ki 2, Theorem].
Next let p = 2. Then a non-degenerate half-integral matrix B of degree

3 over Zj is equivalent, over Zg, to one of the forms (1), (2) and (3) in

Section 1.

(1) The case where B is equivalent to a matrix of the type (1):

t—1 t—1—
d_laz(B) — Z Z 5 2k)g —k)i
=0 j=0

t t—1—
+ xa(— det K)*~t2@-R)(e+20-(E-20)(-1) § 7 Z 9(3-2k)j )9 (2-h)i

=0 :

s—t t
i=0 j=0

(2) The case where B is equivalent to a matrix of the type (2):

t [(s+)/2] . |
d_laz(B) — Z( Z 2(5—2k)g)2(3—k)z
i=0 ;=0

t  [(s+t)/2]—1
+ Xz(— det K)s—t2(2—k)(25+t)—(3—2k)[(s+t)/2] Z( Z 2(3-2k)j)2(2—k)i’
l=0 j:n/
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where n’ = 1 or 0 according as s — t is even or odd.
(3) The case where B is equivalent to a matrix of the type (3):

t [(s+t)/2]—i ‘ ‘
d-laz(B) — Z( Z 2(5~2k)])2(3——k)z
i=0  j=0

+ (—2r—tb1b3, _Zs—tbzbs)22(2—k)(r+s+t+2)~(3-—2k)[(s+t)/2]

t [(s+t)/2]—i
i=0 j=0
where
r—s—2 t—1
w(B) = 9(5-2k)[(s+t+2)/2]—(2—k)t Z g(B)H—QZ(Q—k)i Z 92-k)j o1 0
i=0 §=0
according as s — t is even or odd.
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