Proceedings of the Edinburgh Mathematical Society (1980), 23, 61-67 ©

CENTRES FOR NEAR-RINGS: APPLICATIONS TO COMMUTATIVITY THEOREMS

by HOWARD E. BELL (Received 15th September 1978)

1. Introduction

Let R be an arbitrary near-ring and define the multiplicative centre Z(R) by

 $Z(R) = \{a \in R \mid ax = xa \text{ for all } x \in R\}.$

In previous papers (2, 3, 5) we have established additive or multiplicative commutativity for various near-rings R in which selected elements were restricted to lie in Z(R); the near-rings involved were usually distributively-generated (d-g) and were frequently assumed to have a multiplicative identity element as well.

In this paper we first prove a commutativity theorem involving Z(R), without the assumption that R is d-g. We then introduce two other notions of centre, incorporating additive and multiplicative commutativity simultaneously, and use these in the formulation of commutativity theorems. Some of our results are for d-g near-rings, others for more general classes.

2. Definitions and terminology

Basic near-ring definitions are as in (3); in particular, we assume *left* distributivity, so that x0 = 0 for all $x \in R$. If 0x = 0 for all $x \in R$, we call R zero-symmetric; if ab = 0 implies ba = 0, we call R zero-commutative. The near-ring R will be called periodic if for each $x \in R$, there exist distinct positive integers m = m(x) and n = n(x) for which $x^m = x^n$.

As above, we denote the multiplicative centre by Z(R), or simply Z. The additive group of R will be denoted by (R, +) and its centre by $\S(R)$. The set of nilpotent elements of R will be written as N or N(R), the set of distributive elements of R as D or D(R); and for arbitrary subsets S of R, the right and two-sided annihilators of S will be written as $A_r(S)$ and A(S). For arbitrary $x, y \in R$, the additive and multiplicative commutators x + y - x - y and xy - yx will be denoted, respectively, by (x, y) and [x, y].

If R has 1, then the symbol n will denote both a positive integer and the near-ring element obtained by adding 1 the indicated number of times; in particular, for $x \in R$, xn is the n-th power of x in (R, +). Even if R does not have 1, the symbol xn will have the same meaning.

HOWARD E. BELL

3. An additive commutativity theorem for periodic near-rings

Theorem 1. Let R be a periodic near-ring with multiplicative identity 1, and suppose that $N(R) \subseteq Z(R)$. Then (R, +) is abelian.

Proof. Note first that R is zero-symmetric—a fact we use without explicit mention. The proof of Lemma 1 of (5) shows that N is a normal subgroup of (R, +), and that $RN \subseteq N$; we now wish to show that $(x + u)y - xy \in N$ for all $x, y \in R$ and all $u \in N$, so that N is an ideal. For such x, y and u, let v = (x + u)y - xy; and recall that $A_r(x)$ is an ideal for arbitrary $x \in Z(R)$. Now if $u^n = 0$, $u^{n-1}v = 0$; and since $u^{n-1} \in Z(R)$, we have $vu^{n-1} = 0$, hence $u \in A_r(vu^{n-2})$ and $vu^{n-2}v = 0 = v^2u^{n-2}$. Repeating the argument finitely many times ultimately yields $v^n = 0$, so our argument that N is an ideal is complete.

Since we wish to use the subdirect-sum structure theory, we need to know that homomorphic images of R inherit the hypothesis that nilpotent elements are multiplicatively central. To show this, note that $\overline{R} = R/N$ has no non-zero nilpotent elements and hence is zero-commutative; therefore, if $x \in \overline{R}$ and if we choose m, nsuch that n > m and $x^n = x^m$, we get $0 = xx^{m-2}(x^{n-m+1}-x) = x^{n-m+1}x^{m-2}(x^{n-m+1}-x) =$ $x^{m-2}(x^{n-m+1}-x)x = x^{m-2}(x^{n-m+1}-x)x^{n-m+1} = x^{m-2}(x^{n-m+1}-x)^2$. An obvious repetition shows that \overline{R} has the $x^n = x$ property, hence for each x in R there exist arbitrarily large n for which $x - x^n \in N$. We can now carry out the proof of Lemma 1(d) in (4) to show that if S = R/I is any homomorphic image of R, nilpotent elements of S are of form u + I for u nilpotent in R, hence $N(S) \subseteq Z(S)$.

To prove our theorem, we now need consider only the case of subdirectly irreducible R. Moreover, since $1+1 \in Z(R)$ implies (R, +) is abelian, we assume that $1+1 \notin N$. We begin by showing that 1 is the only non-zero idempotent of R. Note that since there exists n > 1 for which $x - x^n \in Z(R)$, R is zero-commutative (3, Lemma 3(A)); hence if e is a non-zero idempotent, 1-e is an idempotent orthogonal to it. It is easy to show that Re = A(1-e) and R(1-e) = A(e), so that in particular Re and R(1-e) are both ideals of R. Since their intersection is trivial, the subdirect irreducibility of R forces one of them to be trivial, hence e = 1.

Now every element of R has an idempotent power (4, Lemma 1(a)); thus, every non-nilpotent element of R is invertible and R/N is a near-field. Since (R/N, +) is therefore abelian, additive commutators in R are nilpotent—a fact which permits a trivial modification of the proofs of Lemmas 4 and 5 of (3), yielding the result that distributive elements of R commute additively with each other.

Our next step is to show that if $b \in R$ and $b^2 = 1$, then b = 1 or b = -1. Since it is known that near-fields have this property (8, 9), the fact that R/N is a near-field shows that $b - 1 \in N$ or $b + 1 \in N$; we may assume that not both of b - 1 and b + 1 are in N, for otherwise $1 + 1 = 1 + b - (-1 + b) \in N$. Suppose first that $b - 1 \in N$. Then $(b - 1)(b + 1) = (b - 1)b + b - 1 = b(b - 1) + b - 1 = b^2 - 1 = 0$; and since b + 1 is invertible, we get b = 1. Now consider the case $b + 1 \in N$. Note that b + 1 and 1, both being distributive, commute additively; therefore, b commutes additively with 1. It follows that $(b + 1)(b - 1) = (b + 1)b - (b + 1) = b(b + 1) - (b + 1) = b^2 + b - 1 - b = b^2 - 1 = 0$; and since b - 1 is invertible, we have b = -1.

We complete the proof by borrowing a computational trick from the end of (9).

62

Specifically, if h is any invertible element of R, then $b = (-h)h^{-1} \neq 1$ and $b^2 = 1$; hence b = -1 and hence h commutes multiplicatively with -1. Since nilpotent elements also commute with -1, we have $-1 \in Z$ and hence (R, +) is abelian.

4. The common centre

The common centre $Z_c(R)$ is defined to be $Z(R) \cap \S(R)$. It is a natural set to consider, but seemingly not so useful as the centre to be introduced in Section 5.

Theorem 2. (I) Let R be a near-ring such that for each $x \in R$, there is an integer n(x) > 1 for which $x - x^{n(x)} \in Z_c(R)$. Then the set N is an ideal of R.

(II) Suppose, moreover, that each homomorphic image of R without zero-divisors has a non-trivial distributive element. Then (R, +) is nilpotent of class at most 2.

Proof. (I) It is clear that $0^n = 0$ for all n > 1; and since $0 - 0^n \in Z_c(R)$ for some such *n*, we have $0 \in Z_c(R)$ and hence *R* is zero-symmetric. The proof of Lemma 3(A) in (3) may therefore be carried over to show that *R* is zero-commutative. Referring again to (3), we obtain from Lemma 1 and the proof of Lemma 3(B) the result that *N* is an ideal.

(II) The near-ring $\overline{R} = R/N$ has no non-zero nilpotent elements, hence is a subdirect sum of homomorphic images \overline{R}_{α} with no non-zero divisors of zero (see (2), Lemma 3). Then, using the fact that distributive idempotents are multiplicatively central, we can adapt the procedure of (1), Section 3 to embed each \overline{R}_{α} in a near-field. Thus (R/N, +) is abelian, so $(x, y) \in N$ for all $x, y \in R$. From the definition of $Z_c(R)$, we get a sequence $\langle n_1, n_2, \ldots \rangle$ of integers greater than 1, for which $x - x^{n_1}, x^{n_1} - x^{n_1n_2}, \ldots$ are all in §(R); thus $N \subseteq$ §(R), and hence all (x, y) belong to §(R).

The following theorem extends Theorem 1, and also the theorem of (5). Its proof—though not its statement—is contained in (5).

Theorem 3. Let R be a periodic d-g near-ring with $N \subseteq Z_c(R)$. Then R is a commutative ring.

5. The strong common centre

The strong common centre, which we shall denote by $Z_0(R)$, is defined to be

$$\{x \in Z(R) | \{x\} \cup xR \subseteq \S(R)\}.$$

One of its advantages is indicated by the following theorem.

Theorem 4. If R is any d-g near-ring, $Z_0(R)$ is a commutative subring of R.

Proof. Let $a, b \in Z_0(R)$; note that if t is distributive or anti-distributive, then (a-b)t = at - bt. Represent the arbitrary element $r \in R$ as $t_1 + t_2 + \cdots + t_k$, where each t_i is either distributive or anti-distributive.

Clearly $a-b \in \S(R)$; moreover $(a-b)r = (a-b)\Sigma t_i = \Sigma(a-b)t_i = \Sigma at_i - bt_i \in \S(R)$. Since each at_i and bt_i is in $\S(R)$, and since $a, b \in Z(R)$, this last sum can be

HOWARD E. BELL

re-written as $t_1a + t_2a + \cdots + t_ka + (-t_kb - t_{k-1}b - \cdots - t_1b) = (t_1 + \cdots + t_k)a - (t_1 + \cdots + t_k)b = r(a-b)$; and it has now been shown that $a-b \in Z_0(R)$. Since it is immediate from the definition that $ab \in Z_0(R)$, and since multiplicatively commutative near-rings are distributive, our proof is complete.

Theorem 5. Let R be a d-g near-ring and n > 1 a fixed positive integer. If $x - x^n \in Z_0(R)$ for all $x \in R$, then R is a commutative ring.

Proof. One consequence of Theorem 4 is the existence of infinitely many positive integers *n* for which $x - x^n \in Z_0(R)$; thus $N \subseteq Z_0(R)$. By the proof of Theorem 2, additive commutators are in N; therefore each element commutes additively with its conjugates, and we easily obtain

$$x - y - x + y = -x + y + x - y$$
 for all $x, y \in R$.

Multiplying this equation on the left by an arbitrary $d \in D(R)$, and then making the substitution x = r, y = -s for elements $r, s \in D(R)$, we get (d2)(r, s) = 0 for all $d, r, s \in D(R)$; and utilising the fact that $(r, s) \in Z(R)$ now gives

$$d((r, s)2) = 0$$
 for all $d, r, s \in D(R)$.

Since R is d-g, this translates as

$$(r, s) \ge A(R)$$
 for all $r, s \in D(R)$. (1)

Let d be an arbitrary element of D(R). Since $d - d^n$ and $d2 - (d2)^n$ are both in $Z_0(R)$, Theorem 4 implies that $d^n(2^n - 2) = d^n(2j) \in Z_0(R)$, hence is multiplicatively central. Thus,

$$(x + y)(d^{n}(2j)) = x(d^{n}(2j)) + y(d^{n}(2j))$$
 for all $x, y \in R$.

Using distributivity of d^n , we get

$$((x + y)(2j) - y(2j) - x(2j))d^{n} = 0.$$
(2)

Let R_1 be the factor near-ring $R/A(d^n)$; then R_1 is a near-ring inheriting all the original hypotheses on R. Let $\overline{D}(R_1)$ be the set of distributive elements of R_1 which are images of elements of D(R) under the canonical homomorphism. In view of (1) and (2), R_1 has the properties

$$(x + y)(2j) = x(2j) + y(2j) = 0 \text{ for all } x, y \in R_1$$
(3)

and

$$(r, s)2 = 0$$
 for all $r, s \in \overline{D}(R_1)$. (4)

It follows from (4) and the fact that additive commutators are in (R_1) that

$$(r, s2) = 0 \text{ for all } r, s \in D(R_1), \tag{5}$$

and that

$$(r+s)^2 = (s+r)^2$$
 for all $r, s \in \overline{D}(R_1)$. (6)

From (3) we have

$$(r+s)(2j) = r(2j) + s(2j)$$
 for all $r, s \in \overline{D}(R_1)$; (7)

CENTRES FOR NEAR-RINGS

applying (5) and (6) and some additive cancellation yields

$$(s+r)(2j-1) = r(2j-1) + s(2j-1),$$

$$(s+r)(2j-3) + (r+s)2 = r(2j-2) + s(2j-2) + r + s,$$

$$(s+r)(2j-4) + s + r + r + s = r(2j-2) + s(2j-2),$$

$$(r+s)(2j-4) = r(2j-4) + s(2j-4) \text{ for all } r, s \in \overline{D}(R_1).$$
(8)

Now (8) has the same form as (7), hence by repeating the argument and noting that $j = (2^n - 2)/2$ was odd, we ultimately get (r + s)2 = r2 + s2. Thus, elements of $\overline{D}(R_1)$ commute and $(R_1, +)$ is abelian.

Returning to the original near-ring R, we now have $(x, y)d^n = 0$ for all $x, y \in R$ and all $d \in D(R)$; and since $d - d^n \in Z_0(R)$, the definition of $Z_0(R)$ shows directly that $(x, y)(d - d^n) = 0$ as well. Thus (x, y)d = 0 for all $x, y \in R$ and $d \in D(R)$; and since R is distributively-generated, we have

$$(x, y) \in A(R)$$
 for all $x, y \in R$. (9)

Otherwise expressed, (9) states that (xR, +) is abelian for each $x \in R$; and we shall use this result to show that

$$(x - x^n)y = xy - x^n y \text{ for all } x, y \in R.$$
(10)

Specifically, let $y = s_1 + s_2 + \cdots + s_k$, where each s_i is either distributive or antidistributive; then, since $(-x^n)s_i = -x^ns_i = x(-x^{n-1}s_i) \in xR$ for each $i = 1, \ldots, k$, we get $(x - x^n)y = (x - x^n)\sum s_i = \sum (x - x^n)s_i = \sum (xs_i + (-x^n)s_i) = x\sum s_i + x^n(-s_n - s_{n-1} - \cdots - s_1)$ $= xy + x^n(-y) = xy - x^ny$, and (10) is proved.

Before proceeding, we recall Fröhlich's classical theorem (6) that a distributivelygenerated near-ring R is distributive if and only if $(R^2, +)$ is abelian. Since (R/A(R), +)is abelian by (9), R/A(R) is therefore a ring, which is multiplicatively commutative by a well-known theorem of Herstein (7); thus

$$w[x, y] = [x, y]w = 0$$
 for all $x, y, w \in R$. (11)

It follows, in particular, that

$$x^2 y = xyx \text{ for all } x, y \in R.$$
(12)

We now write $x = \sum s_i$ for appropriate distributive and anti-distributive elements s_i , and write yx = [y, x] + xy. Note that $[y, x] \in N$ by (11), and recall that $N \subseteq Z_0(R)$. Thus, using (11) we obtain $yx^2 = ([y, x] + xy)x = \sum ([y, x] + xy)s_i = \sum xys_i$ —that is,

$$yx^2 = xyx$$
 for all $x, y \in R$. (13)

It follows from (12) and (13) that

$$x^{n}y = yx^{n} \text{ for all } x, y \in R.$$
(14)

From $x - x^n \in Z_0(R)$, we get $(x - x^n)y = y(x - x^n)$; and (10) can be invoked to yield $xy - x^n y = yx - yx^n$. Applying (14) now yields multiplicative commutativity of R, hence distributivity as well; and Fröhlich's theorem shows that $(R^2, +)$ is abelian. Thus, for each $x \in R$ both $x - x^n$ and x^n commute additively with R^2 , hence so does x.

HOWARD E. BELL

Therefore $R^2 \subseteq \S(R)$; and since $x - x^n \in \S(R)$ for each $x \in R$, we see that $\S(R) = R$. This completes the proof.

A natural conjecture is that the restriction to fixed n in the hypotheses of Theorem 5 can be dropped. The following theorem is a step in that direction.

Theorem 6. Let R be a d-g near-ring in which (R, +) is a torsion group; and suppose that for each $x \in R$, there exists an integer n(x) > 1 for which $x - x^{n(x)} \in Z_0(R)$. Then R is a commutative ring.

Proof. Let $d \in D(R)$ and let dk = 0, where $k = 2^q j$ and j is odd; we assume without loss that $q \ge 1$. Then $d(2j) \in N \subseteq Z_0(R)$; and beginning just before equation (2), we may simply repeat the remainder of the proof of Theorem 5, with obvious trivial modifications.

Experience to date would suggest the following conjecture: if R is an arbitrary near-ring with 1, and if for each $x \in R$ there is an integer n(x) > 1 for which $x - x^{n(x)} \in Z_0(R)$, then (R, +) is abelian. The following theorem—the final one in this paper—is the best we have been able to achieve in this direction.

Theorem 7. Let n be a positive even integer and R a near-ring with 1 such that $x - x^n \in Z_0$ for each $x \in R$. Then (R, +) is abelian.

Proof. Taking x = 2 and -2 in turn shows that

$$-2^n - 2 \in Z_0 \text{ and } 2 - 2^n \in Z_0;$$
 (15)

using the fact that each of these is multiplicatively central gives

$$x(2^{n}+2) + y(2^{n}+2) = (y+x)(2^{n}+2) \text{ for all } x, y \in \mathbb{R}$$
(16)

and

$$x(2^{n}-2) + y(2^{n}-2) = (y+x)(2^{n}-2) \text{ for all } x, y \in \mathbb{R}.$$
 (17)

Now (15) shows that $x(2^n - 2)$ and $x(2^n + 2) \in \S(R)$ for each $x \in R$, hence

$$x(4) \in \S(R) \text{ for all } x \in R.$$
(18)

Combining (16), (17) and (18) yields

x(4) + y(4) = (y + x)(4) for all $x, y \in R$. (19)

By repeating the above argument for 3 and -3 we get $x(6) \in \S(R)$; hence, in view of (18) we have

$$x(2) \in \S(R) \text{ for all } x \in R.$$
(20)

It now follows from (16), (19) and (20) that x(2) + y(2) = (x + y)(2) for all $x, y \in R$ —that is, (R, +) is abelian.

REFERENCES

(1) H. E. BELL, Duo rings: some applications to commutativity theorems, *Canad. Math. Bull.* 11 (1968), 375-380.

(2) H. E. BELL, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368.

(3) H. E. BELL, Certain near-rings are rings, J. London Math. Soc. (2) 4 (1971), 264-270.

(4) H. E. BELL, A commutativity study for periodic rings, Pacific J. of Math. 70 (1977), 29-36.

(5) H. E. BELL, A commutativity theorem for near-rings, Canad. Math. Bull. 20 (1977), 25-28.

(6) A. FRÖHLICH, Distributively-generated near-rings, I, Ideal Theory, Proc. London Math. Soc. (3) 8 (1958), 76–94.

(7) I. N. HERSTEIN, A generalization of a theorem of Jacobson III, Amer. J. Math. 75 (1953), 105-111.

(8) H. KARZEL, Bericht über projektive Inzidenzgruppen, Jber. Deutsch. Math.-Verein. 67 (1964), 58-92.

(9) J. L. ZEMMER, The additive group of an infinite near-field is abelian, J. London Math. Soc. 44 (1969), 65-67.

MATHEMATICS DEPARTMENT BROCK UNIVERSITY ST. CATHARINES, ONTARIO, CANADA