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Abstract

We establish the global regularity of multilinear Fourier integral operators that are associated to nonlinear wave

equations on products of !? spaces by proving endpoint boundedness on suitable product spaces containing

combinations of the local Hardy space, the local BMO and the !2 spaces.

1. Introduction

This paper deals with the global boundedness of a class of multilinear Fourier integral operators that

appear frequently in connection to nonlinear wave equations. To illustrate this, fix a smooth, compactly

supported multilinear symbol < on R=# . Let )< denote the multilinear paraproduct

)< ( 51, . . . , 5# ) (G) :=

∫
R=#

<(Ξ)
#∏
9=1

(
5̂ 9

(
b 9

)
48G ·b 9

)
dΞ, (1)

where G ∈ R=, b 9 ∈ R= ( 9 = 1, . . . , #) , Ξ = (b1, . . . , b# ) ∈ R=# and

5̂ (b) =
∫
R=

5 (G)4−8G. b dG,

is the Fourier transform of 5 .

Furthermore, set
√
−Δ 5 (G) =

∫
R=

|b | 5̂ (b) · 48G ·b db,

where db denotes the normalised Lebesgue measure db/(2c)=. Consider now the wave equations

{
8mCD +

√
−ΔD = )< (E1, . . . , E# )

8mCE: +
√
−ΔE: = 0, : = 1, . . . , #,

with

{
D(0, G) = 0

E: (0, G) = 5: (G), : = 1, . . . , #.
(2)

The functions D and E: are complex valued, and each 5: maps R= to C. The system of equations (2) is

used to study the nonlinear interaction of free waves, as a first step towards understanding a nonlinear
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wave equation 8mCD +
√
−ΔD = � (D), with a suitable nonlinearity. The main question here is, given 5:

in some function spaces, how does D behave in some other suitable function space? In order to answer

this question, one uses the Duhamel formula to represent the solution D as

D(C, G) =
∫ C

0

∫
R=#

<(Ξ)
#∏
9=1

(
5̂ 9

(
b 9

)
48G ·b 9+8B | b 9 |

)
48 (C−B) |b1+···+b# | dΞ dB. (3)

The inner integral in equation (3) is precisely of the form of the operators whose boundedness are studied

in this paper. This is of course along the lines of the far-reaching method of space-time resonances which

was introduced by Germain, Masmoudi and Shatah and which they explored and applied to nonlinear

partial differential equations in [8], and which Bernicot and Germain also expored in [1]. In our case, we

are ignoring the effect of the integral in B, which amounts to ignoring the effects of the time resonance.

Motivated by equation (3), we study multilinear Fourier integral operators (abbreviated multilinear

FIOs) of the form

)Φ
f ( 51, . . . , 5# ) (G) =

∫
R=#

f(G,Ξ)
#∏
9=1

(
5̂ 9

(
b 9

)
48G ·b 9

)
48Φ(Ξ) dΞ, (4)

where f is an amplitude and

Φ(Ξ) = i0 (b1 + · · · + b# ) +
#∑
9=1

i 9
(
b 9

)
, (5)

is a combination of phase functions i 9 ( 9 = 0, 1, . . . , #). Here the terms ‘amplitude’ and ‘phase

function’ are defined as follows:

Definition 1.1. For integers =, # > 1 and < ∈ R, the set of (multilinear) amplitudes (< (=, #) is the set

of functions f ∈ C
∞ (
R
= × R=#

)
that satisfy

���mUΞ mVG f(G,Ξ)
��� 6 �U,V 〈Ξ〉<−|U | ,

for all multi-indices U and V. Here and in what follows,

〈Ξ〉 = ©«
1 +

#∑
9=1

��b 9 ��2ª®¬
1/2

for Ξ = (b1, . . . , b# ) ∈ R=# with b 9 ∈ R=, j=1,. . . , N.

The parameter < is referred to as the order or decay of the amplitude.

Remark 1.2. The terminology ‘multilinear FIOs’ that is used in this paper stems from the fact that for

the linear (half-)wave equation 8mCD+
√
−ΔD = 0 with initial data D(0, G) = 5 (G), there is a representation

of the solution in the form of an FIO acting on 5 , with the phase function G · b + |b | which is positively

homogeneous of degree 1 in b. This is one of the historical sources for the theory of Fourier integral

operators. Using this analogy in connection to the nonlinear system of wave equations (2), we believe that

the nomenclature ‘multilinear FIOs’ is justified. However, one should note that for general multilinear

FIOs, the phase functions are of the form Φ(G,Ξ), in which the linear phases G ·∑#
9=1 b 9 are subsumed,

and one assumes thatΦ(G,Ξ) is positively homogeneous of degree 1 inΞ and also satisfies some suitable

geometric conditions. Although the investigation that is carried out in this paper is not suited for these

more general multilinear FIOs, our motivation is based on questions in the theory of nonlinear wave

equations connected to the system (2), for which we are able to carry out a fairly complete analysis.
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Definition 1.3. A function i : R= → R which belongs to C
∞(R= \ {0}) and is positively homogeneous

of degree 1 – that is, it satisfies i(Cb) = Ci(b) for all b ∈ R= and all C > 0 – is called a phase function

(or phase).

In order to state the main result of this paper – Theorem 1.4 – we define

- ? :=



ℎ? if ? 6 1,

! ? if 1 < ? < ∞,
bmo if ? = ∞,

(6)

where ! ? is the usual Lebesgue space, ℎ? is the local Hardy space defined in Definition 2.2 and bmo

is the dual space of ℎ1. We remind the reader that ! ? and ℎ? coincide when 1 < ? < ∞.

Theorem 1.4. Given integers =, # > 2 and exponents ? 9 ∈ [1,∞] ( 9 = 0, . . . , #) which satisfy

1

?0

=

#∑
9=1

1

? 9
, (7)

suppose that

< 6 −(= − 1) ©«
#∑
9=1

���� 1

? 9
− 1

2

���� +
���� 1

?0

− 1

2

����ª®¬
. (8)

Then if f ∈ (< (=, #) and Φ is of the form in equation (5), with each phase i 9 as in Definition 1.3

( 9 = 0, 1, . . . , #), then the multilinear operator )Φ
f initially defined by equation (4) for 51, . . . , 5# ∈ �

(the Schwartz class) extends to a bounded multilinear operator from - ?1 × · · · × - ?# to - ?0 .

We can compare this result with earlier work [21] of ours. The first novelty of the present result is

its global nature, in the sense that it doesn’t require the amplitudes f(G,Ξ) to be compactly supported

in the spatial variable G. Indeed, this paper establishes the first global results to date for multilinear (or

even bilinear) Fourier integral operators. The second novelty is that we allow a component of the phase

function of )Φ
f to depend on a mix of the variables b1, . . . , b# in a way that is dictated by the nonlinear

wave equation applications, as already demonstrated. In [21], the phase i0 was not present (that is, it

was identically zero). The third novelty is that the results are proved for multilinear and not just bilinear

operators, as was the case in [21]. There is also a difference in the function spaces considered. In [21],

the endpoint function spaces whose products formed the domain of the operator were the real Hardy

space �1 and its dual BMO, whereas here we consider the larger function space ℎ1 and its dual bmo.

Although ℎ1 was used as an important technical tool in [21], here it takes centre stage. In [21] the

restriction ?0 > 1 was not imposed and the target space - ?0 was ! ?0 even for ?0 6 1. The natural

improvement to consider here would be - ?0 equal to the local Hardy space ℎ?0 when ?0 6 1, but this

possibility is reserved for a forthcoming paper. In the present paper we provide an example showing

that both Theorem 1.4 and the main result in [21] are sharp in the case where # = 2 and ?1 = ?2 = 2.

In proving our multilinear boundedness results, it behooved us also to prove the global regularity of

linear Fourier integral operators on local Hardy spaces ℎ? and local spaces of functions of bounded

mean oscillations bmo. The local version of this result is stated in the work of Seeger, Sogge and Stein

[23] (the case where 1 < ? < ∞) and of Peloso and Secco [19] (the case where 0 < ? < 1), but is

not enough for our purposes. Indeed, it is not enough even if the amplitude f(G,Ξ) is assumed to have

compact G-support. This is because the introduction of the mixed phase i0(b1 + · · · + b# ) leads to the

appearance of global Fourier integral operators in the subsequent high-frequency decomposition of the

operator, so the more complicated phase appears to necessitate the study of global regularity of linear

Fourier integral operators. The global linear regularity is proved by a transference procedure due to

Ruzhansky and Sugimoto [22]. We prove this regularity for exponents ? > =/(=+1), which differs from
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the range in the local case, where ? can take any positive value. However, we prove this is the sharp

range in the global setting. In the present paper we only make use of this linear result in the case where

? = 1, but the full range of exponents will come into play in the forthcoming paper already mentioned.

Beyond the need to understand global Fourier integral operators, the presence of the mixed phase

i0 (b1 + · · · + b# ) leads to other difficulties. The underlying cause of these difficulties is the failure of the

commutator techniques which were an essential ingredient in [21]. To successfully apply such techniques

in this context would require better control of the commutator between a linear Fourier integral operator

and a multiplication operator (that which is denoted "m in Section 7) than seems reasonable to expect.

Instead, we succeed in decomposing the operators into a sum of the constant coefficient operators (that

is, the case f(G,Ξ) does not depend on G, which corresponds to "m being the identity operator). This

requires at times careful control of the Carleson measure generated by a bmo function.

The multilinear results of this paper are then achieved through the following steps. First we identify

the endpoints that are needed for the complex interpolation which leads to the regularity of multilinear

Fourier integral operators on products of ! ? spaces. Thereafter we make a multilinear phase space

analysis to divide the operator according to various frequency supports of the amplitude. This creates a

number of cases with their associated difficulties, which are dealt with in accordance to the form of the

endpoints in question. Finally, complex interpolation yields the main result.

The paper is organised as follows. In Section 2 we recall some definitions, as well as results from

linear and multilinear harmonic and microlocal analysis. In Section 3 we prove the global ℎ? and bmo

regularity of Fourier integral operators using, among other things, Ruzhansky and Sugimoto’s globali-

sation procedure. In Section 4 we show that the global ℎ? and bmo regularity result and Theorem 1.4

are in some sense sharp. Section 5 is devoted to finding the so-called endpoints for which complex in-

terpolation would provide the final regularity result for multilinear Fourier integral operators. Finally, in

Sections 7, 8 and 9 we systematically analyse all the endpoint cases for various frequency localisations.

2. Definitions and preliminaries

In this section, we will collect all the definitions that will be used throughout this paper. We also state

some useful results from both harmonic and microlocal analysis which will be used in the proofs of our

results.

The proof of Theorem 1.4 builds upon the corresponding linear results. Indeed, as mentioned in

Section 1, the proof we present requires new linear boundedness results. We begin by recalling the

definitions of the linear versions of the main objects of study in this paper. The multilinear amplitudes

defined in Definition 1.1 reduce to the classical Hörmander classes (< of amplitudes (or symbols) in the

case where # = 1 – that is to say, (< = (<(=, 1). The same is true of linear Fourier integral operators:

they are the special case of equation (4) when # = 1, so in that case we write

)
i
0 5 (G) :=

∫
R=

48G ·b+8i ( b )0(G, b) 5̂ (b) db,

for a given amplitude 0 ∈ (< and phase function i. Such an operator is called a pseudodifferential

operator under the further restriction that i ≡ 0. In this case it is useful to introduce slightly different

(although widely used) notation: for 0 ∈ (< we define a (linear) pseudodifferential operator to be the

operator

0(G, �) 5 (G) :=

∫
R=

48G ·b 0(G, b) 5̂ (b) db,

which, as is the case for all FIOs, is a priori defined on the Schwartz class �(R=). The terminology

symbol is typically used in connection with pseudodifferential operators, and amplitude with Fourier

integral operators.

We will denote constants which can be determined by known parameters in a given situation, but

whose values are not crucial to the problem at hand, by � or 2, sometimes adding a subscript – for
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example, 2U – to emphasise a dependency on a given parameter (here, U). Such parameters are those

which determine function spaces, such as ? or <, the dimension = of the underlying Euclidean space

and the constants connected to the seminorms of various amplitudes or phase functions. The value of

the constants may differ from line to line, but in each instance could be estimated if necessary. We also

write 0 . 1 as shorthand for 0 6 �1 and 0 ≈ 1 when 0 . 1 and 1 . 0. By

�(G, A) := {H ∈ R= : |H − G | < A}

we denote the open ball of radius A > 0 centred at G ∈ R=.
The following partition of unity is a standard tool in harmonic analysis and is even used to define the

function spaces that we are concerned with.

Definition 2.1. Let k0 ∈ C
∞
2 (R=) be equal to 1 on �(0, 1) and be supported in �(0, 2). We define

k 9 (b) := k0

(
2− 9b

)
− k0

(
2−( 9−1)b

)
,

for integers 9 > 1. Then one has the following Littlewood–Paley partition of unity:

∞∑
9=0

k 9 (b) = 1 for all b ∈ R=. (9)

With the help of the Littlewood–Paley partition of unity we define local Hardy spaces first introduced

by Goldberg [11].

Definition 2.2. For each 0 < ? < ∞, the following characterisations of the local Hardy space ℎ? (R=)
are equivalent (see, for example, [26]):

(i) The set of tempered distributions 5 ∈ �
′(R=) such that

‖ 5 ‖ [1]
ℎ? (R=) :=

(∫
BD?

0<C<1

|k0 (C�) 5 (G) |? dG

) 1
?

< ∞.

(ii) The set of all 5 ∈ �
′(R=) such that

‖ 5 ‖ [2]
ℎ? (R=) :=


©«

∞∑
9=0

��k 9 (�) 5 ��2ª®¬
1
2


!? (R=)

< ∞.

(iii) The set of all 5 ∈ �
′(R=) for which there exist a sequence

(
_ 9

)∞
9=1

of numbers and a sequence(
0 9

)∞
9=1

of (ℎ? , ")-atoms (abbreviated ℎ?-atoms) such that

5 =
∑
9

_ 90 9

and

‖ 5 ‖ [3]
ℎ? (R=) := inf

(∑
9

��_ 9 ��?
)1/?

< ∞,

where

" >

⌊
=

(
1

?
− 1

)
+

⌋
,
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with ⌊G⌋ denoting the integer part of G. A function 0 is called an (ℎ? , ")-atom if for some G0 ∈ R=
and A > 0, the following three conditions are satisfied:

(a) supp 0 ⊆ � (G0, A),
(b) |0(G) | 6 |�(G0, A) |−

1
? and

(c) if A 6 1 and |U | 6 " , then ∫
R=

GU0(G) dG = 0.

(iv) The set of all 5 ∈ �
′(R=) such that

‖ 5 ‖ [4]
ℎ? := ‖k0 (�) 5 ‖!? +

∑
"6 |U |6"+1

sup
0<Y61

AUY (�) 5 !? < ∞,

where " is as in (iii) and

AUY (b) = k0(Yb)
=∏
8=1

(
b8

|b |

)U8
(1 − k0 (b))U8 .

(v) The set of all 5 ∈ �
′(R=) such that

‖ 5 ‖ [5]
ℎ? (R=) :=

(∫
sup

0<C<1

sup
|G−H |<C

|k0 (C�) 5 (H) |? dG

) 1
?

< ∞.

Moreover all the norms here are equivalent – that is,

‖ 5 ‖ [1]
ℎ? (R=) ≈ ‖ 5 ‖ [2]

ℎ? (R=) ≈ ‖ 5 ‖ [3]
ℎ? (R=) ≈ ‖ 5 ‖ [4]

ℎ? (R=) ≈ ‖ 5 ‖ [5]
ℎ? (R=) ,

with implicit constants that depend only on the dimension = and the choice of k0 in the Littlewood–Paley

decomposition – so we simply write ‖ 5 ‖ℎ? (R=) for all of them.

It is also shown in [11] that a function 5 belongs to the local Hardy space ℎ1 if and only if 5 ∈ !1 and

ℜ 9 ((1 − k0) (�) 5 ) ∈ !1, where ℜ 9 denotes the 9 th Riesz transform – that is, ℜ̂ 9 5 (b) := −8 b 9|b | 5̂ (b),
9 = 1, . . . , =. We record here for future use the more familiar special case of Definition 2.2(iv) when

? = 1:

‖ 5 ‖ℎ1 ≈ ‖ 5 ‖!1 +
=∑
9=1

ℜ 9 ((1 − k0) (�) 5 )

!1 ≈ ‖k0 (�) 5 ‖!1 + ‖(1 − k0) (�) 5 ‖� 1 . (10)

The dual of the local Hardy space ℎ1 is the local BMO space, which is denoted bmo and consists of

locally integrable functions that verify

‖ 5 ‖bmo := ‖ 5 ‖BMO + ‖k0 (�) 5 ‖!∞ < ∞, (11)

where BMO is the usual John–Nirenberg space of functions of bounded mean oscillation (see [24] for

the definition) and k0 is the cutoff function introduced in Definition 2.1.
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To bound the low-frequency part of an FIO, where the phase function is singular, we will make use

of the following lemma, whose proof is a scholium of [6, Lemma 1.17], and therefore left to the reader:

Lemma 2.3. Let 0(b) ∈ �∞
2 (R=) be supported in a neighbourhood of the origin. Assume also that

i(b) ∈ �∞ (R= \ 0) is positively homogeneous of degree 1. Then for all 0 6 Y < 1 we have����
∫

48i ( b )−8G ·b0(b) db

���� . 〈G〉−=−Y .

The following lemma will also prove useful in bounding the low-frequency part of an FIO. It is a

consequence of a result due to Peetre [20].

Lemma 2.4. Let 5 ∈ C
1(R=) have Fourier support contained inside the unit ball. Then for every d > =

and A ∈ (=/d, 1], we have

(〈·〉−d ∗ | 5 |) (G) .
(
" (| 5 |A ) (G)

)1/A
, G ∈ R=, (12)

where " denotes the Hardy–Littlewood maximal function on R=.

Proof. As was shown by Peetre (see, for example, [26, Section 2.3.6]), for A > =/d we have

sup
H∈R=

| 5 (G − H) |
〈H〉d .

(
" (| 5 |A ) (G)

)1/A
. (13)

Now taking A ∈ (=/d, 1] and using formula (13), we obtain

|〈·〉−d ∗ 5 (G) | .
∫
R=

| 5 (G − H) |
〈H〉d dH 6

(
BD?
H∈R=

| 5 (G − H) |
〈H〉d

)1−A ∫
R=

| 5 (G − H) |A
〈H〉dA dH

.

(
" (| 5 |A ) (G)

)1/A
. �

In the analysis of multilinear operators, a basic tool is a certain type of measure whose definition we

now recall. A Borel measure d`(G, C) on R=+1
+ is called a Carleson measure if

‖d`‖C := BD?
&

1

|& |

∫ ℓ (&)

0

∫
&
|d`(G, C) | < ∞,

where the supremum is taken over cubes all & ⊂ R= and ℓ(&) denotes the diameter of & and |& |
its Lebesgue measure. The quantity ‖d`‖C is called the Carleson norm of d`. In this paper we are

exclusively interested in Carleson measures which are supported on lines parallel to the boundary of

R
=+1
+ . More precisely, in what follows all Carleson measures will be supported on the set

� :=
{
(G, C) : G ∈ R= and C = 2−: for some : ∈ Z

}
,

so they take the form ∑
:∈Z

d`(G, C)X2−: (C),

where X2−: (C) is a Dirac measure at 2−: . This will be assumed throughout without further comment.

We recall some basic results concerning Carleson measures due to Carleson [4] which are also (as

we shall see) useful in the context of multilinear operators. (See also Stein [24] for more streamlined

and simplified proofs of the following results.)
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Lemma 2.5. If d`(G, C) is a Carleson measure, then

∑
:

∫
R=

�
(
G, 2−:

)
d`

(
G, 2−:

)
6 �= ‖ d`‖C

∫ (
BD?
:

BD?
|H−G |<2−:

���� (
H, 2−:

)���
)

dG.

Moreover, for 0 < ? < ∞ we have

∑
:

∫
R=

���� (
G, 2−:

)���? d`
(
G, 2−:

)
6 �= ‖ d`‖C

∫ (
BD?
:

BD?
|H−G |<2−:

���� (
H, 2−:

)���
) ?

dG. (14)

Consequently, if i satisfies |i(G) | . 〈G〉−=−Y (for some 0 < Y < ∞), then

∑
:

∫
R=

���i (
2−:�

)
5 (G)

���2 d`
(
G, 2−:

)
6 �= ‖d`‖C ‖ 5 ‖2

!2 , (15)

and if i is a bump function supported in a ball near the origin with q(0) = 1, then we also have

∑
:

∫
R=

���i (
2−:�

)
5 (G)

��� d`
(
G, 2−:

)
6 �= ‖ d`‖C ‖ 5 ‖ℎ1 . (16)

We also recall the quadratic estimate, which is a consequence of Plancherel’s theorem: if i ∈ � is

such that i(0) = 0, then ∑
:

∫ ���i (
2−:�

)
5 (G)

���2 dG . ‖ 5 ‖2
!2 . (17)

Finally, we shall also use the following result, which was stated and proved as [21, Lemma 4.10]:

Lemma 2.6. For any Carleson measure d` supported on � and  : satisfying

| : (G − H) | . 2:=
(
1 + |G − H |

2−:

)−=−X

for some X > 0, we have

d ˜̀(G, C) :=
∑
:

(∫
| : (G − H) | d`(H, C)

)
X2−: (C) dG,

which defines a Carleson measure, and ‖d ˜̀‖C . ‖d`‖C.

As stated in Section 1, Theorem 1.4 is proved by interpolating between certain endpoint cases. In

connection to those endpoint cases, the Hardy space �1 and its dual BMO (see [24] for the definitions)

will play an important role. In this context the following variant of [21, Corollary 4.12] will be useful:

Proposition 2.7. Let k ∈ �(R=) be supported in an annulus and q ∈ �(R=) satisfy q(0) = 0. Then for

any � ∈ �1, � ∈ BMO and E ∈ !∞:,G ,�����
∫ ∞∑

:=−∞
k

(
2−:�

)
� (G)q

(
2−:�

)
� (G)E

(
2−: , G

)
dG

����� . ‖�‖� 1 ‖�‖BMO ‖E‖!∞
:,G
.

3. Global hp → hp boundedness of linear FIOs for n/(n + 1) < p 6 ∞

In this section we establish the global ℎ? boundedness of a class of linear FIOs. This is formulated as

Theorem 3.1 and will be needed to prove Theorem 1.4. Since �1 ⊂ ℎ1 ⊂ !1, this result strengthens
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the global �1 → !1 boundedness obtained by Ruzhansky and Sugimoto [22] for these FIOs. It also

extends the local ℎ? → ℎ? boundedness of FIOs proven by Peloso and Secco [19] to a global result –

that is, we remove the requirement that the amplitude have compact G-support.

While this article was being written, this result was generalised further to cover more general phases

and amplitudes, and Besov–Lipschitz as well as Triebel–Lizorkin spaces. This was carried out by Hassell,

Portal and Rozendaal in [14] (in the realm of Hardy spaces), and by the first and third authors together

with Israelsson in [15] (in the realm of Besov–Lipschitz and Triebel–Lizorkin spaces). Since the details

of the following analysis are presented in [15] (albeit in a more involved setting), we concentrate here

on presenting the main ideas of the ℎ? boundedness of the FIOs that occur in this paper, and skip some

of the technical details. The interested reader can find these details in [15].

Theorem 3.1. Set < = −(= − 1)
��� 1
? − 1

2

��� and =
=+1

< ? 6 ∞. Then any linear Fourier integral operator

)
i
f 5 (G) =

∫
R=

f(G, b) 48G ·b+8i ( b ) 5̂ (b) db,

with an amplitude f(G, b) ∈ (< and a phase function i (as in Definitions 1.1 and 1.3), satisfies the

estimate ) if 5 - ? 6 � ‖ 5 ‖- ? ,

where - ? is defined in definition (6).

We begin the proof of Theorem 3.1 by reducing to the case of G-independent amplitudes and ? < ∞.

We can write

)
i
f 5 (G) = 1(G, �)) if̃ 5 (G),

where 1(G, b) = f(G, b)〈b〉−< ∈ (0 and f̃ = 〈b〉< ∈ (< is independent of G. Since pseudodifferential

operators 1(G, �) are bounded on - ? (see [11] for the case where ? 6 1 and ? = ∞ and, for example,

[24] for 1 < ? < ∞), to prove Theorem 3.1 we only need to prove the boundedness of )
i

f̃
. Since )

i

f̃
is a

self-adjoint operator, duality implies that the ? = ∞ case follows immediately from the ? = 1 case. To

avoid unnecessarily cumbersome notation, for the rest of the proof we drop the tilde and assume that f

depends only on b.

Next we observe that the !2 boundedness of )
i
f is obvious when f does not depend on G, since

it is a Fourier multiplier with bounded symbol (observe that < 6 0). Therefore, we only need to

consider ? ∈ (=/(= + 1), 1], since once the theorem is proved for these values of ?, the others follow by

interpolation and duality.

We now split the operator into high- and low-frequency portions. Let j(b) be a smooth cutoff function

supported in the ball �(0, 1) and equal to 1 in �(0, 1/2). We set

f1 := j(b)f(b) and f2(b) := (1 − j(b)) f(b),

so f = f1 +f2. We shall study the boundedness of )
i
f1

and )
i
f2

separately, beginning with the estimates

for )
i
f1

.

3.1. Low-frequency analysis

Our goal is to show that)
i
f1

is bounded on ℎ? for =
=+1

< ? 6 1. For this we make use of Definition 2.2(ii)

and let k 9 be a standard Littlewood–Paley partition of unity introduced in Definition 2.1.

Clearly the operator k 9 (�)) if1
is an FIO with amplitude

A 9 (b) = k 9 (b)f1(b) = k 9 (b)j(b)f(b)
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and phase function G · b + i(b). The support properties of k 9 and j imply that A 9 (b) = 0 for 9 > 1. This

yields

) if1
5

ℎ? =


©«

∞∑
9=0

���) iA 9 5
���2ª®¬

1
2


!?

=
) iA0 5 !? .

We can write

)
i
A0 5 (G) =

∫
 (G, H) (k0(�) 5 ) (H) dH,

where  (G, H) =
∫
j(b)f(b)48 (G−H) ·b+8i ( b ) db. By Lemma 2.3, we have | (G, H) | . 〈G − H〉−=−Y for

all Y ∈ [0, 1). Using this and Lemma 2.4 yields

��) iA0 5 (G)�� . | (k0 (�) 5 ) ∗ 〈·〉−=−Y | .
(
" ( |k0(�) 5 |A ) (G)

)1/A
(18)

for all 5 ∈ �, A ∈
(
=
=+Y , 1

)
and Y ∈ (0, 1), where " is the Hardy–Littlewood maximal function.

Thus, by choosing =
=+1

< A < ? and making use of the boundedness of " on ! ?/A , we obtain

) if1
5

ℎ? =

) iA0 5 !? . ‖" (|k0 (�) 5 |A )‖1/A
!?/A . ‖k0(�) 5 ‖!? . ‖ 5 ‖ℎ? ,

where the last inequality follows by Definition 2.2(ii). A standard density argument yields the result.

3.2. High-frequency analysis

To analyse )
i
f2

we need to use the atomic characterisation/decomposition of local Hardy spaces – that

is, Definition 2.2(iii). It is also worth mentioning that the high-frequency case of the proof does not

require the restriction ? ∈ (=/= + 1, 1], and works for all ? ∈ (0, 1]. Indeed, it is the lack of smoothness

in the low-frequency part of the operator that leads to the counterexample in Section 4.

We also claim that in proving the boundedness of )
i
f2

from ℎ? to ℎ? , it is enough to show the

boundedness of )
i
f2

from ℎ? to ! ? . Assuming this claim, we first observe that the operators AUY (�)
and k0 (�) in Definition 2.2(iv) are pseudodifferential operators with symbols in (0 (uniformly in Y).

As such, they map ℎ? to itself by a result of Goldberg [11]. Now since AUY (�) ◦ )
i
f2

= )
i
f2
AUY (�) and

k0 (�) ◦ ) if2
= )

i
f2
k0 (�), under the hypothesis of the claim both AUY (�) ◦ )

i
f2

and k0 (�) ◦ ) if2
map

ℎ? to ! ? , and thus by Definition 2.2(iv) we would have that )
i
f2

maps ℎ? to itself. Therefore from now

on our goal will be to prove the claim regarding the boundedness of )
i
f2

from ℎ? to ! ? .

3.2.1. Estimates of the norm on small balls

Here we are concerned with estimates of the ! ?-norm of )
i
f2

for atoms 0 supported in balls of radius

smaller than 1. To this end, we introduce a second frequency decomposition to the Littlewood–Paley

decomposition of Definition 2.1. This was inspired by the work of Fefferman [7] and famously used by

Seeger, Sogge and Stein in [23].

This section closely follows the same line of thought as [23], in which each Littlewood–Paley shell{
b : 2 9−1

6 |b | 6 2 9+1
}

is further partitioned into $
(
2 9 (=−1)/2) truncated cones of thickness 2 9/2. A

clear exposition of the claims to follow can be found in [24, pp. 402–12].

For each 9 ∈ N we choose a collection of unit vectors
{
ba9

}
a

such that

◦

��ba9 − ba′9 �� > 2−
9
2 for a ≠ a′ and

◦ for each b ∈ S=−1, there exists a ba9 such that
��b − ba9 �� < 2− 9/2,
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which is maximal with respect to the first property. It follows that it contains at most $
(
2 9 (=−1)/2)

elements. Associated to each ba9 is a cone

Γ
a
9 :=

{
b ∈ R= :

���� b|b | − ba9
���� 6 2 · 2−

9
2

}

whose central axis lies along ba9 .

One can construct a partition of unity ∑
a

ja9 = 1 (19)

of R= \ {0} subordinate to
{
Γa9

}
9 ,a

which satisfies the estimates

���mUb ja9 (b)
��� 6 �U2 9

|U|
2 |b |−|U | (20)

for all multi-indices U, and the better estimate����
(
ba9 · ∇

)#
ja9 (b)

���� 6 �# |b |−# , (21)

for # > 1 along the direction ba9 . Therefore, with k 9 from Definition 2.1,

k0(b) +
∞∑
9=1

∑
a

ja9 (b)k 9 (b) = 1, for all b ∈ R=. (22)

We now fix an ℎ?-atom 0 supported in a ball � (H, A) with A 6 1. We need to show that ‖)0‖!? 6 �,

where the constant� does not depend on the atom 0 or the radius of its support A . To do this we introduce

the rectangles

'a9 =
{
G ∈ R= :

���G − H̄ + ∇bi
(
ba9

)��� 6 �2−
9
2 ,

���ca9 (
G − H̄ + ∇bi

(
ba9

))��� 6 �2− 9
}
,

where ca9 is the orthogonal projection in the direction ba9 and the size of the constant � depends on the

size of the Hessian m2
b bi but not on 9 ; and we define the ‘region of influence’ as

�∗
=

⋃
2− 96A

⋃
a

'a9 .

We then split ∫
R=

��) if2
0(G)

��? dG =

∫
�∗

��) if2
0(G)

��? dG +
∫
�∗2

��) if2
0(G)

��? dG. (23)

It can be shown that

|�∗ | . A,

so ∫
�∗

��) if2
0(G)

��? dG 6 |�∗ |1−?/2
(∫
�∗

��) if2
0(G)

��2 dG

) ?/2
. A (1−?/2)

) if2
0
?
!2 . (24)

To estimate
) if2

0
?
!2 we consider two cases: −=/2 < < 6 0 and and < 6 −=/2.
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In the case where −=/2 < < 6 0, we can fix @ ∈ (1, 2] which satisfies

1

2
=

1

@
+ <
=
. (25)

Using the !2-boundedness of )
i
f2

◦ 〈�〉−< (which is clear when it is viewed as a 0th-order Fourier

multiplier) and the !@ to !2 boundedness of the Riesz potential 〈�〉<, we obtain) if2
0
?
!2 . ‖0‖ ?!@ . 2 |� |?/@−1

. A=(?/@−1) .

Combining this with formula (24), we obtain∫
�∗

��) if2
0(G)

��? dG . A (1−?/2)+=(?/@−1)
. 1,

where the last estimate follows from equation (25) because then

1 − ?

2
+ =

(
?

@
− 1

)
= 1 − ?

2
+ =

( ?
2
− ?<

=
− 1

)
= ?

(
1

?
− 1

2
+ =

2
− < − =

?

)

= ?

[
−(= − 1)

(
1

?
− 1

2

)
− <

]
= 0.

If instead < 6 −=
2
, then by setting 1 = |� |1/?−1/@ 0, with @ once again satisfying equation (25) (so

now @ < ? < 1), we see that 1 is an ℎ@-atom which is also supported in �. In fact, since A 6 1, 1 is

even an atom in �@ , so by [16, Corollary 2.3], we have that )
i
f2

is bounded from �@ to !2, and so∫
�∗
]01B) if2

0(G) ? dG . A (1−?/2) ‖0‖ ?�@ . A
(1−?/2) |� | (1/@−1/?) ? ‖1‖ ?�@ . A

(1−?/2)+=(?/@−1)
. 1

once again.

To analyse the second term on the right-hand side of equation (23) we use the partition of unity (22)

and decompose

)
i
f2

=

∞∑
9=0

)9 =
∑
9

∑
a

) a9 ,

where ) a9 is the operator with kernel

 a9 (G, H) =
∫

f(b)ja9 (b)k 9 (b)48 (G−H) ·b+8i ( b ) db.

Since i is homogeneous of degree 1, we can write i(b) = ∇i(b) · b and so

(G − H) · b + i(b) =
(
G − H + ∇i

(
ba9

))
· b +

(
∇i(b) − ∇i

(
ba9

))
· b.

Just as in [23], the kernel can therefore be written as

 a9 (G, H) =
∫

1a9 (b)4
8
(
G−H+∇i

(
b a
9

))
·b

db,

where 1a9 (b) := f(b)ja9 (b)k 9 (b)4
8
(
∇i ( b )−∇i

(
b a
9

))
·b

satisfies the estimates

���mU1a9 (b)��� 6 �U2− 9
|U|
2 and

����
(
ba9 · ∇

)
1a9 (b)

���� 6 �2− 9/2,
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for all multi-indices U and for  > 1, in a similar way to formulas (20) and (21).

This leads to the kernel estimate

���mUH  a9 (G, H)��� . 2 9 (<+ =+1
2

+|U |)(
1 +

���2 9ca9 (
G − H + ∇bi

(
ba9

))���2
) (

1 +
���2 9

2

(
G − H + ∇bi

(
ba9

)) ′���2
) (26)

for all multi-indices U and  > 0, where G ′ denotes G − ca9 (G), the orthogonal complement to the

projection in the direction ba9 . (See [15, Lemma 3.2] for the details.)

To make use of this decomposition we estimate the second term on the right-hand side of equation (23)

by ∫
�∗2

��) if2
0(G)

��? dG 6
∑

2 9<A−1

∫
�∗2

��)90(G)��? dG +
∑

2 9>A−1

∫
�∗2

��)90(G)��? dG. (27)

From formula (26) it is possible to prove that for G ∈ �∗2 , any  and any " >
⌊
=
(

1
? − 1

)
+

⌋
, we have

the pointwise estimates

���) a9 0(G)��� .



2
9(<+ =+1

2 )2 9" A"A
=− =

?(
1+

���2 9
(
G−H̄+∇b i

(
b a
9

))
1

���2
) (

1+
����2 9

2

(
G−H̄+∇b i

(
b a
9

))′����
2
) , 2 9 < A−1,

2
9(<+ =+1

2 )2− 9" A−"A=−
=
? 24 9A4(

1+
���2 9

(
G−H̄+∇b i

(
b a
9

))
1

���2
) (

1+
����2 9

2

(
G−H̄+∇b i

(
b a
9

))′����
2
) , 2 9 > A−1.

(28)

(See [15, Lemma 3.4] for details.) For the first term on the right-hand side of formula (27), we use the

first estimate of formula (28) to deduce∫
�∗2

��)90(G)��? dG . 2 9
=−1

2 2 9 ?(<+ =+1
2 )2 9" ?2− 9

=+1
2 A"?A=?−=.

(See [15, Proposition 6.2] for details.) Summing over 2 9 < A−1 yields

∑
2 9<A−1

∫
�∗2

��)90(G)��? dG . 1

if " and  are chosen appropriately. For the second term in formula (27) we have that 2 9 > A−1, and

therefore using the second estimate of formula (28) yields∫
�∗2

��)90(G)��? dG . 2 9
=−1

2 2 9 ?(<+ =+1
2 )2− 9" ?2− 9

=+1
2 A−"?A=?−=24 9?A4? .

(See once again [15, Proposition 6.2] for details.) Summing over 2 9 > A−1 yields

∑
2 9>A−1

∫
�∗2

��)90(G)��? dG . 1

for appropriate " and , which concludes the proof for atoms supported on balls of radius less than or

equal to 1.

3.2.2. Estimates of the norm on large balls

When the atom is supported on a ball with radius greater or equal to 1, we use a strategy developed by

Ruzhanksy and Sugimoto [22]. Once again, we wish to show
) if2

0

!? . 1, where 0 is an atom, but this
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time supported on a ball of radius A > 1. Without loss of generality, one can assume that this ball is centred

at the origin. This is because the translation invariance of ! ? yields
) if2

0

!? =

g∗B) if2
gBg−B0


!? ,

where gB is the operator of translation by B ∈ R= and g∗B)
i
f2
gB is exactly the same operator as )

i
f2

.

Following [22], we introduce the function

� (I) := inf
b ∈R=

|I + ∇i(b) | (29)

and its associated level sets

ΔA := {I ∈ R=;� (I) > A} .

Clearly for A1 6 A2 we have ΔA1 ⊇ ΔA2 , and setting

M :=
∑

|W |6=+1

BD?
G,H, b ∈R=

���mWbf2(b)〈b〉−<2 (?)+ |W |
��� ,

N :=
∑

16 |W |6=+2

BD?
b ∈R=

���mWb i(b)〈b〉−1+|W |
��� ,

it is easy to check that both M and N are finite due to the decay, support and homogeneity properties of

f and i.

The following lemmas are special cases of [22, Theorem 2.2].

Lemma 3.2. Let A > 1. Then we have R= \ Δ2A ⊆ {I : |I | < (2 +N)A}. Furthermore, for G ∈ Δ2A and

|H | 6 A we have

� (G) 6 2� (G − H)

and therefore G − H ∈ ΔA .

Lemma 3.3. The kernel

 (I) =
∫
R=

f2(b)48I ·b+8i ( b ) db.

of )
i
f2

is smooth on
⋃
A>0 ΔA , and for all ! > = it satisfies�! 

!∞ (R=×R=×ΔA ) 6 � (A, !,M,N),

where � (A, !,M,N) is a positive constant depending only on !, A > 0, M and N. For 0 < ? 6 1 and

! > =/?, the function � (I) satisfies the bound

�−!
!? (ΔA ) 6 � (A, !,N, ?).

Now returning to the problem of bounding the ! ?-norm of )
i
f2
0, we split) if2

0

!? (R=) 6

) if2
0

!? (Δ2A ) +

) if2
0

!? (R=\Δ2A ) . (30)

We first estimate the integral in formula (30) over Δ2A . For G ∈ Δ2A and |H | 6 A , Lemma 3.2 yields that

� (G) 6 2� (G − H) and G − H ∈ ΔA . This together with Lemma 3.3 in turn implies

��) if2
0(G)

�� 6 2!� (G)−!
∫
|H |6A

��� (G − H)! (G − H)0(H)
�� dH

6 2!� (G)−!
�! 

!∞ (R=×ΔA ) ‖0‖!1 6 � (=, !,M,N)� (G)−!
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for G ∈ Δ2A , since ‖0‖!1 6 |� |1−1/? and A > 1. Therefore, choosing ! > =/?, Lemma 3.3 and the

monotonicity of ΔA yield) if2
0

!? (Δ2A ) 6

� (G)−!

!? (Δ2A ) 6 � (=,M,N), (31)

as required.

For the integral in formula (30) over R= \ Δ2A , Lemma 3.2 and Hölder’s inequality yield

) if2
0

!? (R=\Δ2A ) 6 |R= \ Δ2A |1−?/2

) if2
0
?
!2 (R=)

. A=(1−?/2) ‖0‖ ?
!2 (R=) . 1,

which together with formula (31) proves the estimate
) if2

0

!? . 1.

4. Examples showing the sharpness of results

In Section 3.1 we only succeeded in proving that the low-frequency part of an FIO is bounded on ℎ?

for ? > =/(= + 1). Here we shall constructively prove that the generic behaviour of an FIO acting on a

Schwartz function is no better than $
(
|G |−(=+1) ) as |G | → ∞, and so we cannot expect the boundedness

of an FIO into ℎ? ⊆ ! ? for ? 6 =/(= + 1) to hold. More specifically, for each dimension =, we will find

a function 5 ∈ � ⊆ ℎ? for which

) ( 5 ) (G) :=

∫
R=

5̂ (b)48G ·b+8 |b | db =
©«
Γ

(
=+1

2

)
5̂ (0)

c (=+1)/28

ª®®¬
|G |−(=+1) +$

(
1 + log |G |
|G |=+3

)
(32)

as |G | → ∞. The function 5 will be chosen so that 5̂ has compact support, thus showing that regardless

of the order of the decay of the amplitude, Theorem 3.1 cannot hold if 0 < ? 6 =/(= + 1). In the case

where = = 1, this fact can also be proved directly, without the need for equation (33), using integration

by parts. A different proof, again in the case where = = 1, which yields the slightly stronger statement

) ( 5 ) (G) =
(
5̂ (0)
c8

)
1

G2
+$

(
G−4

)
,

as |G | → ∞ can be found in [15].

We consider here the case where = > 1. For a function 50 : R+ → C, we can define a radial function

5 : R= → C by 5 (G) = 50(|G |) for all G ∈ R=. The Fourier transform of this 5 is then also a radial

function and can be used to define a transformation on 50, as

F= ( 50) (A) := 5̂ (b),

where A = |b |. For = > 1, the representation of the Fourier transform of a radial function (see, for

example, [25, Chp 4, Thm 3.10]) together with properties of Bessel functions lead to the relation

F= ( 50) = − 1

2c
F=+2( 51), (33)

for 51(A) = 5 ′
0
(A)/A , provided 50 is continuously differentiable and

50(A) =
{
$ (A (1−=)/2) as A → ∞,
$ (A−=) as A → 0.
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In order to prove definition (32), choose 5 to be a smooth radial function whose Fourier transform 5̂ is

compactly supported and equal to 1 in a neighbourhood of the origin. Furthermore, we set 60(A) = 5̂ (b)
for A = |b |,

61(A) = 60(A)48A ,

62(A) = 60(A)
(
48A − 1 − 8A + A2/2

)
,

63(A) = 60(A)
(
1 − A2/2

)
and

64(A) = 60(A)8A .

Then ) ( 5 ) (G) = (2c)−=F= (61) (|G |) and

F= (61) = F= (62) + F= (63) + F= (64).

Since G ↦→ 63 (|G |) is smooth and compactly supported, F= (63) (A) = $
(
A−

)
as A → ∞ for each

 ∈ N. We introduce a smooth cutoff function j which is equal to 1 on the unit ball supported in the

double of the unit ball. Thus,

F= (62) (|G |) =
∫
R=

5̂ (b)
(
48 |b | − 1 − 8 |b | + |b |2

2

)
48G ·b db

=

∫
R=

5̂ (b)j(b/_)
(
48 |b | − 1 − 8 |b | + |b |2

2

)
48G ·b db

+
∫
R=

5̂ (b) (1 − j(b/_))
(
48 |b | − 1 − 8 |b | + |b |2

2

)
48G ·b db

= � + �.

To estimate � and � we can easily see that for b ∈ supp ( 5̂ ) we have���mUb (
48 |b | − 1 − 8 |b | + |b |2/2

)��� . |b |3−|U | .

Therefore � . _=+3, and for each ,

|� | =
�����
∫
R=

5̂ (b) (1 − j(b/_))
(
48 |b | − 1 − 8 |b | + |b |2

2

) [
G · ∇b
2c8 |G |2

] (
48G ·b

)
db

�����
.

1

|G |
∑

|U1 |+ |U2 |+ |U3 |=

∫
R=

���mU1 5̂ (b)
��� |mU2 (1 − j(b/_)) |

����mU3

(
48 |b | − 1 − 8 |b | + |b |2

2

)���� db

.
1

|G |
∑

|U1 |+ |U2 |+ |U3 |=, |U2 |>0

_−|U2 |
∫
|b |∼_

|b |3−|U1 |− |U3 | db

+ 1

|G |
∑

|U1 |+ |U3 |=

∫
_< |b |.1

|b |−|U1 |+3−|U3 | db,

where by splitting the sum we can take advantage of the different support properties of (1 − j(b/_))
and its derivatives. Taking  = = + 3, we find

|� | . 1

|G |=+3
(1 − log(_)) ,
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and therefore taking _ = 1/|G | yields

F= (62) (|G |) 6 |�| + |� | . 1

|G |=+3
(1 + log |G |) ,

and thus F= (62) (A) = $
(
(1 + log A)/A=+3

)
.

To estimate F= (64), we make use of equation (33). For this purpose, we define

ℎ0(A) = 6′4(A)/A,
ℎ1(A) = 86′0(A),
ℎ2(A) = 8(60(A) − 1)/A and

ℎ3(A) = 8/A.

Equation (33) then gives us

F= (64) = − 1

2c
F=+2(ℎ0) = − 1

2c
(F=+2(ℎ1) + F=+2(ℎ2) + F=+2(ℎ3)) .

We have that F=+2(ℎ1) (A) = $
(
A−

)
as A → ∞ for each  ∈ N, since ℎ1 is smooth and compactly

supported. It can also be shown that F=+2(ℎ2) (A) = $
(
A−

)
as A → ∞ for each  ∈ N, since

ℎ2 is smooth and its higher-order derivatives decay sufficiently rapidly. Moreover, F=+2 (ℎ3) (A) =

82=+1c (=+1)/2Γ
(
=+1

2

)
A−(=+1) (as can be found in, for example, [25, Chp 4, Thm 4.1]). Putting these

together, we find that

F= (64) = −
(
2=c (=−1)/2

Γ

(
= + 1

2

)
8

)
A−(=+1) +$

(
A−

)

as A → ∞ for each  ∈ N, and therefore we have proved definition (32) in the case where = > 1.

Before we turn to the proof of Theorem 1.4, we provide an example to show that the value of < in

formula (8) is sharp. We do this in the case where # = 2, ?0 = 2 and ?1 = ?2 = 4. Consider the bilinear

operator

* ( 5 , 6) (G) =
∫
R2=

0(b, [) 5̂ (b)6̂([)48G · ( b+[)48 |b |−8 |[ |+8 |b+[ | db d[,

where

0(b, [) =
∞∑
:=1

k 9 (b)k 9 (−[) |b |</2 |[ |</2,

the k 9 are a Littlewood–Paley partition of unity as defined in Definition 2.1 and < fails to satisfy

formula (8), so

< = −(= − 1)
(���� 1

?1

− 1

2

���� +
���� 1

?2

− 1

2

���� +
���� 1

?0

− 1

2

����
)
+ Y = − (= − 1)

2
+ Y

for Y > 0. We can write* ( 5 , 6) = 48
√
−Δ () ( 5 , 6)) for

) ( 5 , 6) (G) =
∫
R2=

0(b, [) 5̂ (b)6̂([)48G · ( b+[)48 |b |−8 |[ | db d[,
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so the unitarity of 48
√
−Δ implies that the boundedness of * from !4 × !4 to !2 is equivalent to the

boundedness of ) on the same spaces. We compute

)
(
5 , 5

)
(G) =

∫
R2=

( ∞∑
:=1

k 9 (b)k 9 (−[) |b |</2 |[ |</2
)
5̂ (b) 5̂ (−[)48G · ( b+[)48 |b |−8 |[ | db d[

=

∞∑
:=1

(∫
R=

k 9 (b) |b |</2 5̂ (b)48G ·b 48 |b | db
) (∫

R=

k 9 (−[) |[ |</2 5̂ (−[)48G ·[4−8 |[ | d[
)

=

∞∑
:=1

(∫
R=

k 9 (b) |b |</2 5̂ (b)48G ·b 48 |b | db
) (∫

R=

k 9 (b) |b |</2 5̂ (b)48G ·b 48 |b | db
)

=

∞∑
:=1

����
∫
R=

k 9 (b) |b |</2 5̂ (b)48G ·b 48 |b | db
����
2

=

∞∑
:=1

��k 9 (�) ((( 5 )) (G)��2 ,
where

(( 5 ) (G) =
∫
R=

(1 − k0(b)) |b |</2 5̂ (b)48G ·b 48 |b | db.

If we assume that ) is bounded from !4 × !4 to !2 and 5 ∈ !4, then [12, Theorem 6.1.2, esti-

mate (6.1.8)] says that there exists a polynomial & such that we can estimate

‖(( 5 ) −&‖!4 .


( ∞∑
:=1

��k 9 (�) ((( 5 ))��2
)1/2


!4

=


∞∑
:=1

��k 9 (�) ((( 5 ))��2


1/2

!2

=

) (
5 , 5

)1/2

!2
. ‖ 5 ‖!4 .

(34)

However, if we let 5̂ (b) = (1 − k0(b)) |b |−_4−8 |b | with

2= + 1

4
< _ <

2= + 1

4
+ Y

2
,

then [18, p. 302, fact (II-i)] shows us that 5 ∈ !4 but (( 5 ) ∉ !4. Moreover, (( 5 ) (G) ∼ |G |−(=+Y)/4 as

|G | → 0, so regardless which polynomial & is, estimate (34) leads to a contradiction. Therefore neither

) nor* can be bounded operators from !4 × !4 to !2.

5. The identification of the endpoint cases

In order to prove Theorem 1.4, we wish to identify the various values of the exponents ?1, ?2, . . . , ?#
from which the general result claimed in Theorem 1.4 will follow via interpolation. These specific

values are called endpoint cases, and to identify them we define the continuous convex piecewise linear

function

� (G) =
G − 1

2
1


ℓ1

+
����G · 1 − 1

2

���� , for G ∈ R# , (35)

where 1 = (1, . . . , 1) ∈ R# . Bearing in mind that ?0 satisfies equation (7), the right-hand side of

formula (8) can be written as

−(= − 1)� (1/?1, . . . , 1/?# ).
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The fact that we are restricting our attention to exponents 1 6 ? 9 6 ∞ ( 9 = 0, 1, . . . , #) means we are

interested in the behaviour of � on the domain

� :=
{
G ∈ [0, 1]# : G · 1 6 1

}
(36)

and in understanding the set

{(G, B) ∈ � × [0,∞) : � (G) 6 B} .

Since � is convex and piecewise linear, this set is a convex unbounded polytope. Its extreme points lie

on the graph of � over � and are in one-to-one correspondence with the extreme points of the subsets of

� on which � is linear. The subsets of � on which � is linear, as intersections of the compact convex set

� with convex sets (in this case half-spaces), are compact and convex. By the Krein–Milman theorem,

these subsets of � are the closed convex hull of their extreme points. Thus our task is to identify these

convex sets and their extreme points. This is the content of the following theorem:

Theorem 5.1. If
{
4 9

}
9

is the standard basis in R# , then the set � defined in definition (36) can be

written as the union

� = �0
0 ∪ �

1
0 ∪

(
∪#9=1�

9
1

)
,

where

�0
0 = Hull

(
{0} ∪

{ 4:
2

}#
:=1

)

�1
0 = Hull

({ 4:
2

}#
:=1

∪
{ 4: + 4ℓ

2

}#
:,ℓ=1

)

�
9
1
= Hull

({
4 9 ,

4 9

2

}
∪

{ 4 9 + 4:
2

}
:≠ 9

)
.

Moreover, � defined in equation (35) is a linear function on each of these sets.

Before proving Theorem 5.1, we observe that the values (1/?1, . . . , 1/?# ) corresponding to the

endpoint cases we need to consider are exactly the points of the set

{0} ∪
{ 4:

2

}#
:=1

∪
{ 4: + 4ℓ

2

}#
:,ℓ=1

∪ {4: }#:=1 .

This leads to the following corollary:

Corollary 5.2. It is sufficient to prove Theorem 1.4 for the following values of exponents:

(i) ? 9 = ∞ for all 9 = 0, . . . #;

(ii) ?0 = 2; and for any 1 6 9 6 # , ? 9 = 2; and ?: = ∞ for : ≠ 9;

(iii) ?0 = 1; and for any pair 1 6 91 < 92 6 # , ? 91 = ? 92 = 2; and ?: = ∞ for 91 ≠ : ≠ 92; and

(iv) ?0 = 1; and for any 1 6 9 6 # , ? 9 = 1; and ?: = ∞ for : ≠ 9 .

Proof. The proof is a fairly standard application of multilinear interpolation theory as described in [13],

using known results for interpolation spaces (for example, [17, Theorem 11]. Therefore we confine our-

selves to a brief sketch. We define an analytic family of operators {)I} on the strip 0 < Re (I) 6 1, where

)I is given by equation (4) with an amplitude fI (G,Ξ), where fI (G,Ξ) = f(G,Ξ)
(
1 + ∑#

9=1

��b 9 ��2) W (I)
2

and W(I) = −< − I&, with & chosen so that when Re (I) = 0 and Re (I) = 1, we have fI ∈ (U (=, #)
and fI ∈ (V (=, #), where U and V correspond to two different extremal cases as given in the statement

of the corollary. Noting that in both cases the seminorms of fI depend polynomially on |Im I |, the

validity of the bounds for the extremal cases together with the aforementioned result of Grafakos and

Mastyło [13, Theorem 1.1] yield the desired results. �
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Proof of Theorem 5.1. Let # ′ = # ′(G) denote the number of coordinates such that G 9 > 1/2 (for

9 = 1, . . . , #). That G ∈ � means
∑#
9=1 G 9 6 1, which in turn implies that # ′ ∈ {0, 1, 2}. We can

therefore decompose � = �0 ∪ �1 ∪ �2, where for each : = 0, 1, 2,

�: is the closure of the set of points G ∈ � for which # ′(G) = : .

We observe that �2 consists exactly of the vertices 1
2
(4 9 + 4: ) for 1 6 9 < : 6 # , and it is easy to

check that these points are limit points of �1. Therefore �2 ⊂ �1 and

� = �0 ∪ �1.

We can further decompose

�0 = �0
0 ∪ �

1
0,

where

�0
0 =

{
G ∈ �0 : 0 6 G · 1 6

1

2

}
and �1

0 =

{
G ∈ �0 :

1

2
6 G · 1 6 1

}
.

Since 0 6 G · 1 < 1
2

and G 9 > 0 for G = (G1, . . . , G# ) ∈ �0
0
, all points G ∈ �0

0
can be expressed as the

convex hull of the points 0, and 1
2
4: , for : = 1, . . . , # . Therefore, �0

0
= Hull

({
0,
41

2
, . . . ,

4#
2

})
.

Leaving �1
0

for a moment, we next consider �1. We can write

�1 = ∪=9=1�
9
1
,

where

�
9
1
=

{
G ∈ �1 : G 9 >

1
2
> G: for all : ≠ 9

}
.

Note that �
9
1

is the translation of �0
0

by
4 9
2

, so it follows that

�
9
1
=
4 9

2
+ �0

0

=
4 9

2
+ Hull

({
0,
41

2
, . . . ,

4#

2

})

= Hull

({
4 9 ,

4 9

2

}
∪

{ 4 9 + 4:
2

}
:≠ 9

)
.

We now return to �1
0
. Given a fixed arbitrary point G ∈ �1

0
, consider the maximal line segment

contained in the ray from the origin through G which is contained in �1
0
. This is a set of the form

{H = _G : _− 6 _ 6 _+} .

The factor _− will be determined by when the ray breaks through the plane H · 1 = 1/2, so _− solves

the equation _−G · 1 = 1/2, and _+ will be determined by when the ray first breaks through one of the

planes H · 4 9 = 1/2 ( 9 = 1, . . . , #) and H · 1 = 1; therefore,

_+ = min
{
_ 9 : _ 9G · 4 9 = 1/2 ( 9 = 1, . . . , #) and _#+1G · 1 = 1

}
.
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D1

0

D2

1

D1

1

1

p1

1

p2

D0

0

D2

Figure 1. Decomposition of � and graph of � for # = 2.

However,

_−G ∈ Hull
({ 41

2
, . . . ,

4#

2

})
,

_ 9G ∈ Hull

({ 4 9
2

}
∪

{ 4 9 + 4:
2

}
:≠ 9

)
if _+ = _ 9 for 9 = 1, . . . , # and

_#+1G ∈ Hull

({ 4: + 4ℓ
2

}
:≠ℓ

)
if _+ = _#+1,

so it follows that

G ∈ Hull

({ 4:
2

}#
:=1

∪
{ 4: + 4ℓ

2

}#
:,ℓ=1

)
.

Summarising, we can write

� = �0
0 ∪ �

1
0 ∪

(
∪#9=1�

9
1

)
,

where each set is convex and the extreme points are the ones given in the statement of Theorem 5.1 (See

Figure 1).

We now check that � is linear on these sets. For G ∈ �0, G: 6
1
2

for all : , so we have

� (G) =
#∑
:=1

(
1

2
− G:

)
+

�����
#∑
:=1

G: −
1

2

�����
=

{
#−1

2
if G ∈ �1

0
,

#−1
2

+ (1 − 2G · 1) if G ∈ �0
0
.

Now if G ∈ � 9
1
, then G: 6

1
2
6 G 9 for all : ≠ 9 , and so G · 1 > 1/2. Thus we can write

� (G) =
∑
:≠ 9

(
1

2
− G:

)
+

(
G 9 −

1

2

)
+

#∑
:=1

G: −
1

2

=
# − 1

2
+ 2G 9 − 1.

Thus, in all cases, we see that � is linear on each of the convex sets �0
0
, �1

0
and �

9
1
, for 9 =

1, . . . , # . �
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6. Frequency decomposition of multilinear FIOs

In what follows we shall demonstrate that the regularity of )Φ
f can be obtained by considering three

frequency regimes: when Ξ lies inside a compact set, when one component of Ξ = (b1, . . . , b# )
dominates the other; and when two fixed components of (b1, . . . , b# ) are comparable to each other.

In all that follows we take # > 1. First we define the component of f with frequency support

contained in a compact set. We introduce the cutoff function j : R=# → R, such that j(Ξ) = 1 for

|Ξ| 6 1/8 and j(Ξ) = 0 for |Ξ| > 1/4, and define

f0(G,Ξ) = j(Ξ) f(G,Ξ).

To define the components of f where one frequency dominates all the others, we construct a cutoff

function a : R=# → R such that a(Ξ) = 0 for |b1 | 6 32
√
# − 1 |Ξ′ | and a(Ξ) = 1 for 64

√
# − 1 |Ξ′ | 6

|b1 |, where Ξ′ := (b2, . . . , b# ). This can be done by taking _ ∈ C
∞ (R) such that _(C) = 1 if C 6 21 and

_(C) = 0 if C > 22 for two real numbers 0 < 21 < 22 < 1, which will be decided momentarily. Define

a(Ξ) = 1 − _
(
|b1 |2

|Ξ|2

)
∈ C

∞(R=# \ 0).

By construction, it follows that

a(Ξ) =
{

0 if |b1 |2 6 21 |Ξ|2 ,
1 if |b1 |2 > 22 |Ξ|2

=




0 if |b1 | 6
√

21

1−21
|Ξ′ | ,

1 if |b1 | >
√

22

1−22
|Ξ′ | ,

and a calculation shows that taking

21 = 1 − 1

1 + 322 (# − 1)
=

210 (# − 1)
1 + 210 (# − 1)

,

22 = 1 − 1

1 + 4 · 322 (# − 1)
=

212 (# − 1)
1 + 212 (# − 1)

,

(37)

ensures that we obtain the function a with the required properties. Given 9 = 1, . . . # , we define

Ξ′
9 :=

(
b1, . . . , b 9−1, b 9+1, . . . , b#

)
and

a 9 (Ξ) := a
(
b 9 ,Ξ

′
9

)
,

for all Ξ ∈ R=# . We then define the component of f for which b 9 dominates the other frequency

components to be

f9 (G,Ξ) = (1 − j(Ξ)) a 9 (Ξ) f(G,Ξ), for 9 = 1, . . . # .

What remains of f will be split into functions on whose support two frequency components are

comparable. Observe that the supports of the a 9 are disjoint, and therefore the Ξ-support of

f(G,Ξ) −
#∑
9=0

f9 (G,Ξ) (38)

is contained in the set of all Ξ for which no a 9 (Ξ) is equal to 1. We define

ã(Ξ) = 1 − _
(
|b1 |2

23 |Ξ|2

)
∈ C

∞(R=# \ 0)
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for some constant 0 < 23 < 1 (to be chosen momentarily) and

ã 9 (Ξ) := ã
(
b 9 ,Ξ

′
9

)
.

For fixed : , if Ξ is not contained in the support of ã 9 for any 9 ≠ : , then
��b 9 ��2 6 2321 |Ξ|2 for all 9 ≠ : ,

and consequently

|b: |2 > (1 − 2321 (# − 1)) |Ξ|2 .

Thus, we choose 23 so that 1 − 2321(# − 1) > 22, and all Ξ which are not contained in the support of

ã 9 for any 9 ≠ : will be such that a: (Ξ) = 1. Therefore the functions

Θ 9 ,: (Ξ) :=
ã 9 (Ξ) ã: (Ξ)(∑#
ℓ=1 ãℓ (Ξ)

)2

are a smooth partition of the Ξ-support of expression (38), and
��b 9 �� ≈ |b: | on the support of Θ 9 ,: .

Defining

f9 ,: (G,Ξ) = (1 − j(Ξ))Θ 9 ,: (Ξ)
(
f(G,Ξ) −

#∑
ℓ=0

fℓ (G,Ξ)
)
, for 9 , : = 1, . . . #,

we have completed our decomposition of the amplitude f as

f(G,Ξ) = f0(G,Ξ) +
#∑
9=1

f9 (G,Ξ) +
∑
9≠:

f9 ,: (G,Ξ),

where f0 has compact Ξ-support,
��b 9 �� dominates |Ξ| on the Ξ-support of f9 and

��b 9 �� ≈ |b: | on the

Ξ-support of f9 ,: .

It is easy to check that if f ∈ (<(=, #), then f9 and f9 ,: are also in (<(=, #) for all 9 , : = 1, . . . , # ,

and f0 ∈ (` (=, #) for all ` ∈ R.

7. Boundedness results for Z�

2 j

We will restrict our discussion to the amplitudef1. This will be sufficient for the treatment of an arbitrary

f9 , since a permutation of the frequency variables b1, . . . , b# reduces the boundedness of f9 in one of

the endpoint cases from Corollary 5.2 to an endpoint case for f1.

We begin by decomposing f1 in a similar fashion to Coifman and Meyer [5]. The rough idea is to

first introduce a Littlewood–Paley partition of unity in the b1 variable. We can then make use of the fact

that |Ξ| . |b1 | on the Ξ-support of f1 to see that for each term in the Littlewood–Paley decomposition,

we can introduce for free a second Littlewood–Paley cutoff function in the variable b1 + · · · + b# (that

is, the ‘dual’ frequency variable). The same support property allows us to also introduce low-frequency

cutoff operators (written later as %
D 9

:
) in each of the b 9 -variables ( 9 = 2, . . . , #) which restrict

��b 9 �� . 2:

when |b1 | ≈ 2: . For this purpose, it is more useful to have the squares of the functions form a partition

of unity than the functions themselves – that is, equation (40) holds instead of equation (9). So although

the k: in the following construction are essentially a Littlewood–Paley partition of unity in the sense of

Definition 2.1, we emphasise that they depart slightly from that definition.

We introduce a positive, radial, radially decreasing, smooth cutoff function o : R= → R which

satisfies o(b) = 1 if |b | 6 1 and o(b) = 0 if |b | > 2; and we define the nonnegative functions \: , k:
and q: via the following relations:
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◦ \: (b) := o
(
23−:b

)
◦ k: (b)2 := o

(
2−1−:b

)2 − o
(
22−:b

)2

◦ q: (b)2 := o
(
2−3−:b

)2 − o
(
24−:b

)2
.

Using the support properties of these functions, it is easy to verify the following facts:

(i) k: (b) = 1 for 2:−1
6 |b | 6 2:+1.

(ii) k: (b) = 0 for |b | 6 2:−2 and 2:+2
6 |b |.

(iii) \: ([) = 1 for |[ | 6 2:−3.

(iv) \: ([) = 0 for 2:−2
6 |[ |.

(v) q: (b + [) = 1 for 2:−3
6 |b + [ | 6 2:+3.

(vi) q: (b + [) = 0 for |b + [ | 6 2:−4 and 2:+4
6 |b + [ |.

Given the support properties of f1, it follows that if k: (b1) ≠ 0 and f1(G,Ξ) ≠ 0, then

��2−:Ξ′
1

�� 6
��2−:b1

��
32
√
# − 1

6
22

32
√
# − 1

=
2−3

√
# − 1

,

which implies that \:
(
b 9

)
= 1 for 9 = 2, . . . , # .

Likewise, when k: (b1) ≠ 0 and f1(G,Ξ) ≠ 0, then

1

4
− 1

8
6

��2−:b1

�� − √
# − 1

��2−:Ξ′
1

��
6

��2−: (b1 + · · · + b# )
�� 6 ��2−:b1

�� + √
# − 1

��2−:Ξ′
1

�� 6 4 + 1

8
< 8,

which implies q: (b1 + · · · + b# ) = 1.

(39)

Observe that on the support of f1,

|Ξ|2 = |b1 |2 +
��Ξ′

1

��2 > 1/64, |b1 |2 > 322 (# − 1)
��Ξ′

1

��2 .
Then

1/64 6

(
1 + 1

322 (# − 1)

)
|b1 |2 ,

and so

|b1 |2 >
16(# − 1)

1 + 322 (# − 1)
> 0.

Finally, it follows directly from the definition before that each function k: is radial and real-valued, and

∞∑
:=−∞

k: (b)2
= 1 for all b ≠ 0. (40)

Using these facts, there exists :0 ∈ Z (independent of G) such that we can write )Φ
f1

as

)Φ
f1
( 51, . . . , 5# ) (G)

=

∫
R=#

∑
:>:0

k: (b1)2
#∏
9=2

\:
(
b 9

)2
q: (b1 + · · · + b# )2f1(G,Ξ) 5̂1 (b1)

#∏
9=2

5̂ 9
(
b 9

)
48G · ( b1+···+b# )48Φ(Ξ) dΞ,

(41)

https://doi.org/10.1017/fms.2021.13 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.13


Forum of Mathematics, Sigma 25

which by setting

Φ(G,Ξ) := G · (b1 + · · · + b# ) + i0 (b1 + · · · + b# ) +
#∑
9=1

i 9
(
b 9

)
(42)

we can in turn write as

∫
R=#

∞∑
:>:0

a

(
:, G, 2−:Ξ

)
[|b1 + · · · + b# |<0 q: (b1 + · · · + b# )]

×
[
|b1 |<1

��2−:b1

��<−<0−<1
k: (b1) 5̂ (b1)

] 
#∏
9=2

2:< 9 \:
(
b 9

)2
5̂ 9

(
b 9

)
48Φ(G,Ξ) dΞ,

(43)

where < =
∑#
9=0 < 9 and

a(:, G,Ξ) = f1

(
G, 2:Ξ

)
k1 (b1)

#∏
9=2

\1

(
b 9

)
q1(b1 + · · · + b# )

(
2−:

|b1 |

)<−<0
(

2−:

|b1 + · · · + b# |

)<0

.

If we introduce a high-frequency cutoff j0 that satisfies

◦ j0(b) = 1 for |b | > 2:0−4 and

◦ j0(b) = 0 for |b | 6 2:0−5,

we can use formula (39) and facts (i) and (ii) before it to rewrite formula (43) as

∫
R=#

∞∑
:>:0

a

(
:, G, 2−:Ξ

)
[|b1 + · · · + b# |<0 j0(b1 + · · · + b# )q: (b1 + . . . + b# )] ×

[
|b1 |<1

��2−:b1

��<−<0−<1
j0(b1)k: (b1) 5̂ (b1)

] 
#∏
9=2

2:< 9 \:
(
b 9

)
5̂ 9

(
b 9

)
48Φ(G,Ξ) dΞ.

Making use of the Fourier inversion formula, we can write

a(:, G,Ξ) =
∫

m(:, G,*)(
1 + |* |2

)" 48Ξ·* d*, * = (D1, . . . , D# ),

for a smooth bounded function m. This means we can then write )Φ
f1
( 51, . . . , 5# ) (G) as a weighted

average in* of

∞∑
:=:0

m(:, G,*)
∫

[|b1 + · · · + b# |<0 q: (b1 + . . . + b# )j0(b1 + . . . + b# )] ×

[
|b1 |<1

��2−:b1

��<−<0−<1
j0(b1)k: (b1)482

−: b1 ·D1 5̂1(b)
]
×


#∏
9=2

2:< 9 \:
(
b 9

)
5̂ 9

(
b 9

)
482

−: b 9 ·D 9


48Φ(G,Ξ) dΞ.

(44)
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Finally, we can write formula (44) as

�( 51, . . . , 5# ) (G) =
∞∑
:=:0

"m ◦ ) i0

10
◦&0

:


(
&
D1

:
◦ ) i1

11

)
( 51)

#∏
9=2

(
%
D 9

:
◦ ) i 9

1 9

) (
5 9
)

(G), (45)

where

�&0
:
( 5 )(b) = q: (b) 5̂ (b), 10 (b) = |b |<0 j0(b),�&D1

:
( 5 )(b) =

��2−:b��<−<0−<1
k: (b)482

−: b ·D1 5̂ (b), 11 (b) = |b |<1 j0(b),�%D 9

:
( 5 )(b) = \: (b)482

−: b ·D 9 5̂ (b), 1 9 (:, b) = 2:< 9l: (b),

for 9 = 2, . . . , #; l: (b) := \: (b/2) is a bump function equal to 1 on the support of \: ; and "m denotes

multiplication by m.1

The position of the operator "m and the fact that m depends on both : and G cause problems if

we wish to make use of various square-function and Carleson-measure estimates to estimate norms of

equation (45). We can overcome the problems by observing that this dependency is in fact periodic.

Indeed, since &0
:
=

(
&0
:−1

+&0
:
+&0

:+1

)
◦&0

:
and &0

:
◦&0

:′ ≡ 0 if |: − : ′ | > 2, we can write

"m ◦ ) i0

10
◦&0

: =

(
:+1∑

:′=:−1

)*:,:′

)
◦&0

: =
©«

1∑
ℓ=−1

∑
:′−:≡ℓ (mod 3)

)*:′+ℓ,:′
ª®¬
◦&0

: ,

where )*
9,:

is the FIO with amplitude m( 9 , G,*) 10(b) q: (b) and phase i0. Observe that

T
*
: :=

1∑
ℓ=−1

∑
:′−:≡ℓ (mod 3)

)*:′+ℓ,:′

is periodic in : with period 3, and is an FIO with amplitude in (<0 . Thus, equation (45) can be rewritten

as
2∑
ℓ=0

T
*
ℓ (�ℓ ( 51, . . . , 5# )) (G),

where

�ℓ ( 51, . . . , 5# ) (G)

:=
∑

:≡ℓ (mod 3) , :>:0

j0(2�)&0
:


(
&
D1

:
◦ ) i1

11

)
( 51)

#∏
9=2

(
%
D 9

:
◦ ) i 9

1 9

)
( 5 9 )


(G),

(46)

and j0 is the same high-frequency cutoff introduced before (and is a symbol belonging to (0). Now, by

Theorem 3.1, each T
*
ℓ

is a bounded operator on - ? (with norms uniform in*), and so the boundedness

of )Φ
f1

is reduced to studying the boundedness of �ℓ . In the remainder of this section, we prove this

boundedness in each of the endpoint cases from Corollary 5.2. Due to the symmetry of definition (46)

in the indices 9 = 2, . . . , # , we only need to consider endpoint cases (?0, . . . , ?# ) which are distinct

within the equivalence class of permutations of (?2, . . . , ?# ).

1The notation &0
:

and &
D1
:

is potentially ambiguous, as &
D1
:

|D1=0 is not the same operator as &0
:
. However, in practice no

confusion need arise, so to avoid a profusion of notation, we tolerate this imprecision.
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7.1. Boundedness with the target space R2

In this case we take <0 = 0. By duality and definition (46), we have

‖�ℓ ( 51, . . . , 5# )‖!2

= sup
‖ 50 ‖!2=1

����
∫

50(G)�ℓ ( 51, . . . , 5# ) (G) dG

����
= sup

‖ 50 ‖!2=1

������
∑

:≡ℓ (mod 3) ,:>:0

∫
&0
: (j0 (2�) 50) (G)

(
&D: ◦ )

i1

11

)
( 51) (G)

#∏
9=2

(
%
D 9

:
◦ ) i 9

1 9

) (
5 9
)
(G) dG

������
6 sup

‖ 50 ‖!2=1

©«
∑

:≡ℓ (mod 3) ,:>:0

∫ ��&0
: (j0(2�) 50) (G)

��2 dG
ª®¬

1/2

×
©«

∑
:≡ℓ (mod 3) ,:>:0

∫ ������
(
&D: ◦ )

i1

11

)
( 51) (G)

#∏
9=2

(
%
D 9

:
◦ ) i 9

1 9

) (
5 9
) ������

2

dG
ª®®¬

1/2

.

For the first factor we just use the quadratic estimate

©«
∑

:≡ℓ (mod 3) ,:>:0

∫ ��&0
: (j0(2�) 50) (G)

��2 dG
ª®¬

1/2

. ‖j0(2�) 50‖!2 . 1.

Thus it remains to control

©«
∑

:≡ℓ (mod 3) ,:>:0

∫ ������
(
&
D1

:
◦ ) i1

11

)
( 51) (G)

#∏
9=2

(
%
D 9

:
◦ ) i 9

1 9

) (
5 9
) ������

2

dG
ª®®¬

1/2

, (47)

and precisely how this is done depends on the endpoint case considered, so we consider each case in turn.

7.1.1. bmo × · · · × bmo × R2 → R2

Here we take = > 2, < 9 = −(= − 1)/2, 5 9 ∈ bmo for 9 = 1, . . . , # − 1, <# = 0 and 5# ∈ !2. By

Theorem 3.1 we know that )
i1

11
( 51) ∈ BMO when 51 ∈ bmo. This implies that

d`(G, C) =
∑
:∈Z

���(&D1

:
◦ ) i1

11

)
( 51) (G)

���2 dGX2−: (C),

where X2−: is a Dirac mass at the point 2−: , is a Carleson measure with the Carleson norm

bounded by a constant multiple of ‖ 51‖bmo. Moreover, the nontangential maximal function of

(G, C) ↦→
(
%
D#
:

◦ ) i#

1#

)
( 5# ) (G)X2−: (C) is in !2 when 5# ∈ !2. Thus, to control formula (47) with

formula (15) and conclude the proof in this endpoint case, it is enough to apply formula (49) from the

following lemma to %
D 9

:
◦ ) i 9

1 9
for each 9 = 2, . . . , # − 1.

Lemma 7.1. Let

< = −(= − 1)
���� 1? − 1

2

���� , =/(= + 1) < ? 6 ∞.

Let

1(:, b) = 2:<l: (b), �%D
:
(6)(b) = \: (b)482

−: b ·D 6̂(b),
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where l: and \: are the cutoff functions already defined. It follows that

BD?
:

(%D: ◦ ) i1
)
( 5 )


ℎ?
. ‖ 5 ‖ℎ? , (48)

and for = > 2 we also have, for < = −(= − 1)/2,

BD?
:

(%D: ◦ ) i1
)
( 5 )


!∞
. ‖ 5 ‖bmo , and BD?

:

(%D: ◦ ) i1
)
( 5 )


ℎ1
. ‖ 5 ‖!1 . (49)

Proof. The proof of formula (48) follows from the fact that the amplitude of %D
:
◦) i

1
is in (< uniformly

in : . By duality, self-adjointness of the operators involved and interpolation, the second inequality in

formula (49) follows from the first.

In order to establish the first inequality in formula (49), we write 1 = 1♭ + 1♯, where

1♭ (:, b) = 1(:, b) (1 − j0(b)) and 1♯ (:, b) = 1(:, b)j0(b). (50)

Now since < 6 0 and 1 − j0 is a low frequency cutoff, we can throw away the l in the definition of

1, which would then eliminate the :-dependency in 1♭. Then by the kernel estimates for the FIOs with

amplitude 1♭ (see, for example, Lemma 2.3), for 5 ∈ bmo we have%D:) i1♭ ( 5 )

!∞
.

) i
1♭
( 5 )


!∞
. ‖(1 − j0) (�) 5 ‖!∞ . ‖ 5 ‖bmo .

In order to ameliorate
(
%D
:
◦ ) i

1♯

)
( 5 ) so that we can better understand its action on bmo functions,

we employ an argument from [21, page 27]. According to that argument, for = > 2 and < =
−(=−1)

2
we

introduce an operator

': =

:∑
9=:0

& 92
(:− 9)< (51)

with some positive :0, which enables us to replace
(
%D
:
◦ ) i

1♯

)
( 5 ) by %D

:
◦ ': ◦) iW ( 5 ) for = > 2, where

W(b) := j0(b) |b |< ∈ (−(=−1)/2.

By [21, Lemma 4.8], the operator ': has a kernel  : which has the following properties:∫
 : (I) dI = 0,

and for each 0 < X < =−1
2

, the estimates

| : (G − H) | . 2:=
(
1 + |G − H |

2−:

)−=−X

and

| : (G − H) −  : (G − H′) | . 2: (=+1) |H − H′ |

hold for all G, H, H′ ∈ R= and : ∈ Z. Therefore ': satisfies

sup
:∈Z

‖': 5 ‖!@ . ‖ 5 ‖!@ , 1 6 @ < ∞,

and

BD?
:∈Z

‖': 5 ‖!∞ . ‖ 5 ‖BMO .
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Using this BMO–!∞-boundedness (valid for = > 2), the global bmo-boundedness of FIOs with ampli-

tudes in (−(=−1)/2 (Theorem 3.1) and the !∞-boundedness of %D
:

yield

BD?
:

%D:) i1♯ ( 5 )

!∞
. ‖j0(�) 5 ‖BMO 6 ‖ 5 ‖bmo .

�

Remark 7.2. Here we see that the assumption = > 2 is used in the proof of Lemma 7.1 to ensure that

X can be chosen positive. This is not just a feature of the proof, but is in fact necessary. As was shown

in [21, Proposition 5.3], the bilinear operator in dimension = = 1 with amplitude f ≡ 1 and phase

functions i1 = Gb + |b |, i2 = G[ and i3 = 0 fails to be bounded from bmo × !2 to !2.

7.1.2. R2 × bmo × · · · × bmo → R2

Here we take <1 = 0, 51 ∈ !2, < 9 = −(= − 1)/2 and 5 9 ∈ bmo for 9 = 2, . . . , # . Noting that 11 does

not depend on : , the quadratic estimate

©«
∑

:≡ℓ (mod 3) ,:>:0

∫ ���(&D1

:
◦ ) i1

11

)
( 51) (G)

���2 dG
ª®¬

1/2

.

) i1

11
( 51)


!2
. ‖ 51‖!2

follows with the help of formula (17) and Theorem 3.1. Applying this and formula (49) to expression (47)

yields

©«
∑

:≡ℓ (mod 3) ,:>:0

∫ ������
(
&
D1

:
◦ ) i1

11

)
( 51) (G)

#∏
9=2

(
%
D 9

:
◦ ) i 9

1 9

)
( 5 9 )

������
2

dG
ª®®¬

1/2

.
©«

∑
:≡ℓ (mod 3) ,:>:0

∫ ���(&D1

:
◦ ) i1

11

)
( 51) (G)

���2 dG
ª®¬

1/2
#∏
9=2

BD?
:

(%D 9

:
◦ ) i 9

1 9

)
( 5 9 )


!∞

6 ‖ 51‖!2

#∏
9=2

 5 9bmo
.

7.2. Boundedness with the target space h1

Now we take <0 = −(= − 1)/2, and so by duality and definition (46) we have

‖�ℓ ( 51, . . . , 5# )‖ℎ1 =

BD?
‖ 50 ‖bmo=1

������
∑

:≡ℓ (mod 3) ,:>:0

∫
&0
: (j0(2�) 50)

(
&
D1

:
◦ ) i1

11

)
( 51)

#∏
9=2

(
%
D 9

:
◦ ) i 9

1 9

)
( 5 9 ) dG

������ .
(52)

Since 50 ∈ bmo, we have that j0(2�) 50 ∈ BMO. Therefore,

d` 50 (G, C) :=
∑

:≡ℓ (mod 3) ,:>:0

��&0
: (j0 (2�) 50) (G)

��2 dGX2−: (C)

is a Carleson measure with Carleson norm not exceeding a constant multiple of ‖ 50‖2
bmo

.

7.2.1. bmo × · · · × bmo × h1 → h1

Here we take< 9 = −(=−1)/2 for 9 = 0, . . . # , 5 9 ∈ bmo, 9 = 0, . . . , #−1, and 5# ∈ ℎ1 in equation (52).
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Since 51 ∈ bmo, Theorem 3.1 and definition (11) yield that )
i1

11
( 51) ∈ BMO, and therefore

d` 51 (G, C) :=
∑

:≡ℓ (mod 3) ,:>:0

���&D: ◦ ) i1

11
( 51) (G)

���2 dGX2−: (C)

is a Carleson measure. Since we also have��&0
: ◦ j0(2�) ( 50) (G)

�� ���&D1

:
◦ ) i1

11
( 51) (G)

���
6

1

2

( ‖ 51‖bmo

‖ 50‖bmo

��&0
: ◦ j0 (2�) ( 50) (G)

��2 + ‖ 50‖bmo

‖ 51‖bmo

���&D1

:
◦ ) i1

11
( 51) (G)

���2
)
,

the measure

d` 50 , 51 (G, C) :=
∑

:≡ℓ (mod 3) ,:>:0

&0
: ◦ j0(2�) ( 50) (G)&D1

:
◦ ) i1

11
( 51) (G) dGX2−: (C)

is also Carleson, with Carleson norm bounded by ‖ 50‖bmo ‖ 51‖bmo. Moreover, by formula (49), even

d` 50 ,..., 5#−1
(G, C) :=

∑
:

#−1∏
9=2

(
%
D 9

:
◦ ) i 9

1 9

) (
5 9
)
(G)X2−: (C) d` 50 , 51 (G, C) (53)

is a Carleson measure.

At this point we repeat the decomposition (50) of 1# into the sum 1♭# + 1♯# .2 We can see that since

<# = −(=− 1)/2 and 1− j0 is a low-frequency cutoff, we can disregard the l: in the definition of 1♭# ,

which means 1♭# is independent of : . Then the characterisation of local Hardy spaces in Definition 2.2(v)

and formula (14) yield������
∑

:≡ℓ (mod 3) ,:>:0

∫ (
%
D#
:

◦ ) i#

1♭#

)
( 5# ) d` 50 ,..., 5#−1

(
G, 2−:

)������

.

#−1∏
9=0

 5 9bmo

∫
R=

BD?
:>:0

BD?
|G−H |<2−:

����
(
%
D#
:

◦ ) i#

1♭#

)
( 5# )

���� dG

.

) i#

1♭#
( 5# )


ℎ1

#−1∏
9=0

 5 9bmo
.

#−1∏
9=0

 5 9bmo
‖ 5# ‖ℎ1 .

(54)

To deal with

(
%
D#
:

◦ ) i#

1
♯
#

)
( 5# ), we continue to follow the proof of Lemma 7.1 and replace it with

%
D#
:

◦ '#
:
◦ ) i#

W ( 5# ), where W ∈ (<# . Lemma 2.6 leads us to conclude that

∑
:

'# ∗
:

(
d` 50 ,..., 5#−1

(
·, 2−:

))
(G)X2−: (C) dG

2This is necessary because 1# depends on :. If it did not, the proof of this endpoint could be completed by arguing as in

formula (54) directly with 1# instead of 1♭
#

.
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is also a Carleson measure. This, via formula (16), yields������
∑

:≡ℓ (mod 3) ,:>:0

∫ (
%
D#
:

◦ ) i#

1
♯
#

)
( 5# ) d` 50 ,..., 5#−1

(
G, 2−:

)������
=

������
∑

:≡ℓ (mod 3) ,:>:0

∫ (
%
D#
:

◦ ) i#
W

)
( 5# )'# ∗

:

(
d` 50 ,..., 5#−1

(
·, 2−:

))
dG

������
.

) i#
W ( 5# )


ℎ1

#−1∏
9=0

 5 9bmo
.

#−1∏
9=0

 5 9bmo
‖ 5# ‖ℎ1 .

7.2.2. h1 × bmo × · · · × bmo → h1

Here we take < 9 = −(= − 1)/2, for 9 = 0, . . . , # , 50 ∈ bmo, 51 ∈ ℎ1 and 5 9 ∈ bmo, 9 = 2, . . . , # .

Using formula (49), from Lemma 7.1 we have

BD?
:

%D 9

:
)
i 9

1 9

(
5 9
)
!∞
.

 5 9bmo
, 9 = 2, . . . , #.

We now take

� (G) = j0(2�) ( 50) (G), E
(
2−: , G

)
=

∞∏
9=2

%
D 9

:
◦ ) i 9

1 9

(
5 9
)
, and

� (G) =
(
&
D1

:
◦ ) i1

11

)
( 51) =

(
&
D1

:
◦ ) i1

11
◦ j0(2�)

)
( 51),

and thereafter apply Proposition 2.7, Theorem 3.1 and definition (11) to the right-hand side of equa-

tion (52) to obtain

BD?
‖ 50 ‖bmo=1

������
∑

:≡ℓ (mod 3) ,:>:0

∫
&0
: (j0 (2�) 50)

(
&
D1

:
◦ ) i1

11

)
(j0 (2�) 51)

#∏
9=2

(
%
D 9

:
◦ ) i 9

1 9

) (
5 9
)

dG

������
. ‖j0 (2�) 51‖� 1

#∏
9=2

 5 9bmo
. ‖ 51‖ℎ1

#∏
9=2

 5 9bmo
,

where we have also used formula (10) in dealing with ‖j0 (2�) 51‖� 1 .

7.2.3. R2 × R2 × bmo × · · · × bmo → h1

We choose <1 = <2 = 0, 51, 52 ∈ !2, < 9 = − =−1
2

for 9 = 0 and 9 = 3, . . . # and 50 ∈ bmo. Starting

once again with equation (52), we have, for all ‖ 50‖bmo = 1,������
∑

:≡ℓ (mod 3) ,:>:0

∫
&0
: (j0 (2�) 50)

(
&
D1

:
◦ ) i1

11

)
( 51)

#∏
9=2

(
%
D 9

:
◦ ) i 9

1 9

) (
5 9
)

dG

������
.

(∫ ∑
:>:0

���&D1

:
◦ ) i1

11
( 51)

���2 dG

)1/2

©«
∑

:≡ℓ (mod 3) ,:>:0

∫ ���%D2

:
◦ ) i2

12
( 52)

���2 ��&0
: (j0 (2�) 50)

��2 #∏
9=3

���%D 9

:
◦ ) i 9

1 9

(
5 9
) ���2 dG

ª®¬
1/2

.

(55)
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Since 5 9 ∈ bmo for 9 = 0, 3, . . . , # , we can argue as we did for definition (53) to conclude that

∑
:>:0

��&0
: (j0(2�) 50)

��2 #∏
9=3

���%D 9

:
◦ ) i 9

1 9

(
5 9
) ���2 dGX2−: (C)

defines a Carleson measure, with Carleson norm bounded by ‖ 50‖2
bmo

∏
9=3,...,#

 5 92

bmo
. The !2-

boundedness of FIOs from Theorem 3.1, together with a quadratic estimate (17) in the first factor and a

nontangential maximal function estimate (15) in the second, yields that formula (55) is bounded by

‖ 51‖!2 × ‖ 52‖!2

#∏
9=3

 5 9bmo
.

We would also like to note that when # = 2, the functions 5 9 , with 9 = 3, . . . , # , do not appear in these

estimates.

7.2.4. bmo × R2 × R2 × bmo × · · · × bmo → h1

We choose <2 = <3 = 0, 52, 53 ∈ !2, < 9 = − =−1
2

for 9 = 0, 1, 4, . . . #, and 50, 51 are both in bmo.

Continuing from equation (52), we have, for all ‖ 50‖bmo = 1,

������
∑

:≡ℓ (mod 3) ,:>:0

∫
&0
: (j0(2�) 50)

(
&
D1

:
◦ ) i1

11

)
( 51)

#∏
9=2

(
%
D 9

:
◦ ) i 9

1 9

) (
5 9
)

dG

������
.

(∫ ∑
:>:0

���%D3

:
)
i3

13
( 53)

���2 ���&D1

:
◦ ) i1

11
( 51)

���2 dG

)1/2

× ©«
∑

:≡ℓ (mod 3) ,:>:0

∫ ���%D2

:
◦ ) i2

12
( 52)

���2 ��&0
: (j0 (2�) 50)

��2 #∏
9=4

���%D 9

:
◦ ) i 9

1 9

(
5 9
) ���2 dG

ª®¬
1/2

.

Since 5 9 ∈ bmo for 9 = 0 and 9 = 4, . . . , # , arguing once again as we did for definition (53), we see that

∑
:>:0

��&0
: (j0(2�) 50)

��2 #∏
9=4

���%D 9

:
◦ ) i 9

1 9

(
5 9
) ���2 dGX2−: (C)

is a Carleson measure, with Carleson norm bounded by ‖ 50‖2
bmo

∏#
9=4

 5 92

bmo
, and similarly,

∑
:>:0

���&D1

:
◦ ) i1

11
( 51)

���2 dGX2−: (C)

defines a Carleson measure, with Carleson norm bounded by ‖ 51‖2
bmo. The !2-boundedness of FIOs

(Theorem 3.1) and the nontangential maximal function estimate (15) yield that the right-hand side of

the previous inequality is bounded by

‖ 52‖!2 × ‖ 53‖!2

#∏
9=4

 5 9bmo
.

https://doi.org/10.1017/fms.2021.13 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.13


Forum of Mathematics, Sigma 33

7.3. Boundedness with the target space bmo

Here the only case to consider is the bmo × · · · × bmo → bmo boundedness of the operator in

definition (46). In this case we take < 9 = −(= − 1)/2, 9 = 0, . . . # , 50 ∈ ℎ1 and 5 9 ∈ bmo for

9 = 1, . . . , # . Using definition (46) and duality, pairing against 50, we must bound

BD?
‖ 50 ‖ℎ1=1

������
∑

:≡ℓ (mod 3) ,:>:0

∫
&0
: (j0(2�) 50) (G)

(
&
D1

:
◦ ) i1

11

)
( 5 ) (G)

#∏
9=2

(
%
D 9

:
◦ ) i 9

1 9

) (
5 9
)

dG

������ . (56)

To bound this further, we apply Proposition 2.7. We take � (G) = j0(2�) 50(G), � (G) = ) i1

11
( 51) (G)

and E
(
2−: , G

)
=

∏#
9=2

(
%
D 9

:
◦ ) i 9

1 9

) (
5 9
)
(G). Clearly ‖�‖� 1 . ‖ 50‖ℎ1 = 1, and definition (11) and

Theorem 3.1 yield that ‖�‖BMO . ‖ 51‖bmo. Applying formula (49), from Lemma 7.1 we have

E (
2−: , C

)
!∞
:,G

6

#∏
9=2

%D 9

:
◦ ) i 9

1 9

(
5 9
)
(G)


!∞
:,G

.

#∏
9=2

 5 9bmo
.

It follows that formula (56) is bounded by
∏#
9=1

 5 9bmo
, as required.

8. Boundedness results for Z�

2 j,k

Our analysis of )Φ
f 9,:

begins very similarly to that of )Φ
f 9

in Section 7. Just as in that case, the symmetry

of the operators under permutations of the frequency variables allows us to restrict our attention to just

one of the f9 ,: , the argument for all the others being identical. We choose to study f1,2, so |b1 | and |b2 |
are comparable to each other. More precisely, we know that

2123 |Ξ|2 6 |b1 |2 and 2123 |Ξ|2 6 |b2 |2 , so 2123 |b1 |2 6 |b2 |2 6
1

2123

|b1 |2

on the Ξ-support of f1,2(G,Ξ), with the constants 21 and 23 being the same as in Section 6. We choose

an integer :1 so that 2−:1 6 2123 and define Ẑ: via

Ẑ: (b)2 := o
(
2−:−:1−2b

)2

− o
(
23+:1−:b

)2

,

so that when k: (b1) ≠ 0 and f1(G,Ξ) ≠ 0,

2−:1−2
6 2123

��2−:b1

�� 6 ��2−:b2

�� 6 1

2123

��2−:b1

�� 6 2:1+2,

which implies Ẑ: (b2) = 1.

With the same choice of k: , \: and j0 as in Section 7, we can argue as we did there to write )Φ
f1,2

as

)Φ
f1,2

( 51, . . . , 5# ) (G)

=

∫
R=#

∑
:>:0

k: (b1)2 Ẑ: (b2)2f1,2(G,Ξ)j0(b1) 5̂1(b1)×

j0(b2) 5̂2(b2)
#∏
9=3

\:
(
b 9

)2
5̂ 9

(
b 9

)
48G · ( b1+···+b# )+8Φ(Ξ) dΞ

(57)

and then define

a(:, G,Ξ) = f1,2

(
G, 2:Ξ

)
k1 (b1)k1(b2)

#∏
9=2

\1

(
b 9

) (
2−:

|b1 |

)<−<2
(
2−:

|b2 |

)<2

,

where once again
∑#
9=1 < 9 = <, so that using definition (42), equation (57) can be rewritten as
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∑
:>:0

∫
R=#

a

(
:, G, 2−:Ξ

)
2:<0 \̂: (b1 + · · · + b# )

��2−:b1

��<−<2−<1
k: (b1)×

|b1 |<1 j0(b1) 5̂1 (b1) Ẑ: (b2) |b2 |<2 j0(b2) 5̂2(b2)
#∏
9=3

2:< 9 \:
(
b 9

)2
5̂ 9

(
b 9

)
48Φ(G,Ξ) dΞ.

(58)

Just as in Section 7, the Fourier inversion formula yields

a(:, G,Ξ) =
∫

m(:, G,*)(
1 + |* |2

)" 48Ξ·* d*, * = (D1, . . . , D# ),

for a smooth bounded function m.

So formula (58) can be written as a weighted average in* = (D1, . . . , D# ) of

∞∑
:=:0

m(:, G,*)
∫

2:<0\: (b1 + · · · + b# )
[��2−:b1

��<−<1−<2
k: (b1)482

−: b1 ·D1 |b1 |<1 j0 (b1) 5̂1(b1)
]

[
Ẑ: (b2)482

−: b2 ·D2 |b2 |<2 j0 (b2) 5̂2(b2)
] 

#∏
9=3

2:< 9 \:
(
b 9

)
5̂ 9

(
b 9

)
482

−: b 9 ·D 9


48Φ(G,Ξ) dΞ.

Therefore, we need to prove the boundedness of the operator

� ( 51, . . . , 5# ) (G)

=

∞∑
:=:0

"m ◦ ) i0

30
◦ %0

:


(
&
D1

:
◦ ) i1

31

)
( 51)

(
&
D2

:
◦ ) i2

32

)
( 52)

#∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
)

(G),
(59)

where

�%0
:
( 5 )(b) = \: (b) 5̂ (b), 30(:, b) = 2:<0l: (b),�&D1

:
( 5 )(b) =

��2−:b��<−<1−<2
k: (b)482

−: b ·D1 5̂ (b), 31(b) = |b |<1 j0(b),�&D2

:
( 5 )(b) = k: (b)482

−: b ·D2 5̂ (b), 32(b) = |b |<2 j0(b),�%D 9

:
( 5 )(b) = \: (b)482

−: b ·D 9 5̂ (b), 3 9 (:, b) = 2:< 9l: (b),

for 9 = 3, . . . , #; l: (b) := \: (b/2) is a bump function equal to 1 on the support of \: ; and "m denotes

multiplication by m.3

We now proceed to consider all the necessary endpoint cases. Just as in Section 7, due to the symmetry

of the form of equation (59) in the indices 9 = 1, 2 and 9 = 3, . . . , # , we only need to consider endpoint

cases (?0, . . . , ?# ) which are distinct within the equivalence class of permutations of (?1, ?2) and

(?3, . . . , ?# ). In each case, we fix

1

?0

=

#∑
9=1

1

? 9
, 1 6 ? 9 6 ∞, 9 = 0, . . . , #,

and

< 9 := −(= − 1)
����12 − 1

? 9

���� , 9 = 0, . . . , #,

3The same ambiguity of notation arises here as in equation (45). See footnote 1.
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and consider 5 9 ∈ - ? 9 for 9 = 1, . . . , # . Using duality in equation (59), it is enough to estimate

∑
:>:0

∫
%0
: ◦ )

−i0

30
("m 50)


(
&
D1

:
◦ ) i1

31

)
( 51)

(
&
D2

:
◦ ) i2

32

)
( 52)

#∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
)

dG, (60)

for 50 ∈ - ?′0 with ‖ 50‖- ?′
0
= 1.

Comparing this analysis with that of )Φ
f 9

, observe that what was &0
:

(a multiplier supported on an

annulus) in equation (45) has been replaced by %0
:

(a multiplier supported on a ball) in equation (59).

This means that our technique to remove the dependency of "m on : will no longer be directly

applicable. In the case where ?0 = 1 and ?0 = ∞, the :-dependency is not problematic, and methods

already introduced in Section 7 can be successfully applied again here. In the case where ?0 = 2, this

dependency is more problematic. The possibility of replacing
(
%D
:
◦ ) i

3

)
( 5 ) with %D

:
◦ ': ◦ ) iW ( 5 ) as

in Lemma 7.1 is not available to us, since <0 = 0, and therefore this method does not allow us to use

formula (17) to estimate the 50 term. We present an alternative approach which can successfully deal

with this :-dependency in this case in Section 8.1.

8.1. The endpoint cases with target space R2

We write

%0
: =

:∑
ℓ=:0+1

&ℓ + %0
:0
,

where �&ℓ ( 5 )(b) = (\ℓ (b) − \ℓ−1 (b)) 5̂ (b), and so formula (60) is the sum of

∑
:>:0

∫
%0
:0
◦ )−i0

30
("m 50)


(
&
D1

:
◦ ) i1

31

)
( 51)

(
&
D2

:
◦ ) i2

32

)
( 52)

#∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
)

dG

.

( ∑
:>:0

∫ ���%0
:0
◦ )−i0

30
("m 50)

(
&
D2

:
◦ ) i2

32

)
( 52)

���2 dG

)1/2

×
©«
∑
:>:0

∫ ������
(
&
D1

:
◦ ) i1

31

)
( 51)

#∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
) ������

2

dG
ª®®¬

1/2

(61)

and

∞∑
:=:0

:∑
ℓ=:0

∫
&ℓ ◦ )−i0

30
("m 50)


(
&
D1

:
◦ ) i1

31

)
( 51)

(
&
D1

:
◦ ) i2

32

)
( 52)

#∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
)

dG

=

∞∑
ℓ=:0

∞∑
:=ℓ

∫
&ℓ ◦ )−i0

30
("m 50)


(
&
D1

:
◦ ) i1

31

)
( 51)

(
&
D1

:
◦ ) i2

32

)
( 52)

#∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
)

dG

=

∞∑
ℓ=:0

∞∑
:=0

∫
&ℓ ◦ )−i0

30
("m 50)


(
&
D1

ℓ+: ◦ )
i1

31

)
( 51)

(
&
D1

ℓ+: ◦ )
i2

32

)
( 52)

#∏
9=3

(
%
D 9

ℓ+: ◦ )
i 9

3 9

) (
5 9
)

dG,

where we remind the reader that now in the last expression 30 and "m depend on ℓ + : , and we have

taken <0 = 0. Given the frequency support properties on &ℓ ◦ )−i0

30
, we can redefine 30 ≡ 1 without

changing the operator and so make it independent of : + ℓ. Equally, the composition &ℓ ◦ )−i0

30
◦ "m

can be replaced by a finite sum of operators of the form &ℓ ◦ )−i0

30
◦ ": , where ": depends only on :
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(and G and*), in the same way as we obtained definition (46). Thus our task is to bound

∞∑
ℓ=:0

∫
&ℓ ◦ )−i0

30
(": 50)

(
&
D1

:+ℓ ◦ )
i1

31

)
( 51)

(
&
D1

:+ℓ ◦ )
i2

32

)
( 52)

#∏
9=3

(
%
D 9

:+ℓ ◦ )
i 9

3 9

) (
5 9
)

dG

.

(∑
ℓ>:0

∫ ���&ℓ ◦ )−i0

30
(": 50)

���2 dG

)1/2

×
©«
∑
ℓ>:0

∫ ������
(
&
D1

:+ℓ ◦ )
i1

31

)
( 51)

(
&
D1

:+ℓ ◦ )
i2

32

)
( 52)

#∏
9=3

(
%
D 9

:+ℓ ◦ )
i 9

3 9

) (
5 9
) ������

2

dG
ª®®¬

1/2

. ‖ 50‖!2

©«
∑
ℓ>:0

∫ ������
(
&
D1

:+ℓ ◦ )
i1

31

)
( 51)

(
&
D1

:+ℓ ◦ )
i2

32

)
( 52)

#∏
9=3

(
%
D 9

:+ℓ ◦ )
i 9

3 9

) (
5 9
) ������

2

dG
ª®®¬

1/2

(62)

(where we made use of formula (17)) so that it is summable in :; plus we must, of course, bound

formula (61).

We begin by further estimating the first factor on the right-hand side of formula (61). In each endpoint

case that follows we will have ?2 = ∞, so that

∑
:>:0

���(&D2

:
◦ ) i2

32

)
( 52) (G)

���2 dGX2−: (C) (63)

is always a Carleson measure, with Carleson norm bounded by ‖ 52‖bmo. Observe also that Lemma 2.3

yields (
%0
:0
◦ )−i0

30
◦ "m

)
( 50) =

(
%0
:0
◦ )−i0

30
◦ %0

: ◦ "m

)
( 50) =  ∗

((
%0
: ◦ "m

)
( 50)

)
for : > :0, with | (·) | . 〈·〉−=−Y .

Therefore, using Minkowski’s integral inequality and estimate (14), the first factor on the right-hand

side of formula (61) can be controlled using the nontangential maximal function as

‖ 52‖bmo

∫
| (I) |

(∫
BD?

:>:0 , |H−G |.2−:

��%0
: ("m 50) (H − I)

��2 dG

)1/2

dI.

However, since %: is convolution with a Schwartz function scaled by a factor 2−: and "m is uniformly

bounded, we have

BD?
:>:0 , |H−G |.2−:

��%0
: ("m 50) (H − I)

�� . | (" 50) (G − I) |,

where " is the Hardy–Littlewood maximal function. Thus we have the estimate

( ∑
:>:0

∫ ���%0
:0
◦ )−i0

30
("m 50)

(
&
D2

:
◦ ) i2

32

)
( 52)

���2 dG

)1/2

. ‖ 50‖!2 ‖ 52‖bmo (64)

for the first factor in formula (61).

We will see that to estimate formula (62) uniformly in : is a similar task to what was done in Section 7.

We must, however, also obtain summability in : . The content of the next lemma is the observation that

there is some decay in the size of the Carleson norms that appear.
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Lemma 8.1. If = > 2 and 5 ∈ bmo, then for 9 = 1, 2,

d`: (G, C) =
∞∑
:′=0

���(&D 9

:+:′ ◦ )
i 9

3 9

)
( 5 ) (G)

���2 X2−:′ (C) dG

is a Carleson measure, with Carleson norm 2−:/2 ‖ 5 ‖2
bmo.

Proof. For definiteness, take 9 = 1. Since we can write &
D1

:+ℓ ◦ )
i1

31
= &

D1

:+ℓ ◦ )
i1

31
◦ &̃:+ℓ , where &̃:+ℓ

maps bmo into !∞ uniformly in : + ℓ, as a first step we consider 5 ∈ !∞.

The operator&
D1

:+ℓ ◦)
i1

31
is just the (: +ℓ)th component of the Seeger–Sogge–Stein decomposition of

the Fourier integral operator)
i1

31
, which we saw in Section 3.2.1. This in turn is split into$

(
2(:+ℓ) (=−1)/2)

separate operators) a
:+ℓ

(
a = 1, 2, . . . , 22(:+ℓ) (=−1)/2) with kernels a

:+ℓ (G, H) which, as can be seen from

formula (26), satisfy

��� a9 (G, H)��� 6 22 9 {1 + 2 9
���(G + ∇i1

(
ba9

)
− H

)
1

��� + 2 9/2
���(G + ∇i1

(
ba9

)
− H

) ′���}− , (65)

for any  > 0 and all 9 > 0. Here we have chosen a coordinate system where G1 is parallel to ba9 (which

was also defined in Section 3.2.1), and G ′ denotes the vector of remaining coordinates. For a given ball

� ⊂ R= with centre G0 and radius A 6 1, we write 6a9 = 5 jℛa
9

and ℎa9 = 5 j(ℛa
9 )2 , with ℛ

a
9 being a

rectangle with side length 2A parallel to ∇i1

(
ba9

)
, side length 2A1/2 in the remaining directions and

centre G0 + ∇i1

(
ba9

)
. Clearly, then, 5 = 6a9 + ℎa9 and

(
&
D1

9 ◦ ) i1

31

)
( 5 ) =

∑
a

) a9 ( 5 ) =
∑
a

) a9

(
6a9

)
+

∑
a

) a9

(
ℎa9

)
.

Since ) a9 are multipliers whose !2-norms are bounded by 2− 9 (=−1)/2 and whose symbols have almost

disjoint support – that is, with finitely many overlaps – we have

∫
�

�����
∑
a

) a9

(
6a9

)
(G)

�����
2

dG 6

∫ �����
∑
a

) a9

(
6a9

)
(G)

�����
2

dG .
∑
a

∫ ���) a9 (
6a9

)
(G)

���2 dG

.

∑
a

2− 9 (=−1)
∫ ���6a9 (G)���2 dG .

∑
a

2− 9 (=−1)
∫
ℛ

a
9

| 5 (G) |2 dG

.

∑
a

2− 9 (=−1)
���ℛa

9

��� ‖ 5 ‖2
!∞ . 2− 9 (=−1)/2A−(=−1)/2 |� | ‖ 5 ‖2

!∞ .

Using formula (65), we also have���) a9 (
ℎa9

)
(G)

���
6

∫
(
ℛ

a
9

)2 22 9 51(H){
1 + 2 9

���(G + ∇i1

(
ba9

)
− H

)
1

��� + 2 9/2
���(G + ∇i1

(
ba9

)
− H

) ′���}=+1
dH

6 2− 9 (=−1)/2
∫

(
ℛ

a
9

)2 22 9 (=+1)/2 51(H){
1 + 2 9

���(G + ∇i1

(
ba9

)
− H

)
1

��� + 2 9/2
���(G + ∇i1

(
ba9

)
− H

) ′���}=+1
dH

6 2− 9 (=−1)/2 ‖ 51‖!∞

∫
(
ℛ

a
9

)2 22 9 (=+1)/2{
1 + 2 9

���(G + ∇i1

(
ba9

)
− H

)
1

��� + 2 9/2
���(G + ∇i1

(
ba9

)
− H

) ′���}=+1
dH.
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For G ∈ � and H ∈
(
ℛ
a
9

)2
, we must have either

2 9
���(G + ∇i1

(
ba9

)
− H

)
1

��� > 2 9A or 2 9/2
���(G + ∇i1

(
ba9

)
− H

) ′��� > 2 9/2A1/2. (66)

Moreover, for those 9 such that 2− 9 6 A , we have 2 9A > 2 9/2A1/2. Thus, for all such 9 , formula (66) yields

1 + 2 9
���(G + ∇i1

(
ba9

)
− H

)
1

��� + 2 9/2
���(G + ∇i1

(
ba9

)
− H

) ′���
>

1

2

(
2 9/2A1/2 + 2 9

���(G + ∇i1

(
ba9

)
− H

)
1

��� + 2 9/2
���(G + ∇i1

(
ba9

)
− H

) ′���) .
Therefore,

∫
(
ℛ

a
9

)2 22 9 (=+1)/2{
1 + 2 9

���(G + ∇i1

(
ba9

)
− H

)
1

��� + 2 9/2
���(G + ∇i1

(
ba9

)
− H

) ′���}=+1
dH

.

∫
(
ℛ

a
9

)2 22 9 (=+1)/2{
2 9/2A1/2 + 2 9

���(G + ∇i1

(
ba9

)
− H

)
1

��� + 2 9/2
���(G + ∇i1

(
ba9

)
− H

) ′���}=+1
dH

.

∫
22 9 (=+1)/2{

2 9/2A1/2 + 2 9 |H1 | + 2 9/2 |H′ |
}=+1

dH

6

∫
22 9=/2{

2 9/2A1/2 + 2 9/2 |H |
}=+1

dH

6

∫
22− 9/2{

A1/2 + |H |
}=+1

3H 6
2− 9/2

A1/2

∫
2A1/2{

A1/2 + |H |
}=+1

dH .
2− 9/2

A1/2 .

We conclude that for G ∈ � and 9 such that 2− 9 6 A ,

���) a9 (
ℎa9

)
(G)

��� . 2− 9 (=−1)/2 2− 9/2

A1/2 ‖ 5 ‖!∞ .

Combining these estimates enables us to estimate

∫
�×[0,A ]

| d`: (G, C) | =
∑

2−ℓ6A

∫
�

���(&D1

:+ℓ ◦ )
i1

31
◦ &̃:+ℓ

)
( 5 )

���2 dG

.

∑
2−ℓ6A

(
2−: (=−1)/22−ℓ (=−1)/2A−(=−1)/2 + 2−:/22−ℓ/2A−1/2

)
|� |

&̃:+ℓ ( 5 )2

!∞

.

(
2−: (=−1)/2 + 2−:/2

)
|� | ‖ 5 ‖2

bmo

. 2−:/2 |� | ‖ 5 ‖2
bmo ,

(67)

for : > 0 and = > 2.

Now if the radius A of � is larger than 1, then we cover � by balls � 9 of radius 1
2
, observing that

there are $ (A=) such balls
{
� 9

}
needed for this covering. Furthermore, we observe that for A > 1,
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equation (67) yields∫
�×[0,A ]

| d`: (G, C) | =
∫
�×[0,1]

| d`: (G, C) | 6
∑
$ (A=)

∫
� 9×[0,1]

| d`: (G, C) |

.

∑
$ (A=)

2−:/22−= ‖ 5 ‖2
bmo . 2−:/2 |� | ‖ 5 ‖2

bmo .

Thus, we have proved that 3`: (G, ℓ) is a Carleson measure with norm at most 2−:/2 ‖ 5 ‖2
bmo, provided

= > 2. �

8.1.1. bmo × · · · × bmo × R2 → R2

Here we take = > 2, < 9 = −(= − 1)/2, 5 9 ∈ bmo for 9 = 1, . . . , # − 1, <# = 0 and 5# ∈ !2.

Lemma 7.1 shows us that

BD?
:>:0

(%D 9

:
◦ ) i 9

3 9

) (
5 9
)
!∞
.

 5 9bmo
for 9 = 3, . . . , # whenever ? 9 = ∞. (68)

Using formulas (68) and (15) and Theorem 3.1, we can estimate

©«
∑
:>:0

∫ ������
(
&
D1

:
◦ ) i1

31

)
( 51)

#∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
) ������

2

dG
ª®®¬

1/2

. ‖ 51‖bmo

#−1∏
9=3

 5 9bmo
‖ 5# ‖!2 ,

and combining this with formula (64) bounds formula (61), as required.

To bound formula (62), we see from Lemma 8.1 and formula (68) that

∑
:>:0

������
(
&
D1

:+ℓ ◦ )
i1

31

)
( 51)

(
&
D2

:+ℓ ◦ )
i2

32

)
( 52)

#−1∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
) ������

2

dGX2−: (C)

is a Carleson measure, with norm 2:/2
∏#−1
9=2

 5 92

bmo
. Therefore, again by formula (15) and Theorem 3.1,

we see that formula (62) is bounded by 2:/4 ‖ 50‖!2

∏#−1
9=1

 5 9bmo
‖ 5# ‖!2 , which again is sufficient for

our purposes.

8.1.2. R2 × bmo × · · · × bmo → R2

Here we take <1 = 0, 51 ∈ !2, < 9 = −(= − 1)/2 and 5 9 ∈ bmo for 9 = 2, . . . , # .

Using formulas (68) and (17) and Theorem 3.1, we can estimate

©«
∑
:>:0

∫ ������
(
&
D1

:
◦ ) i1

31

)
( 51)

#∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
) ������

2

dG
ª®®¬

1/2

. ‖ 50‖!2 ‖ 51‖!2

#∏
9=3

 5 9bmo
,

and combining this with formula (64) bounds formula (61), as required.

To bound formula (62), we see from Lemma 8.1 and formula (68) that

∑
:>:0

������
(
&
D2

:+ℓ ◦ )
i2

32

)
( 52)

#∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
) ������

2

dGX2−: (C)
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is a Carleson measure, with norm 2:/2
∏#
9=2

 5 92

bmo
. Therefore, by formula (15) and Theorem 3.1, we

see that formula (62) is bounded by 2:/4 ‖ 50‖!2 ‖ 51‖!2

∏#
9=2

 5 9bmo
, which is sufficient to conclude

the proof of this endpoint case.

8.2. The endpoint cases with target space h1

The operator "m (which we recall depends on :) can be viewed as a pseudodifferential operator, and

therefore (see [11]),

‖"m ( 50)‖bmo .

∑
|U |.1

‖mUm‖!∞ ‖ 50‖bmo . ‖ 50‖bmo ,

with implicit constants independent of : . Thus Lemma 7.1 yields

BD?
:>:0

%0
: ◦ )

−i0

30
("m 50)


!∞
. ‖ 50‖bmo . 1. (69)

Moreover, as a scholium to Lemma 7.1, we have

BD?
:>:0

(&D 9

:
◦ ) i 9

3 9

) (
5 9
)
!∞
.

 5 9bmo
for 9 = 1, 2 when ? 9 = ∞. (70)

8.2.1. bmo × · · · × bmo × h1 → h1

Here we take < 9 = −(= − 1)/2 for 9 = 0, . . . , # , 5 9 ∈ bmo for 9 = 0, . . . , # − 1 and 5# ∈ ℎ1.

By formulas (68) and (69), we see that

d`(G, C) :=
∑
:>:0

%0
: ◦ )

−i0

30
("m 50)

×

(
&
D1

:
◦ ) i1

31

)
( 51)

(
&
D1

:
◦ ) i2

32

)
( 52)

#−1∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
)

dGX2−: (C)

defines a Carleson measure, with Carleson norm bounded by

‖ 50‖bmo

∏
9≠ 90

 5 9bmo
‖ 51‖bmo ‖ 52‖bmo .

So formula (60) becomes

∑
:>:0

∫
%
D#
:
)
i#

3#
( 5# ) (G) d`

(
G, 2−:

)
,

and arguing as in Section 7.2.1, it follows that�����
∑
:>:0

∫
%
D#
:

◦ ) i#

3#
( 5# ) (G) d`

(
G, 2−:

)����� .
#−1∏
9=0

 5 9bmo
‖ 5# ‖ℎ1 .

8.2.2. h1 × bmo × · · · × bmo → h1

Here we take < 9 = −(= − 1)/2 for 9 = 0, . . . , # , 50 ∈ bmo, 51 ∈ ℎ1 and 5 9 ∈ bmo for 9 = 2, . . . , #.

Using estimates (68) and (69) again together with Proposition 2.7, Theorem 3.1 and definition (11),

we can estimate formula (60) by
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‖ 50‖bmo

#∏
9=3

 5 9bmo

) i1

31
( 51)


� 1

) i2

32
( 52)


BMO

6 ‖ 50‖bmo

#∏
9=3

 5 9bmo
‖ 51‖ℎ1 ‖ 52‖bmo .

8.2.3. R2 × R2 × bmo × · · · × bmo → h1

We choose <1 = <2 = 0, 51, 52 ∈ !2, < 9 = − =−1
2

and 5 9 ∈ bmo for 9 = 3, . . . # .

Once again, estimates (68) and (69) and Theorem 3.1, this time together with formula (17), mean we

can estimate formula (60) by

∑
:>:0

∫ ���(&D1

:
◦ ) i1

31

)
( 51)

(
&
D2

:
◦ ) i2

32

)
( 52)

��� dG

#∏
9=3

 5 9bmo

.

( ∑
:>:0

∫ ���(&D1

:
◦ ) i1

31

)
( 51)

���2 dG

)1/2 ( ∑
:>:0

∫ ���(&D2

:
◦ ) i2

32

)
( 52)

���2 dG

)1/2 #∏
9=3

 5 9bmo

. ‖ 51‖!2 ‖ 52‖!2

#∏
9=3

 5 9bmo
,

where we have also used the Cauchy–Schwarz inequality and quadratic estimates.

8.2.4. bmo × bmo × · · · × bmo × R2 × R2 → h1

We choose < 9 = − =−1
2

and 5 9 ∈ bmo for 9 = 1, . . . , # − 2, and < 9 = 0, 5 9 ∈ !2 for 9 = #, # − 1.

Via estimates (68) and (69),

∑
:>:0

%0
: ◦ )

−i0

30
("m 50)

[(
&
D1

:
◦ ) i1

31

)
( 51)

(
&
D2

:
◦ ) i2

32

)
( 52)

] #−2∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
)
X2−: (C) dG

can be seen to be a Carleson measure. Since 3 9 is independent of : when < 9 = 0 for 9 = # or # − 1,

formula (15) together with Theorem 3.1 can be used to estimate formula (60) by

#−2∏
9=1

 5 9bmo

) i#−1

3#−1
( 5#−1)


!2

) i#

3#
( 5# )


!2
.

#−2∏
9=1

 5 9bmo
‖ 5#−1‖!2 ‖ 5# ‖!2 .

8.2.5. R2 × bmo × bmo × · · · × bmo × R2 → h1

We choose <1 = <# = 0, 51, 5# ∈ !2, < 9 = − =−1
2

and 5 9 ∈ bmo for 9 = 2, . . . , # − 1.

This time we again first apply estimates (68) and (69) to formula (60), but then the Cauchy–Schwarz

inequality, to obtain the estimate

‖ 50‖bmo

#−1∏
9=3

 5 9bmo

( ∑
:>:0

∫ ���(&D2

:
◦ ) i2

32

)
( 52)

(
%
D#
:

◦ ) i#

3#

)
( 5# )

���2 dG

)1/2

×
( ∑
:>:0

∫ ���(&D1

:
◦ ) i1

31

)
( 51)

���2 dG

)1/2

.
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Thereafter, formulas (15) and (17) and Theorem 3.1 lead us to the bound

‖ 50‖bmo ‖ 51‖!2

#−1∏
9=2

 5 9bmo
‖ 5# ‖!2 .

8.3. The endpoint case with target space bmo

Here we take < 9 = −(= − 1)/2 and 5 9 ∈ bmo for 9 = 1, . . . , # .

Just as we did in the proof of Lemma 7.1, and with the same notation, we write

%0
: ◦ )

−i0

30
= %0

: ◦ )
−i0

3♭
0

+ %0
: ◦ )

−i0

3
♯
0

= %0
: ◦ )

−i0

3♭
0

+
:∑
9=:0

2(:− 9)<0& 9 ◦ )−i0
W

(71)

with the help of equation (51).

To estimate the term arising from the sum in 9 in equation (71), we argue as in Section 8.1 and are

led to the expression

∞∑
:=0

2:<0

∞∑
ℓ=:0

∫
&ℓ ◦ )−i0

W (": 50)
(
&
D1

:+ℓ ◦ )
i1

31

)
( 51)

(
&
D1

:+ℓ ◦ )
i2

32

)
( 52)

#∏
9=3

(
%
D 9

:+ℓ ◦ )
i 9

3 9

) (
5 9
)

dG.

The sum in ℓ can be estimated using formula (68), the fact (from Lemma 8.1) that

∑
ℓ>:0

���(&D1

:+ℓ ◦ )
i1

31

)
( 51) (G)

(
&
D1

:+ℓ ◦ )
i2

32

)
( 52) (G)

��� dGX2−ℓ (C)

is a Carleson measure with Carleson norm of size 2−:/2 ‖ 51‖bmo ‖ 52‖bmo and formula (16). It is then

straightforward to sum in : .

To deal with the first term of the right-hand side of equation (71), we write

%0
: ◦ )

−i0

3♭
0

◦ "m = )
−i0

3♭
0

◦ %0
: ◦ "m

= )
−i0

3♭
0

◦
[
%0
: , "m

]
+ )−i0

3♭
0

◦ "m ◦ %0
: .

A fairly standard calculation shows that the kernel of
[
%0
:
, "m

]
is integrable and of size 2−: . This,

combined with the estimate of the kernel of )
−i0

3♭
0

from Lemma 2.3, shows that

)−i0

3♭
0

◦
[
%0
: , "m

]
( 50)


!1

. 2−: ‖ 50‖!1 . 2−: ‖ 50‖ℎ1 ,

which, together with formulas (68) and (70), proves

∞∑
:=:0

∫
)
−i0

3♭
0

◦
[
%0
: , "m

]
( 50)

(
&
D1

:
◦ ) i1

31

)
( 51)

(
&
D1

:
◦ ) i2

32

)
( 52)

#∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
)

dG

. ‖ 50‖ℎ1

#∏
9=1

 5 9bmo
.
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Finally, the term associated with )
−i0

3♭
0

◦ "m ◦ %0
:

can be dealt with by first writing

∞∑
:=:0

∫
)
−i0

3♭
0

◦ "m ◦ %0
: ( 50)

(
&
D1

:
◦ ) i1

31

)
( 51)

(
&
D1

:
◦ ) i2

32

)
( 52)

#∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
)

dG

=

∞∑
:=:0

∫
"m ◦ %0

: ( 50))
i0

3♭
0

©«
(
&
D1

:
◦ ) i1

31

)
( 51)

(
&
D1

:
◦ ) i2

32

)
( 52)

#∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
)ª®¬

dG.

(72)

The kernel estimate of )
−i0

3♭
0

from Lemma 2.3 shows that since

∑
ℓ>:0

������
(
&
D1

:
◦ ) i1

31

)
( 51)

(
&
D1

:
◦ ) i2

32

)
( 52)

#∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
) ������ dGX2−ℓ (C)

is a Carleson measure, then even

∑
ℓ>:0

������)
i0

3♭
0

©«
(
&
D1

:
◦ ) i1

31

)
( 51)

(
&
D1

:
◦ ) i2

32

)
( 52)

#∏
9=3

(
%
D 9

:
◦ ) i 9

3 9

) (
5 9
)ª®¬

������ dGX2−ℓ (C)

is a Carleson measure. Therefore, applying the uniform bound of m and formula (16) in equation (72)

completes the proof.

9. Boundedness results for Z�

20

For the case of )Φ
f0

given by

)Φ
f0
( 51, . . . , 5# ) (G) =

∫
R=#

f0(G,Ξ)
#∏
9=1

(
5̂ 9

(
b 9

)
48G ·b 9

)
48Φ(Ξ) dΞ,

we use a separation-of-variables technique as follows.

Let & be a closed cube in R=# of side length ! which compactly contains the Ξ-support of f0.

We extend f0(G,Ξ) |Ξ∈& periodically in the Ξ-variables with period ! to f̃0(G,Ξ) ∈ C
∞ (
R
=
G × R=#Ξ

)
.

Set Z ∈ C
∞
2

(
R
=#

)
with supp Z ⊂ & and Z = 1 on the Ξ-support of f0(G,Ξ), so that we have

f0(G,Ξ) = f̃0(G,Ξ)Z (Ξ). We can then find the Fourier series coefficients of f̃(G,Ξ):

0 (G) = �̃f0(G,Ξ)(G,  ) =
1

!=

∫
&
4−8

2c
! Ξ· f̃0(G,Ξ) dΞ

=
1

!=

∫
R=#

4−8
2c
! Ξ· f0(G,Ξ) dΞ,

where Ξ = (b1, . . . , b# ) ∈ R=# ,  = (:1, . . . , :# ) ∈ R=# and Ξ ·  =
∑#
9=1 b 9 · : 9 =

∑#
9=1

∑=
ℓ=1 b

ℓ
9 :
ℓ
9 .

Also observe that using this notation, we have
��: 9 ��2 =

∑=
ℓ=1

(
:ℓ9

)2

. Integration by parts then yields

|mU0 (G) | =
2=,",!���:ℓ9

���2"
����
∫

4−8
2c
! Ξ· m2"

b ℓ9
mUG f0(G,Ξ) dΞ

����
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for all multi-indices U, any " > 0 and some constants 2=,",! . Therefore, the boundedness of the

Ξ-support of f0(G,Ξ) and the fact that |mU0 (G) | . 1 imply

|mU0 (G) | .
©«
1 +

#∑
9=1

��: 9 ��2ª®¬
−"

(73)

for all G ∈ R= and " > 0.

We now choose \ ∈ C
∞
2 (R=) such that 1 =

∏#
9=1 \

(
b 9

)
for Ξ = (b1, . . . , b# ) on the support of Z . We

then even have

1 = \
(
(b1 + · · · + b# )/

√
#

) #∏
9=1

\
(
b 9

)

for Ξ = (b1, . . . , b# ) on the support of Z . Using the Fourier expansion of f̃0(G,Ξ), we can write

)Φ
f0
( 51, . . . , 5# ) (G) =

∑
 ∈Z=#

0 (G)) i0

\ ( ·/√# )
©«
#∏
9=1

)
i 9

\ ◦ g2c: 9
!

(
5 9
)ª®¬

(G),

where gℎ 5 (G) := 5 (G − ℎ).
Since we only need to consider the endpoint cases of Corollary 5.2, the analysis is confined to the

spaces ℎ1, !2 and bmo. Now observe that since \ ∈ C
∞
2 (R=), Lemma 2.3 and formulas (10) and (11)

yield ) i 9

\ ( 5 )

!? . ‖ 5 ‖- ? and

) i0

\ ( ·/√# ) ( 5 )

- ?

. ‖ 5 ‖!?

for ? = 1, 2,∞. Combining these estimates with the translation invariance of the norms and Hölder’s

inequality gives )
i0

\ ( ·/√# )
©«
#∏
9=1

)
i 9

\ ◦ g2c: 9
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for all the endpoint cases of ?0, ?1, . . . , ?# in Corollary 5.2. Finally, the boundedness of )
i0
f0

follows by

applying formula (73) with the inclusions C1
1 · ℎ1 ⊆ ℎ1, !∞ · !2 ⊆ !2 and C

1
1 · bmo ⊆ bmo (see [11]).
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