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The advance of Muller's ratchet in a haploid asexual
population: approximate solutions based on diffusion
theory
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Summary

Asexual populations experiencing random genetic drift can accumulate an increasing number of
deleterious mutations, a process called Muller's ratchet. We present here diffusion approximations
for the rate at which Muller's ratchet advances in asexual haploid populations. The most
important parameter of this process is «0 = N e~ul\ where N is population size, U the genomic
mutation rate and s the selection coefficient. In a very large population, n0 is the equilibrium size
of the mutation-free class. We examined the case n0 > 1 and developed one approximation for
intermediate values of N and s and one for large values of N and s. For intermediate values, the
expected time at which the ratchet advances increases linearly with n0. For large values, the time
increases in a more or less exponential fashion with n0. In addition to n0, s is also an important
determinant of the speed of the ratchet. If N and s are intermediate and n0 is fixed, we find that
increasing s accelerates the ratchet. In contrast, for a given n0, but large N and s, increasing s
slows the ratchet. Except when s is small, results based on our approximations fit well those from
computer simulations.

1. Introduction

The opposing forces of mutation and selection against
deleterious mutations create at equilibrium a dis-
tribution of mutations across genomes in a population.
If mutation rate is high and selection is weak, the
number of mutation-free genomes can be small. Thus,
random genetic drift in a finite population can lead to
the loss of the zero (mutation-free) class. In the
absence of back mutations and recombination, the
loss is irreversible. As a result, asexual populations
experiencing drift can accumulate an increasing
number of deleterious mutations (Muller, 1964), a
process often referred to as Muller's ratchet (Felsen-
stein, 1974). When the ratchet operates, sexual
reproduction is advantageous because it makes up for
the absence (or rarity) of back mutations by recreating
mutation-free genomes through recombination be-
tween mutation-loaded genomes (Maynard Smith,
1978).

Although Muller's ratchet provides an appealing
explanation for the evolution of sex, its action is not
completely understood. No analytical solution for the
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advance of the ratchet is currently known. Haigh
(1978) derived an analytical approximation for one
phase of the ratchet, but resorted to Monte Carlo
simulations to obtain a more complete solution. More
recently, Charlesworth, Morgan and Charlesworth
(1992), examined the ratchet and the effects of
recombination on it in diploid populations, but they
also relied on simulations.

Here we present the derivation of an approximate
solution by the use of diffusion equations (Ewens,
1979; chapter 4). Our solution, which is for an asexual
haploid population, gives a reasonably good fit to
simulated results and provides a more mechanistic
description of the advance of the ratchet than the
previous simulation approaches.

2. Haigh's model

We start with Haigh's (1978) model for the expected
distribution of deleterious mutations across genomes
in a haploid asexual population. It is assumed that
organisms experience selection and then replicate.
Mutations occur during replication and are Poisson
distributed with a mean U (the genomic mutation
rate). The deleterious effect of the mutations is
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assumed to be multiplicative across loci, i.e. the fitness
of a genome with / mutations is (1 —s)' and 0 < s < 1.
Thus, if Xk{t) is the number of individuals with k
mutations at generation t, the frequency of genomes
with k mutations after selection and mutation is

= 2*^(0(1--!
1-0 ~UJ'W' (1)

where

- • * ) ' •

W/N is mean fitness and TV is population size.
At equilibrium, the vector X(0 = (X0(t), X^t),...)

equals the stationary distribution n = (n0, nls...), such
that

-sy-'^-, * = 0,1,2, .
i-o

The sole solution of this system of equations is
(Kimura & Maruyama, 1966; Haigh, 1978)

nk = Ne-e6k/k\, (2)

where 8 = U/s. Because at equilibrium Xo = Np0, the
equilibrium mean fitness is e'u (see equation 1).

Haigh (1978) identified the equilibrium size of the
zero-class n0 = Ne~e as the most important single
parameter of his model. As stated above, it is the loss
of the zero-class in a finite population that starts
Muller's ratchet. Once this class is lost, the one-class
becomes the fittest class and its new (deterministic)
equilibrium size is also n0. However, the one-class may
also be lost. If this occurs, the two-class becomes the
fittest class and the process is repeated. Thus, there are
in Haigh's model two phases to the advance of the
ratchet. Haigh's Theorem 1 describes the essential
part of this process as follows. In the first phase,
immediately after the loss of the fittest class, the next
fittest class is reduced from nr to a value close to n0. In
the second phase, after reaching a value close to «0,
the fittest class goes extinct. During the latter phase a
complex rearrangement of the other classes takes
place, such that at the end of the period the class
means are close to n0 i^ \.

Eventually, the number of generations required to
complete Phases 1 and 2 approaches an equilibrium
value, which we denote as T. The inverse of T is the
rate of the ratchet. It is noteworthy that classes with
few mutations (e.g. Xo, Xlt X2,...) may be extinct at
this equilibrium, but the parameters n0 and n1 still
govern the dynamics of Phases 1 and 2. Thus, in
considering a single advance of the ratchet it is
sometimes convenient to represent the recently lost
fittest class, the new fittest class, the next fittest class,
. . . as Xo, Xx, X2,..., respectively. On other occasions,
it is better to represent the new fittest class as Xo. The
first approach is taken in Section (i) immediately
below and the latter in Section (ii).

3. Diffusion approximations of Muller's ratchet

(i) no> 1; N and s intermediate

Phase 1. Haigh's (1978) Theorem 1 describes the
stochastic process X(t) after the loss of Xo at time t =
0. At this time, the mean of the other classes, Xt where
; '^ 1, is close to «j. From Theorem 1, we have

y(t)
(3)

where y(t) = (1 -s)1, X+(0) = (Xr(0), X2(0),...) and n+

= (nvn2,...). As t-±co the trajectory approaches «0,
although very slowly at the end. The slowing down
occurs, when y reaches d'1, or equivalently, when Xx

reaches approximately l-6n0. For the purpose of
generating a diffusion approximation of the ratchet, it
is natural to divide the diffusion domain of Xx into the
intervals (l-6«0,«i) and (0,16«0), which correspond to
Phases 1 and 2, respectively.

To obtain the infinitesimal drift and diffusion
operators (Ewens, 1979; chapter 4) for Phase 1, we
compute the expected change in Xl from generation t
to t +1 by taking the time derivative of the right-hand
side of equation (3). Because the right-hand side of
equation (3) can be approximated by n1 y(t) in Phase
1, we obtain

E{X1(t+ l ) - ^ ( -si,

l-6«0 < i < nv (4 a)

Furthermore, because of / <§ N,

X1(t)\X1(t) = il*si, i<nv (4b)

Introducing y = i/N, Xt can be rescaled to give,
respectively, the drift and diffusion operators

a(y) x—sy, 1 6e'0 <y < 8e~e,

jf, y<0e-e.

(5 a)

(5 b)

With these operators, the diffusion approximation
(Ewens, 1979) estimates the expected time to complete
Phase 1 as

.
(6)

Phase 2. The requirement that s and N are intermediate
ensures that the two parameters are large, but not too
large. The above Phase 1 analysis requires that s and
TV are sufficiently large such that the process Xx is
dominated by selection during Phase 1 and the Phase
2 interval (0, l-6»0) is absorbing. The latter condition
allows the two phases to be analyzed separately
because once X1 becomes less than l-6«0 the process is
trapped in Phase 2.

On the other hand, if 5 and ./V are not too large,
Phase 2 is dominated by genetic drift. Hence, a(y) =
0, and b(y) is given by equation (5 b). Then, the
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sojourn time in phase 2 is obtained in the diffusion
approximation as

T2 « 3-2Ne-e, (7)

and the expected total time to loss of the fittest class
is

^2 (8)

(ii) no> 1; N and s large

If s is large, the time that the next fittest class spends
in Phase 1 (after the loss of the fittest class) is likely to
be short relative to that spent in Phase 2. If, in addition,
TV is large, the next fittest class also spends a long time
close to the deterministic equilibrium n0 and the latter
is seen by the process as a reflecting barrier during
Phase 2. Thus, T is determined primarily by the time
required for the process to complete Phase 2, which is
now more correctly the interval (0, n0), and the next
fittest class is more conveniently defined as Xo.

From equation (1), the expected change of the Xo

process is

E{X0(t+\)-X0(t)\X0(t) = i} = i — - i

= i- (9)

where Aw = e u — w, and w is the value of mean fitness
in generation t.

We derived an approximation for Aw/w by examin-
ing the response of the system to a perturbation by
genetic drift. Assuming that the system is at equi-
librium and that the perturbation is small, linear
response theory (e.g. Risken, 1984; chapter 7) suggests
the approximation

(10)

where y = i/N is the frequency of the zero-class, y0 =
nQ/N = e~° is its equilibrium frequency, and C is the
generalized susceptibility of the system. Because TV is
assumed to be large, the perturbation by genetic drift
is likely to be small.

C can be calculated from the properties of the
system at equilibrium. Haigh (1978) has shown that if
the system is close to equilibrium and TV is large, mean
fitness is relatively constant over time and close to its
equilibrium expectation of e~u (see above). This is
because if the zero class ever drifts out of equilibrium
such that its frequency becomes y < y0, the reduction
in mean fitness resulting from this departure from
equilibrium is on the average compensated by an
excess in mean fitness due to other classes. This excess
results because the classes with the fewest mutations
increase disproportionately.

However, whenever the ratchet advances with the
loss of the zero class, such a compensation is no longer
possible. Then, as the system approaches its new
equilibrium, the excess in mean fitness created by the
non-zero classes is also lost. Because mean fitness at
the new equilibrium is (1 — s)e~u, the loss of mean
fitness for each advance of the ratchet is se~u.
Furthermore, because the contribution to mean fitness
by the zero-class and the other classes before the
advance of the ratchet is approximately equal (but of
opposite signs), the reduction in mean fitness at the
time of the loss of the zero class is approximately \s
e'u. Thus, for y = 0, it follows from equation (10) that

C=Awx\se~u (11)

and

where z=yee. Combining equations (9) and (12)
gives the infinitesimal drift operator

a{z) x f.sz(l — z)(l + f(l ~ Z))J 0 < z < l . (13a)

Because the variance of Xr(t) is the same as in case (i)
(see equation 4 b), the diffusion operator in the variable
z is

1 (136)
TV

Thus, the diffusion approximation (Ewens 1979) is

e-fiv)dydz,
Jo Jo

where

flz) = sNe-°z{(\ - i z ) + ±y(l - z + ±z2)}.

(14 a)

4. Simulations of Muller's ratchet

A variety of assumptions were made in deriving our
two analytical approximations of T. For example, in
deciding whether to emphasize genetic drift over
selection, we assumed TV and s to be either large or
intermediate. However, we are unable to define
analytically how large these parameters have to be to
obtain an adequate approximation. To test the
accuracy of our approximations, we carried out
computer simulations of Muller's ratchet and com-
pared our analytical and simulated results.

(i) Computer models

Given TV, U, s and a starting population (see below),
we began a simulation by creating the offspring
population in two steps. First, the expected frequency
in the offspring population was generated deter-
ministically by applying equation (1). Second, genetic
drift was introduced by randomly drawing TV offspring
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from the new offspring frequencies, as described
below. The resulting offspring population was then
treated as the parent population for the next gener-
ation, and the process was repeated. All simulations

800 -i

600 -

T 400 -

200 -

(b)

10 100

1000 -

800 -

600-

r
400 -

200 -

.J*
1 10

"o
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Fig. 1. Speed of Muller's ratchet as a function of n0 for
V ~ 0-35. T is the mean number of generations for one
advance of Muller's ratchet. Parameters for the graphs
are as follows: (a) s = 0025, 6 = 14; (b)s = 005, 6 = 7;
(c) s = 01, 6 — 3-5. Approximations of Tare based on
equation (8) (- ); equations (14) ( ); equation (16)
( ); simulated data (O)- T based on equations (8) and
(16) are drawn for values of 1 < n0 < 100. T based on
equations (14) are only for sufficiently large values of
selection coefficients and population sizes, i.e. n0 larger
than 20-30. Representative simulations are plotted as
mean number of generations ±2 S.E. NO error bars are
presented when they are smaller than the plotted symbol.
The complete set of the simulation results is given in the
Appendix.

were carried for the number of generations required to
observe one hundred advances of the ratchet.

Starting populations consisted of N individuals
generated according to equation (2). Because such a
population is at a deterministic equilibrium, we
allowed the population to experience two advances of
the ratchet before recording the simulation results.
Siinu/ation runs allowing more advances of the ratchet
(before the population reached stochastic equilibrium
and results were recorded) were investigated and
found to give similar results. All simulations were
started with a different random seed.

The programs were written in C and run on a
Macintosh SE/30. The random draw of the offspring
population was accomplished by applying the multi-
nomial pseudorandom number of generator of Dev-
roye (1986). The program for the Devroye generator
was written and kindly provided by J. Gillespie.

(ii) Simulation results

Our simulation results and the expected values based
on our approximations (equations 8 and 14) are
jointly presented in Figs. 1 and 2. We fixed values of
U at 0-35 and 1-4 and s ranged from 0-025 to 0-2. N
ranged from 30 to 108. Note that our results are

800-,
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T 400 -

200 -

(a)

10 100

2500 -i

2000 -

1500 -

1000 -

(b)

Fig. 2. Speed of Muller's ratchet as a function of n0 for
Z/= 1-4. J i s the mean number of generations for one
advance of Muller's ratchet. Parameters for the graphs
are as follows: (a) s = 0-1, 6 = 14; (b) s = 0-2, 0=7.
See Fig. 1 for more details.
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presented for T plotted against «0 and that «0 is varied
by varying TV.

All figures (except Fig. la) show that our in-
termediate TV and s approximation (equation 8) agrees
well with the simulations for 1 < n0 < 10. When s is
small, the agreement is good for values of n0 as large
as 30 (see Figs. 1 a and 1 b). However, there is a large
discrepancy in the low n0 range, when s becomes too
small (Fig. 1 a). As expected, the approximation based
on equations (14) does not agree well with simulations
when TV and/or s are too small (Figs. 1 c, 2 a and 2b),
even if n0 is large (see Fig. 1 c). However, as both TV
and 5 increase, equations (14) fit the simulations
better. In Fig. 2 b, theoretical results and simulations
agree remarkably well.

5. Comparison with Haigh's estimate of T

For comparison, the parameter values used in our
simulations were partly chosen to match those in
Haigh's (1978) study. Haigh (1978) used separate
approaches to obtain estimates of the rate of the
ratchet. First, he derived analytically an estimate for
the time required to complete Phase 1 as

In d
ln(l-s)" (15)

Equation (15) is similar to our diffusion approxi-
mation for intermediate values of s (equation 6),
because of In (1 —s) x —s. It is noteworthy that our
diffusion approximation leads to a smaller estimate of
Tx than Haigh's result. This is because the diffusion
approximation includes random genetic drift, whereas
Haigh's description of Phase 1 is purely deterministic.
However, for all of the parameter values that we
examined (see Figs. 1 and 2), the values of ^generated
by combining equations (15) and (7) are indistinguish-
able from those by combining equations (6) and (7)
(results not presented), because of 6 >̂ 1.

Haigh did not attempt to derive an analytical
solution for T2 and, hence, T. Instead, he simulated
the ratchet for 1 < n0 < 14 for a variety of U, s and TV
values, then fitted a multiple regression to the results
and obtained the expression

T = 4TV e-° +1 In d + 2s~x - 20. (16)

A comparison of values based on equation (16)
(Figs. 1 and 2) shows that the latter equation matches
very closely our equation (8). Both equations are good
approximations of our simulated results when s and TV
are intermediate, but fail when the two parameters are
large. The failure is not surprising considering that
Haigh simulated the ratchet for only small n0 values.
Thus, for large values ot s and TV, equations (14) are
the only expressions that give a reasonably good
estimate of T.

6. Discussion

Previous studies have failed to produce an analytical
solution for the speed of Muller's ratchet (Haigh,
1978; Pamilo, Nei & Li, 1987; Charlesworth et al.
1992). We present in this report two diffusion
approximations for the advance rate of Muller's
ratchet in a haploid asexual population. The approx-
imations are for «0 > 1 and two ranges of s and TV
values (intermediate and large). Except when s is
small, estimates of T based on these analytical results
fit well our simulation results of the ratchet. They also
fit well the simulation results of Haigh (1978).
Although other studies also conducted simulations,
we were unable to compare their results with ours.
Pamilo et al. (1987) examined the accumulation of
mutations for individuals and not populations.
Charlesworth et al.'s (1992) model was for diploid
populations with and without recombination.

Although it is a desirable goal, we have not
attempted in this study to obtain an analytical solution
with recombination and diploidy. Instead, we have
focused on Haigh's model, which divides the operation
of the ratchet into two phases. If s is sufficiently
strong, the two phases emerge because the boundary
between them (n0, or l-6w0, depending on the
approximation used) is absorbing. As a result, once
Phase 2 is entered, the process cannot return to Phase
1. The reason why our approximations fail when s is
small is because genetic drift can return the process to
Phase 1 (and vice-versa) and the two phases are
blurred. The latter is demonstrated in Fig. 1 a, where
s is small; the theoretical and simulation results
disagree in the linear n0 range («0 < 10). In contrast,
the fit is much better when s is larger in Fig. 1 c. If s
is so small such that «0 < 1, T is overestimated even
more by equation (8) (results not presented). It would
be desirable to find solutions for the ratchet for very
small values of s.

The two-phase dynamics of the advance of Muller's
ratchet shows that T is mainly characterized by the
two parameters n0 and s. As shown by our approx-
imations, equation (8) and equations (14), n0 is the
most important parameter, as Haigh (1978) proposed,
but Tis additionally modulated by the value of s. The
third parameter, 6 = U/s, is less important because it
appears only logarithmically in equation (8) and is not
present in equations (14).

The parameter n0 governs the stochastic loss of the
fittest class through genetic drift. On the other hand,
s tends to stabilize the system at the stationary
distribution given by equation (2). As a result, the
importance of drift and selection varies depending on
the phase and on whether TV and s are intermediate or
large. When TV and s are intermediate, the dynamics of
Phase 1 is essentially deterministic and driven by
selection, while that of Phase 2 is dominated by drift.
On the other hand, when s and TV are large, selection
dominates both phases. However, the strength of

https://doi.org/10.1017/S0016672300031384 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300031384


W. Stephan, L. Chao and J. G. Smale 230

selection drives the system quickly through Phase 1
and most of the time is spent in Phase 2. Drift still
operates during Phase 2, but its role is primarly one of
perturbing the system away from equilibrium and
triggering the loss of the fittest class. Selection is
counteracting drift by driving the fittest class back to
the deterministic equilibrium value n0.

It is noteworthy that, for a given value of n0,
increasing s can both speed up or slow down the
ratchet. This results from the varying importance of
genetic drift and selection in Phases 1 and 2. If N and
^ are intermediate and n0 is fixed, stronger selection
accelerates the ratchet because Phase 1 is completed
sooner (equation 6). In contrast, with large N and s
and a given value of «0, the ratchet is slowed because
Phase 2 is prolonged by the increased selection (see
equation 13 a). As equations (14) suggest, the slowing
down occurs more or less exponentially with increasing
values of s. This dramatic effect is illustrated by the
much greater value of T for n0 between 50 and 70
when s is increased between Figs. 2a and 2 b.

We thank A. Kondrashov and two reviewers for helpful
comments; T. Wiehe for help with computer simulations;
and J. Gillespie for providing software. This work was sup-
ported in part by NIGMS Grants GM46233 (WS) and

GM41005 (LC) and funds from the Computer Science
Center, University of Maryland, College Park.
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Appendix

Complete data set of estimates for f a s a function of N, s and U. Values from simulations are mean + s.E.

Estimates of T based on

U Equation (16) Equation (8) Equations (14) Simulations

1000
1203
3000
5000

10000
20000
30000
40000
50000
60000
70000
90000

1
2
5

10
15
20
30
40
50
60
70
80
90

100

0033
01

0025

005

0 1

0-35

0-35

0-35

14

7

3-5

0-8
10
2-5
4-2
8-3

16-6
250
33-3
41-6
49-9
58-2
74-8

0-9
1-8
4-6
91

13-7
18-2
27-4
36-5
45-6
54-7
63-8
73-0
821
91-2

10
1-5

81-8
82-5
88-5
951

111-7
1450
178-3
211-5
244-8
2780
311-3
377-8

37-3
40-9
51-9
70-1
88-3

106-6
1431
179-5
2160
252-5
2890
325-4
361-9
398-4

12-8
14-8

89-4
900
94-7

1001
113-4
140-0
166-6
193-2
219-8
246-4
273-0
326-2

32-4
35-4
441
58-7
73-3
87-9

1171
146-2
175-4
204-6
233-8
2630
2921
321-3

110
12-7

49-8 ±2-5
54-7 ±3-2
68-6 + 4-3
81-6 + 5-3

101 -4 ±6-2
161-0±13-4
175-3 + 111
202-6 ±14-9
266-3 + 21-1
282-0 + 20-7
303-9 ± 2 4 0
368-5 ±26-2

19-5 + 1-4
28-2 ±1-9
40-4 ±2-4
63-2 + 4-9
68-9 + 5-2
85-0 ±6-6

128-8 ±10-7
177-9 + 11-4
214-9+17-2
251-9 ±20-6
314-5 ±22-6
427-0 ±32-8
470-8 + 41-0
624-9 + 51-7

10-5±l-0
120+11
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Appendix (cont.)

231

Estimates of T based on

iVxlCT U Equation (16) Equation (8) Equations (14) Simulations

015
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
10
11
1-2
1-3
1-4
1-5
20

1000
2000
5000

10000
20000
30000
40000
50000
60000
70000
80000
90000

1
2
5
10
15
20
25
30
33
35
40
50
60

01 1-4 14

0-2 1-4

30
60
91

12-1
151
181
211
24-2
27-2
30-2
33-2
36-2
39-3
42-3
45-3
60-4

0-8
1-7
4-2
8-3

16-6
25-0
33-3
41-6
49-9
58-2
66-5
74-8

0-9
1-8
4-6
91

13-7
18-2
22-8
27-4
29-6
31-9
36-5
45-6
54-7

20-9
32-9
45-0
57-1
69-2
81-2
93-3

105-4
117-5
129-6
141-6
153-7
165-8
177-9
190-0
250-4

21-8
25-1
35-1
51-7
85-0

118-3
151-5
184-8
2180
251-3
284-6
317-8

7-3
10-9
21-9
401
58-3
76-6
94-8

1131
122-2
131-3
149-5
I860
222-5

17-5
27-2
36-8
46-5
561
65-8
75-5
851
94-8

104-5
1141
123-8
133-5
1431
152-8
2011

24-4
270
35-0
48-3
74-9

101-5
1281
154-7
181-3
2080
234-6
261-2

10-3
13-2
22-0
36-6
51-2
65-7
80-3
94-9

102-2
109-5
1241
153-3
182-5

100-6
117-5
136-4
157-6
181-2
207-8
4000

75-1
117-8
175-5
254-7
364-5
518-5
736-3

163-9
200-2
244-3
363-5
810-3

1843-6

211 ± 2 1
33-8 ±2-7
43-2 + 3-7
66-8 ± 5 0
69-6 ±5-8
86-9 + 7-5

107-7 ±8-6
133-0 ±10-4
143-5 + 12-7
162-2+17-3
207-8 ±15-8
253-6 + 21-8
241-4±21-1
309-4 + 26-6
364-7 ±33-3
809-3 + 68-5

20-2 ±1-3
25-8 + 1-6
32-9 ±2-1
46-8 + 3-2
77-9 + 5-6

l l l -0±8-9
160-5 ±15-4
233-5 + 17-9
281-7 + 24-8
340-7 ±30-6
455-6 + 35-2
596-5 ±62-9

8-7 + 0-6
13-9 + 1-1
201 ±1-6
39-7 + 2-6
65-7 + 5-5
79-7 + 6-3

140-7 ±13-2
2171 ±21-0
266-5 ±23-1
300-5 + 25-6
433-7 + 38-5
917-4 + 78-3

19100± 196-3
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