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Gelfand–Naimark theorems for ordered
∗-algebras
Matthias Schötz
Abstract. The classical Gelfand–Naimark theorems provide important insight into the structure of
general and of commutative C∗-algebras. It is shown that these can be generalized to certain ordered
∗-algebras. More precisely, for σ-bounded closed ordered ∗-algebras, a faithful representation as
operators is constructed. Similarly, for commutative such algebras, a faithful representation as
complex-valued functions is constructed if an additional necessary regularity condition is fulfilled.
These results generalize the Gelfand–Naimark representation theorems to classes of ∗-algebras
larger than C∗-algebras, and which especially contain ∗-algebras of unbounded operators. The key
to these representation theorems is a new result for Archimedean ordered vector spaces V: If V is
σ-bounded, then the order of V is induced by the extremal positive linear functionals on V.

1 Introduction

A ∗-algebra is a unital associative algebra A over the field of complex numbers that is
endowed with an antilinear involution ⋅ ∗ of A fulfilling (ab)∗ = b∗a∗ for all a, b ∈ A.
Note that ∗-algebras are always assumed to have a unit which is denoted by 1. A C∗-
algebra is a ∗-algebra that is complete with respect to a norm ∥ ⋅ ∥ on A that fulfils
∥ab∥ ≤ ∥a∥∥b∥ for all a, b ∈ A and ∥a∗a∥ = ∥a∥2 for all a ∈ A.

The Gelfand–Naimark representation theorems [6, Theorem 1 and Lemma 1]
are cornerstones of the theory of C∗-algebras and—together with the well-behaved
spectral theory—make C∗-algebras important tools in mathematical physics. In their
simplest form, these two theorems state that all C∗-algebras have a faithful represen-
tation as ∗-algebras of bounded operators on a Hilbert space, and that all commutative
C∗-algebras have a faithful representation as ∗-algebras of bounded complex-valued
functions. This allows to interpret C∗-algebras as algebras of observables of physical
systems: of quantum systems in general, and in the commutative case of classical
systems. From this point of view, the perplexing differences between the description of
quantum systems by means of operators on a Hilbert space, and of classical systems by
functions on a smooth manifold, are just artifacts of the choice of two different ways to
represent the observable algebras. Consequently, the problem of quantization, i.e., of
finding a somehow suitable quantum system to a given classical one, can be formulated
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Gelfand–Naimark theorems for ordered ∗-algebras 1273

in a mathematically precise way, e.g., as finding deformations of commutative C∗-
algebras to noncommutative ones in the sense of [10].

However, the restriction of the Gelfand–Naimark theorems to C∗-algebras is
unfortunate. While there obviously exist many interesting examples of ∗-algebras of
functions or operators that are not C∗-algebras, and for which an abstract descrip-
tion might be desirable, the main motivation for generalizing the Gelfand–Naimark
theorems might again come from physics: It is well known that some of the most
basic ∗-algebras of observables that a (physics-)student gets to know in a course on
quantum mechanics are far away from being C∗-algebras: IfA is a complex associative
algebra with unit 1 and P, Q ∈ A fulfil the canonical commutation relation [P, Q] ∶=
PQ − QP = λ1 with λ ∈C/{0}, then the n-fold commutator of P with Qn fulfils the
identity [P, [P, . . . [P, Qn] . . . ]] = n!λn1 for all n ∈N. Consequently, there cannot
exist a nontrivial submultiplicative seminorm ∥ ⋅ ∥ on A, because submultiplicativity
would imply at most exponential growth with n of ∥[P, [P, . . . [P, Qn] . . . ]]∥. This
rules out any possibility to embed A in a C∗-algebra, and also in many weaker types
of topological ∗-algebras like pro-C∗-algebras, for which one can prove rather direct
generalizations of the Gelfand–Naimark theorems. Note that faithful representations
of ∗-algebras of canonical commutation relations are well known and can be given,
e.g., by differential operators. The problem is not to find faithful representations, but
to find a sufficiently large class of ∗-algebras for which the existence of such faithful
representations can be proved by general arguments.

This note gives a solution by focusing not so much on topological properties, but
on order properties of ∗-algebras. This is motivated by [5], where it was shown that
a suitable order on the Hermitian elements of a ∗-algebra A allows to construct a
C∗-seminorm on the “bounded” elements of A, and by [13], where the continuous
calculus and the spectral theory of C∗-algebras have been extended to certain ordered
∗-algebras. In Section 2, some basic definitions and results, mainly from locally
convex analysis, are recapitulated. The general idea then is to follow the classical
approach from [8]: Section 3 develops the main result for ordered vector spaces,
namely Theorem 3.7, which guarantees that on σ-bounded Archimedean ordered
vector spaces, there exist many (extremal) positive linear functionals, and which
considerably generalizes the result from [8]. Here, an ordered vector space is called
“σ-bounded” essentially if it contains an increasing sequence of positive elements that
eventually becomes greater than every fixed element. Theorem 4.9 shows that every
σ-bounded closed ordered ∗-algebra can be represented faithfully as operators on a
(pre-) Hilbert space, and Theorem 4.24 shows that in the commutative case, such
algebras also admit a faithful representation as functions if an additional regularity
condition (which is clearly necessary) is fulfilled.

2 Preliminaries

The natural numbers are N ∶= {1, 2, 3, . . . } and N0 ∶=N ∪ {0}, and the fields of real
and complex numbers are denoted by R and C, respectively. If X and Y are partially
ordered sets (i.e., sets together with a reflexive, transitive, and antisymmetric relation
≤), then a map Φ∶X → Y is called increasing if Φ(x) ≤ Φ(x′) holds for all x , x′ ∈ X
with x ≤ x′. It is called an order embedding if it is increasing and if additionally x ≤
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x′ holds for all x , x′ ∈ X for which Φ(x) ≤ Φ(x′). Note that an order embedding is
injective. A partially ordered set X is called directed if, for all x , x′ ∈ X, there exists a y ∈
X such that x ≤ y and x′ ≤ y. Similarly, a subset S of a partially ordered set X is called
directed if it is directed with respect to the order inherited from X. For two vector
spaces V and W over the same field of scalars F, the vector space of all linear maps
from V to W is denoted by L(V , W). In the special case that W = F, we write V∗ ∶=
L(V ,F), the elements of V∗ are called linear functionals on V, and the evaluation of
a linear functional ω ∈ V∗ on a vector v ∈ V is denoted by means of the bilinear dual
pairing ⟨ ⋅ , ⋅ ⟩∶V∗ × V → F, (ω, v) ↦ ⟨ω , v ⟩.

The main technical tools needed in the following are some basic theorems from
locally convex analysis. A filter on a set X is a nonempty set F of subsets of X with the
following two properties:
• If S , T ∈ F, then S ∩ T ∈ F.
• If S ∈ F and if a subset T of X fulfils T ⊇ S, then T ∈ F.
Similarly, a basis of a filter on X is a nonempty set E of subsets of X such that for all
S , T ∈ E, there exists an R ∈ E with R ⊆ S ∩ T . In this case,

⟨⟨E ⟩⟩fltr ∶= {T ⊆ X ∣ ∃S∈E ∶ S ⊆ T }(2.1)

is a filter on X, called the filter generated by E. A (real) topological vector space is a
real vector space V endowed with a (not necessarily Hausdorff) topology under which
addition V × V → V as well as scalar multiplicationR × V → V are continuous. Then
it follows from the continuity of addition that a subset U of V is a neighborhood of
a vector v ∈ V if and only if U − v ∶= {u − v ∣ u ∈ U } is a neighborhood of 0, so the
topology of V is completely described by the 0-neighborhoods. The set N0 of all 0-
neighborhoods of V is a filter on V, andN0,conv, the set of all convex 0-neighborhoods
of V, is a basis of a filter on V. In general, ⟨⟨N0,conv ⟩⟩fltr ⊆ N0 holds, and V is called
a (real) locally convex vector space if even ⟨⟨N0,conv ⟩⟩fltr = N0, i.e., if the filter of 0-
neighborhoods of V is generated by the convex 0-neighborhoods. A locally convex
topology on V is a topology with which V becomes a locally convex vector space.

There is an easy procedure to construct locally convex topologies on a real vector
space V : A subset S of V is called absorbing if, for every v ∈ V , there is a λ ∈ ]0,∞[
such that λv ∈ S, and it is called balanced if λs ∈ S for all s ∈ S and all λ ∈ [−1, 1]. If
N0,abc is a basis of a filter on V consisting of only absorbing balanced convex subsets
of V, then its generated filter ⟨⟨N0,abc ⟩⟩fltr is the filter of 0-neighborhoods of a locally
convex topology on V. Note that every absorbing balanced convex subset S of V yields
a seminorm ∥ ⋅ ∥S on V by setting ∥v∥S ∶= inf { λ ∈ ]0,∞[ ∣ λ−1v ∈ S } for all v ∈ V ,
which is the Minkowski functional of S. Conversely, for every seminorm ∥ ⋅ ∥ on V, the
unit ball B∥ ⋅ ∥ ∶= { v ∈ V ∣ ∥v∥ ≤ 1} is an absorbing balanced convex subset of V whose
Minkowski functional is again the original seminorm ∥ ⋅ ∥. However, the map from
absorbing balanced convex subsets of V to seminorms on V is only surjective, but not
injective in general. Because of this, there is more freedom in describing locally convex
vector spaces via a basis of the filter of 0-neighborhoods than via the corresponding
seminorms.

An important example of Hausdorff locally convex vector spaces is the dual
space V∗ of an arbitrary real vector space V with the weak-∗-topology, i.e., with the
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weakest topology on V∗ under which all the evaluation maps V∗ ∋ ω ↦ ⟨ω , v ⟩ ∈R
with vectors v ∈ V are continuous. This is the locally convex topology whose filter
of 0-neighborhoods is generated by the intersections of unit balls of finitely many
seminorms of the form V∗ ∋ ω ↦ ∣⟨ω , v ⟩∣ ∈ [0,∞[ with v ∈ V .

The following classical theorems will be crucial for the various representation
theorems. As usual, for such results, their proofs typically make use of the axiom of
choice.

Theorem 2.1 (Hahn–Banach) Let V be a (real) locally convex vector space, let C be a
closed and convex subset of V, and let v ∈ V/C. Then there exists a continuous linear
functional ω on V such that the inequality ⟨ω , c ⟩ ≥ 1 + ⟨ω , v ⟩ holds for all c ∈ C.

Theorem 2.2 (Banach–Alaoglu) Let V be a real vector space, and let U be an absorbing
subset of V, then

U○ ∶= {ω ∈ V∗ ∣ ∀u∈U ∶ ∣⟨ω , u ⟩∣ ≤ 1}(2.2)

is a convex subset of V∗ and compact in the weak-∗-topology.

If C is a convex subset of a real vector space V, then an extreme point of C is an
element e ∈ C with the following property: Whenever e = λc1 + (1 − λ)c2 holds for
some c1 , c2 ∈ C and λ ∈ ]0, 1[, then e = c1 = c2. The set of all extreme points of C will
be denoted by ex(C). Moreover, if V is a locally convex vector space and S a nonempty
subset of V, then ⟨⟨ S ⟩⟩cl-conv will denote the closed convex hull of S, i.e., the closure of
the convex hull of S, or equivalently, the intersection of all closed convex subsets of
V which contain S. In the special case that V is a real vector space and S a nonempty
subset of V∗, then ⟨⟨ S ⟩⟩cl-conv is understood to be the closed convex hull of S with
respect to the weak-∗-topology and

⟨⟨ S ⟩⟩cl-conv = {ω ∈ V∗ ∣ ∀v∈V ∶ ⟨ω , v ⟩ ∈ ⟨⟨ { ⟨ ρ , v ⟩ ∣ ρ ∈ S } ⟩⟩cl-conv }(2.3)

holds. This can be seen either by elementary linear algebra or as a consequence of the
Hahn–Banach Theorem and the fact that all weak-∗-continuous linear functionals on
V∗ can be expressed as maps V∗ ∋ ω ↦ ⟨ω , v ⟩ ∈R with a suitable vector v ∈ V .

Theorem 2.3 (Krein–Milman) Let V be a real vector space, and let K be a weak-∗-
compact and convex subset of V∗, then K = ⟨⟨ ex(K) ⟩⟩cl-conv.

The tools needed to prove the generalized Gelfand–Naimark theorems are essen-
tially results about the existence of many (extremal) positive linear functionals on
ordered vector spaces.

An ordered vector space is a real vector space V endowed with a partial order ≤ such
that the conditions

u + v ≤ u +w and λv ≤ λw(2.4)

hold for all u, v , w ∈ V with v ≤ w and all λ ∈ [0,∞[. Then V+ ∶= { v ∈ V ∣ 0 ≤ v } is
the set of positive elements of V, which uniquely determines the order on V because
v ≤ w is equivalent to w − v ∈ V+ for all v , w ∈ V . An ordered vector space V is
called Archimedean if it has the following property: Whenever v ≤ εw holds for two
vectors v ∈ V , w ∈ V+, and all ε ∈ ]0,∞[, then v ≤ 0. Note also that an ordered vector
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space V is directed if and only if every v ∈ V can be decomposed as v = v(+) − v(−)
with v(+) , v(−) ∈ V+. Of course, such a decomposition is not uniquely determined in
general.

If V and W are ordered vector spaces, then a linear map Φ∶V →W is increasing if
and only if Φ(v) ∈W+ for all v ∈ V+. We write L(V , W)+ for the set of all increasing
linear maps from V to W. If V is directed, then there actually exists a (unique)
partial order onL(V , W) such thatL(V , W) becomes an ordered vector space whose
positive elements are precisely the increasing linear functions. However, for simplicity,
a linear map Φ∶V →W will always be called positive if it is increasing, also in the case
that V is not necessarily directed. Note that a positive linear map Φ∶V →W is an
order embedding if and only if Φ(v) ∈W/W+ for all v ∈ V/V+. The case that W =R
will be especially interesting: Then the set of positive linear functionals is denoted by

V∗,+ ∶= L(V ,R)+ = {ω ∈ V∗ ∣ ∀v∈V+ ∶ ⟨ω , v ⟩ ≥ 0}.(2.5)

If V is directed, then V∗ is an ordered vector space itself and a positive linear
functional ω on V is said to be extremal if, for every ρ ∈ V∗,+ with ρ ≤ ω, there is an
μ ∈ [0, 1] such that ρ = μω. The set of all extremal positive linear functionals on V will
then be denoted by V∗,+,ex, and one can check that 0 ∈ V∗,+,ex and λω ∈ V∗,+,ex for
all ω ∈ V∗,+,ex and all λ ∈ ]0,∞[. Note that this definition of extremal positive linear
functionals only makes sense on a directed ordered vector space V because it refers to
the partial order on V∗. There is an extension theorem for (extremal) positive linear
functionals from a sufficiently large linear subspace of a directed ordered vector space
to the whole space (see [12, Lemma 1.3.2] for details)

Theorem 2.4 (Extension theorem) Let V be a directed ordered vector space, and let
S be a linear subspace of V with the property that for every v ∈ V, there exists an s ∈ S
such that 0 ≤ s and v ≤ s. Then S with the order inherited from V is a directed ordered
vector space, and for every ω̃ ∈ S∗,+, there exists an ω ∈ V∗,+ that extends ω̃, i.e., that
fulfils ⟨ω , s ⟩ = ⟨ ω̃ , s ⟩ for all s ∈ S. Moreover, in the case that ω̃ ∈ S∗,+,ex, there even
exists ω ∈ V∗,+,ex that extends ω̃.

The question of existence of many (extremal) positive linear functionals is nontriv-
ial in general. More precisely, one asks whether or not the following two properties are
fulfilled.

Definition 2.1 Let V be an ordered vector space, then we say that the order on V is
induced by its positive linear functionals if, for all v ∈ V/V+, there is an ω ∈ V∗,+ such
that ⟨ω , v ⟩ < 0.

Definition 2.2 Let V be a directed ordered vector space, then we say that the order
on V is induced by its extremal positive linear functionals if, for all v ∈ V/V+, there is
an ω ∈ V∗,+,ex such that ⟨ω , v ⟩ < 0.

These two conditions are equivalent to demanding that, for every v ∈ V , the
inequality 0 ≤ v holds if and only if 0 ≤ ⟨ω , v ⟩ for all ω ∈ V∗,+ or for all ω ∈ V∗,+,ex,
respectively.

We will see shortly that the above conditions of existence of “many” (extremal)
positive linear functionals are closely related to the properties of certain locally convex
topologies: Given two elements � and u of an ordered vector space V, then the order
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interval between � and u is defined as [�, u] ∶= { v ∈ V ∣ � ≤ v ≤ u }. Moreover, a subset
S of V is called saturated if [�, u] ⊆ S is fulfilled for all �, u ∈ S with � ≤ u. For example,
every order interval is saturated. It is not hard to see that the intersection of finitely
many (or arbitrarily many) saturated subsets of an ordered vector space V is again
saturated. As a consequence, the set of all absorbing balanced convex and saturated
subsets of V is a basis of the filter of 0-neighborhoods of a locally convex topology.

Definition 2.3 Let V be an ordered vector space, then the normal topology on V is the
locally convex topology whose filter of 0-neighborhoods is generated by the absorbing
balanced convex and saturated subsets of V.

This topology is not unknown in the theory of ordered vector spaces and ∗-
algebras. For example, the normal topology is essentially the topology τn in [12,
Section 1.5].

3 Existence of extremal positive linear functionals

Lemma 3.1 is a standard application of the Hahn–Banach theorem, and a proof is given
for convenience of the reader.

Lemma 3.1 Let V be an ordered vector space, and assume that there is a locally convex
topology τ on V such that V+ is closed with respect to τ. Then, for every v ∈ V/V+, there
exists a positive linear functional ω on V that fulfils ⟨ω , v ⟩ < 0 and that is continuous
with respect to τ.

Proof As V+ is convex and closed with respect to τ, the Hahn-Banach theorem
implies that, for every v ∈ V/V+, there exists a linear functional ω ∈ V∗ that fulfils
⟨ω , c ⟩ ≥ 1 + ⟨ω , v ⟩ for all c ∈ V+ and that is continuous with respect to τ. From
0 ∈ V+, it follows that −1 ≥ ⟨ω , v ⟩. Moreover, ⟨ω , c ⟩ ≥ 0 holds for all c ∈ V+, and
hence ω ∈ V∗,+: Indeed, if there was some c ∈ V+ with ⟨ω , c ⟩ < 0, then ⟨ω , λc ⟩ =
⟨ω , v ⟩ with λ ∶= ⟨ω , v ⟩/⟨ω , c ⟩, which yields a contradiction because λ ∈ ]0,∞[ by
construction, and hence λc ∈ V+. ∎

Proposition 3.2 Let V be an ordered vector space, then the order on V is induced by
its positive linear functionals if and only if V+ is closed in V with respect to the normal
topology.

Proof If V+ is closed in V with respect to the normal topology, then the order on V is
induced by its positive linear functionals as an immediate consequence of Lemma 3.1.
Conversely, assume that the order on V is induced by its positive linear functionals,
and let v ∈ V/V+ be given. Then there exists ω ∈ V∗,+ such that ⟨ω , v ⟩ = −1 and U ∶=
{u ∈ V ∣ ⟨ω , u ⟩ ∈ ]−1, 1[ } is an absorbing balanced convex and saturated subset of
V, so v +U is a neighborhood of v with respect to the normal topology. Moreover,
application of ω shows that (v +U) ∩ V+ = ∅ holds, so V+ is closed. ∎

For finding a sufficient condition under which the order of a directed ordered
vector space is induced by its extremal positive linear functionals, it will be helpful
to be able to decompose a positive linear functional into extremal ones. We follow
essentially the argument of [12, Lemmas 12.4.3 and 12.4.4].
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Proposition 3.3 Let V be a directed ordered vector space, and let U be an absorbing
balanced and directed subset of V. Write K for the set of all those ω ∈ V∗,+ that fulfil
⟨ω , u ⟩ ≤ 1 for all u ∈ U, then K is weak-∗-compact and K = ⟨⟨K ∩ V∗,+,ex ⟩⟩cl-conv.

Proof First, note that K = U○ ∩ V∗,+ with U○ like in (2.2) because U is balanced.
As U○ is convex and weak-∗-compact by the Banach–Alaoglu theorem, and as V∗,+ is
convex and weak-∗-closed in V∗, it follows that K is also convex and weak-∗-compact.
The Krein–Milman theorem then shows that K = ⟨⟨ ex(K) ⟩⟩cl-conv.

In order to complete the proof, it is sufficient to show that ex(K) ⊆ V∗,+,ex. Denote
the linear span of K in V∗ by W. Then the map h∶W → [0,∞[

ω ↦ h(ω) ∶= sup{ ∣⟨ω , u ⟩∣ ∣ u ∈ U }

is a seminorm on W and K = {ω ∈W ∩ V∗,+ ∣ h(ω) ≤ 1}. Moreover, as U is balanced
and directed, h(ω + ω′) ≥ h(ω) + h(ω′), hence h(ω + ω′) = h(ω) + h(ω′), holds for
all ω, ω′ ∈W ∩ V∗,+.

Now, let ω ∈ ex(K) be given. If h(ω) = 0, then ω = 0 because U is absorbing, so ω ∈
V∗,+,ex is trivially fulfilled. Otherwise, h(ω) = 1 because on the one hand, h(ω) ≤ 1 is
clear, and on the other, ω = h(ω)(h(ω)−1ω) + (1 − h(ω))0 is a representation of ω
as a convex combination of the two elements h(ω)−1ω and 0 of K, which excludes
the possibility that h(ω) ∈ ]0, 1[. In this second case that h(ω) = 1, consider some
ρ ∈ V∗,+ that fulfils ρ ≤ ω. Then, for all u ∈ U , there exists v ∈ U ∩ V+ such that
u ≤ v because U is directed, and hence ⟨ ρ , u ⟩ ≤ ⟨ ρ , v ⟩ ≤ ⟨ω , v ⟩ ≤ 1. This means
ρ ∈ K, and the same estimate with ω − ρ in place of ρ shows that ω − ρ ∈ K as well.
If h(ρ) = 0 or h(ω − ρ) = 0, then ρ = μω with μ = 0 or μ = 1, respectively. Otherwise,
ω = h(ρ)(h(ρ)−1ρ) + h(ω − ρ)(h(ω − ρ)−1(ω − ρ)) is a representation of ω as a
nontrivial convex combination of the two elements h(ρ)−1ρ and h(ω − ρ)−1(ω − ρ)
of K; therefore, ρ = μω with μ = h(ρ). We conclude that ω ∈ V∗,+,ex in this case as
well. ∎

Corollary 3.4 Let V be a directed ordered vector space. If there exists a locally convex
topology τ on V whose filter of 0-neighborhoods has a basis consisting of absorbing
balanced convex and saturated as well as directed subsets of V and with respect to which
V+ is closed, then the order on V is induced by its extremal positive linear functionals.

Proof Given v ∈ V/V+, then Lemma 3.1 shows that there exists a positive linear
functional ω on V such that ⟨ω , v ⟩ < 0 and that is continuous with respect to
τ. Continuity of ω implies that there exists an absorbing balanced convex and
saturated as well as directed subset U of V such that ∣⟨ω , u ⟩∣ ≤ 1 for all u ∈ U .
Define the set K ∶= { ρ ∈ V∗,+ ∣ ∀u∈U ∶ ⟨ ρ , u ⟩ ≤ 1} like in Proposition 3.3, then ω ∈
K = ⟨⟨K ∩ V∗,+,ex ⟩⟩cl-conv, and equation (2.3) shows that there necessarily exists a
ρ ∈ K ∩ V∗,+,ex that also fulfils ⟨ ρ , v ⟩ < 0. ∎

There is a rather large class of ordered vector spaces for which the normal topology
cannot only be described explicitly, but also allows to apply Corollary 3.4.

Definition 3.1 An ordered vector space V is said to be σ-bounded if there exists an
increasing sequence (v̂n)n∈N in V+ with the property that, for all v ∈ V , there is an n ∈
N such that −v̂n ≤ v ≤ v̂n holds. Such a sequence will be called a dominating sequence.
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Note that being σ-bounded can be seen as the combination of two properties: First,
it is required that V is directed, and then, additionally, that there exists an increasing
sequence (v̂n)n∈N in V+ which has the property that, for every v ∈ V+, there exists an
n ∈N such that v ≤ v̂n .

Definition 3.2 Let V be a σ-bounded ordered vector space with a dominating
sequence (v̂n)n∈N , and let (δn)n∈N be a sequence in ]0,∞[. Then the subset Uδ of
V is defined as the union of increasing order intervals

Uδ ∶= ⋃
N∈N
[ −∑N

n=1 δn v̂n ,∑N
n=1 δn v̂n] .(3.1)

Of course, Uδ depends not only on the sequence (δn)n∈N , but also on the choice
of the dominating sequence (v̂n)n∈N and of V itself, which will always be clear from
the context.

Proposition 3.5 Let V be a σ-bounded ordered vector space with a dominating
sequence (v̂n)n∈N , and let (δn)n∈N be a sequence in ]0,∞[. Then Uδ is an absorbing
balanced convex and saturated as well as directed subset of V.

Proof Given v ∈ V , then there exists n ∈N such that −v̂n ≤ v ≤ v̂n and therefore
δnv ∈ Uδ . So Uδ is absorbing. Every order interval in V of the form [−w , w] with
w ∈ V+ clearly is balanced, convex, saturated, and directed. As Uδ is the union of
an increasing sequence of such sets, it is balanced, convex, saturated, and directed
itself. ∎

Proposition 3.6 Let V be a σ-bounded ordered vector space, and let (v̂n)n∈N be a
dominating sequence in V. Then the set of all Uδ with (δn)n∈N a sequence in ]0,∞[
is a basis of the filter of 0-neighborhoods of the normal topology on V.

Proof Proposition 3.5 already shows that such a set Uδ is a 0-neighborhood of the
normal topology on V for every sequence (δn)n∈N in ]0,∞[.

Conversely, if S is a 0-neighborhood of the normal topology on V, then there
exists a sequence (δn)n∈N in ]0,∞[ such that Uδ ⊆ S, which can be constructed as
follows: Let S′ be an absorbing balanced convex and saturated subset of V such that
S′ ⊆ S. For every n ∈N, there exists εn ∈ ]0,∞[ such that εn v̂n ∈ S′ because S′ is
absorbing, and we can define δn ∶= 2−n εn ∈ ]0,∞[ for all n ∈N. Then ∑N

n=1 δn v̂n =
∑N

n=1 2−n εn v̂n ∈ S′ for all N ∈N because S′ is balanced and convex. Consequently,
[ −∑N

n=1 δn v̂n ,∑N
n=1 δn v̂n] ⊆ S′ ⊆ S for all N ∈N because S′ is also saturated, so

Uδ ⊆ S. ∎

The above description of the normal topology on a σ-bounded ordered vector space
has essentially already been given in [12, Propositions 4.1.2 and 4.1.3] and has also been
applied indirectly to the decomposition of positive linear functionals into extremal
ones in [12, Theorem 12.4.7]. Even though these results where stated for O∗-algebras
or ∗-algebras, their above generalization to ordered vector spaces does not require any
new techniques. Combining them with a completely order-theoretic characterization
of those σ-bounded ordered vector spaces, whose set of positive elements is closed,
gives our first important result.
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Theorem 3.7 Let V be a σ-bounded ordered vector space, then the following are
equivalent:

(1) V is Archimedean.
(2) V+ is closed in V with respect to the normal topology.
(3) The order on V is induced by its extremal positive linear functionals.
(4) The order on V is induced by its positive linear functionals.

Proof Let (v̂n)n∈N be a dominating sequence of V, which exists by assumption.
First, consider the case that V is Archimedean. In order to prove the implication (1)

%⇒ (2), we have to show that V/V+ is open with respect to the normal topology on
V. Given v ∈ V/V+, then construct recursively a sequence (wn)n∈N0 in V/V+ and a
sequence (δn)n∈N in ]0,∞[ as follows: Set w0 ∶= v. If wn−1 has been defined for some
n ∈N, then choose δn ∈ ]0,∞[ such that −wn−1 ≤ δn v̂n does not hold, i.e., such that
wn−1 + δn v̂n ∈ V/V+, and set wn ∶= wn−1 + δn v̂n . Note that such a δn exists because
wn−1 ∈ V/V+ and because V is Archimedean by assumption. From the construction
of the sequence (δn)n∈N , it follows that v +Uδ ⊆ V/V+: Indeed, for every x ∈ v +Uδ ,
there exists N ∈N such that x ≤ v +∑N

n=1 δn v̂n = wN ∈ V/V+, and hence x ∈ V/V+.
Proposition 3.6 now shows that V/V+ is a neighborhood of v with respect to the
normal topology on V.

The implication (2)%⇒ (3) is just an application of Corollary 3.4 using that all the
subsets Uδ of V with (δn)n∈N a sequence in ]0,∞[ are absorbing balanced convex
and saturated as well as directed by Proposition 3.5 and form a basis of the filter of
0-neighborhoods of the normal topology on the σ-bounded ordered vector space V
by Proposition 3.6.

Finally, the implication (3) %⇒ (4) is trivial, and in order to prove (4) %⇒ (1),
assume that the order on V is induced by its positive linear functionals and let v ∈ V
and w ∈ V+ be given such that v ≤ εw for all ε ∈ ]0,∞[. Then it follows that ⟨ ρ , v ⟩ ≤ 0
holds for all ρ ∈ V∗,+ because R is Archimedean, and therefore v ≤ 0. ∎

One special class of σ-bounded ordered vector spaces are ordered vector spaces
V with a strong order unit e, i.e., an element e ∈ V+ with the property that, for all
v ∈ V , there exists λ ∈ [0,∞[ such that v ≤ λe. In this case, (ne)n∈N is a dominating
sequence, and the existence of positive linear functionals on Archimedean ordered
vector spaces with a strong order unit was already proved in [8, Lemma 2.5]. Theorem
3.7 generalizes this classical result to σ-bounded ordered vector spaces and applies the
decomposition of positive linear functionals into extremal ones from [12, Theorem
12.4.7].

It should be unnecessary to point out that there are many examples of important
σ-bounded ordered vector spaces which do not have a strong order unit. These can be
as ordinary as the space of real-valued polynomial functions on R with the pointwise
order.

Before closing this section, we prove a new representation theorem for ordered
vector spaces. Given any set X, then RX denotes the ordered vector space of all R-
valued functions on X with the pointwise operations and the pointwise order. As a
consequence of Theorem 3.7, we obtain the following corollary.
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Corollary 3.8 Let V be an Archimedean σ-bounded ordered vector space, then the map
π∶V →RV∗,+,ex

, v ↦ π(v) with π(v)∶V∗,+,ex →R,

ω ↦ π(v)(ω) ∶= ⟨ω , v ⟩,(3.2)

is linear and an order embedding.

Proof It is easily checked that π is linear and increasing. Given v ∈ V/V+, then
there exists ω ∈ V∗,+,ex such that ⟨ω , v ⟩ < 0 because the order on V is induced by
its extremal positive linear functionals by Theorem 3.7, so π(v)(ω) < 0, which means
that π(v) ∈RV∗,+,ex/(RV∗,+,ex)+. This shows that π is an order embedding. ∎

If V is a Riesz space, i.e., an ordered vector space in which all finite infima
and suprema exist, then Corollary 3.8 essentially is the representation theorem for
Riesz spaces from [4]: One can show that, in this case, the extremal positive linear
functionals on V are Riesz morphisms, i.e., compatible with finite infima and suprema,
so that the representation π from (3.2) is also a Riesz morphism. We will not discuss
the details here, but rather turn our attention in the next section to the case that V is
an ordered vector space that carries a multiplication.

4 Representation of ordered ∗-algebras

We now come to the main section, which develops the generalized Gelfand–Naimark
theorems for ordered ∗-algebras. The definition of ∗-algebras has already been given
in the introduction. An element a of a ∗-algebra A is called Hermitian if a = a∗ and
the real linear subspace of all Hermitian elements in A is denoted by AH. An ordered
∗-algebra is a ∗-algebra A together with a partial order ≤ on AH such that AH
becomes an ordered vector space fulfilling 0 ≤ 1 and a∗b a ∈ A+H for all a ∈ A, b ∈ A+H.
This ordered vector space of Hermitian elements is automatically directed because
4a = (a + 1)2 − (a − 1)2 and (a ± 1)2 ∈ A+H hold for all a ∈ AH. A unital ∗-subalgebra
B of an ordered ∗-algebra A, i.e., a linear subspace B of A fulfilling 1 ∈ B as well as
b∗ ∈ B and bb′ ∈ B for all b, b′ ∈ B, is again an ordered ∗-algebra with the order on
BH inherited from AH. Ordered ∗-algebras have already been used for understanding
representations of ∗-algebras, e.g., in [9] or [12]. The set of positive Hermitian
elements of an ordered ∗-algebra is an “m-admissible cone” in the language of [12], or
a “quadratic module” in the language of (noncommutative) real algebraic geometry.

An ordered ∗-algebra A is called σ-bounded if the ordered vector space AH
is σ-bounded. Similarly, an ordered ∗-algebra A is said to be closed if AH is an
Archimedean ordered vector space. Note that this is not a topological property but
rather an order property; only for σ-bounded ordered ∗-algebras, it follows from
Theorem 3.7 that A is closed as an ordered ∗-algebra if and only if the quadratic
module A+H is closed in AH with respect to a certain locally convex topology. Note
also that this property is not at all related to the notion of Archimedean quadratic
modules in real algebraic geometry. It is unfortunate that the term “Archimedean” is
being used in several different ways. Because of this, the term “Archimedean” should
be avoided in the context of ordered ∗-algebras. There are some important examples
of ordered ∗-algebras that will be relevant in the following, and these also illustrate
that the notion of ordered ∗-algebras used here is rather minimalistic.
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Example 4.1 For every set X, the spaceCX of all complex-valued functions on X with
the pointwise operations and the pointwise order on the Hermitian (i.e., real-valued)
functions is a commutative, closed, and ordered ∗-algebra.

Example 4.2 If D is a pre-Hilbert space, i.e., a complex vector space endowed with
an inner product ⟨ ⋅ ∣ ⋅ ⟩, antilinear in the first and linear in the second argument,
then we write L∗(D) for the ∗-algebra of all linear endomorphisms a of D that are
adjointable in the algebraic sense, i.e., for which there exists a (necessarily unique)
linear endomorphism a∗ of D such that ⟨ϕ ∣ a(ψ) ⟩ = ⟨ a∗(ϕ) ∣ψ ⟩ holds for all ϕ, ψ ∈
D. An element a of L∗(D) is Hermitian if and only if ⟨ϕ ∣ a(ϕ) ⟩ ∈R for all ϕ ∈D
and L∗(D)H will always be endowed with the usual partial order of operators, i.e.,
given a ∈ L∗(D)H, then a is positive if and only if ⟨ϕ ∣ a(ϕ) ⟩ ≥ 0 for all ϕ ∈D. This
way, L∗(D) becomes a closed ordered ∗-algebra which is not commutative in general.
Unital ∗-subalgebras of L∗(D) are called O∗-algebras (see, e.g., [12]).

Example 4.3 A Φ-algebra is an Archimedean ordered vector space R in which the
supremum r ∨ s ∶= sup{r, s} and the infimum r ∧ s ∶= inf{r, s} of any two elements
r, s ∈ R exist, and that is endowed with a bilinear product that turns R into an
associative, commutative, and unital real algebra with the properties that rs ∈ R+ for
all r, s ∈ R+ and rs = 0 for all r, s ∈ Rwith r ∧ s = 0. With ∣r∣ ∶= r ∨ (−r) ∈ R+, it follows
from the properties of∨ and∧ that (∣r∣ − r) ∧ (∣r∣ + r) = ∣r∣ + ((−r) ∧ r) = ∣r∣ − ∣r∣ = 0,
so ∣r∣2 − r2 = (∣r∣ − r)(∣r∣ + r) = 0, i.e., r2 = ∣r∣2 ≥ 0 for all r ∈ R. The complexification
A ∶= R⊗C of such a Φ-algebra R is therefore a commutative, closed, and ordered ∗-
algebra whose real linear subspace of Hermitian elements is AH ≅ R. For Φ-algebras,
there exists, e.g., a representation theorem by means of functions with values in the
extended real line [−∞,∞] (see [7]). In Theorem 4.24, we will prove a representation
theorem by means of R-valued functions under the additional assumption of σ-
boundedness.

Example 4.4 If A is a C∗-algebra, then its Hermitian elements can be endowed with
a partial order that turns A into a closed ordered ∗-algebra in which the positive
Hermitian elements are precisely those Hermitian ones whose spectrum is a subset
of [0,∞[. This is a well known, but nontrivial result in the theory of C∗-algebras.
Showing, e.g., that the sum of two positive Hermitian elements is again a positive
Hermitian element required some considerable effort in the original proof of the
(noncommutative) representation theorem for C∗-algebras in [6]. Moreover, in a C∗-
algebra A, the unit 1 is a strong order unit of AH, i.e., for every a ∈ AH, there exists a
λ ∈ [0,∞[ such that a ≤ λ1 (see also the discussion under Theorem 3.7).

Example 4.5 Let A be a ∗-algebra, and define the set

A++H ∶= {∑
N
n=1 a∗n an ∣ N ∈N; a1 , . . . , aN ∈ A}

of algebraically positive elements in A. If A++H does not contain a real linear subspace of
AH in addition to the trivial one {0}, then A can be turned into an ordered ∗-algebra
such that A+H = A++H . Otherwise, i.e., if there is a ∈ AH/{0} such that both a and −a
are algebraically positive, there is no possibility to turn A into an ordered ∗-algebra.
So the existence of a suitable order on a ∗-algebra (especially the antisymmetry of the
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order) is a nontrivial condition. We will see that this, together with two or three further
conditions, allows to prove representation theorems similar to, but more general than
those known for C∗-algebras.

Note also that there are many different types of ordered algebras that have been
examined in the last decades. Motivations to do so can be rather divers, e.g., gener-
alizing results for ordered vector spaces (especially Riesz spaces) to ordered algebras,
generalizing results from (commutative) real algebraic geometry to the noncommuta-
tive case, or studying operator algebras by purely algebraic means. Consequently, one
can find conflicting definitions in the literature.

Example 4.6 The definition of O∗-algebras used in [1] is different from the one
of Example 4.2. In fact, the notion of complex O∗-algebras used there is a special
case of the ordered ∗-algebras here, requiring also existence and good behavior of
certain suprema and infima of algebra elements (the stability of the set of positive
Hermitian elements under conjugations a ↦ b∗a b with arbitrary algebra elements
b is a nontrivial consequence of their axioms of O∗-algebras; see the remark under
Theorem 2.2). In [1, Theorem 5.5], a representation theorem is proved that makes use
of these infima and suprema. In contrast to this, Theorems 4.24 and 4.9 here are based
on Theorem 3.7, and therefore require σ-boundedness instead.

If A is a ∗-algebra, then its complex dual vector space A∗ carries an antilinear
involution ⋅ ∗∶A∗ → A∗, ω ↦ ω∗, given by ⟨ω∗ , a ⟩ ∶= ⟨ω , a∗ ⟩ for all a ∈ A. We say
again that an element ω ∈ A∗ is Hermitian if ω∗ = ω and write A∗H for the set of
all Hermitian linear functionals on A, which is a real linear subspace of A∗. Note
that a linear functional ω on A is Hermitian if and only if ⟨ω , a ⟩ ∈R holds for
all a ∈ AH. Thus, every ω ∈ A∗H can be restricted to an R-linear functional on AH,
and one can check that this restriction describes an R-linear isomorphism between
the vector spaces A∗H and (AH)∗. An (extremal) positive Hermitian linear functional
on an ordered ∗-algebra A is then defined as a Hermitian linear functional on A

whose restriction to a (real) linear functional on the ordered vector space AH is an
(extremal) positive linear functional. The sets of these (extremal) positive Hermitian
linear functionals are denoted by A∗,+

H and A∗,+,ex
H , respectively, and we say that

the order on A is induced by its (extremal) positive Hermitian linear functionals if
the order on AH is induced by its (extremal) positive linear functionals. Note that
positivity of a Hermitian linear functional ω on an ordered ∗-algebra A is in general
a stronger condition than just the requirement that ⟨ω , a∗a ⟩ ≥ 0 for all a ∈ A, which
is used quite often in the literature when linear functionals on general ∗-algebras
are discussed. However, if A is an ordered ∗-algebra in which only the algebraically
positive Hermitian linear functionals are positive, i.e., if A is of the type of Example
4.5, then ⟨ω , a∗a ⟩ ≥ 0 for all a ∈ A is also sufficient for a Hermitian linear functional
ω on A to be positive.

Positive Hermitian linear functionals on an ordered ∗-algebra A have some nice
properties: Given ω ∈ A∗,+

H and a, b ∈ A, then the Cauchy–Schwarz inequality

∣⟨ω , b∗a ⟩∣2 ≤ ⟨ω , b∗b ⟩⟨ω , a∗a ⟩(4.1)
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holds, as well as

∣⟨ω , a ⟩∣2 ≤ ⟨ω , 1 ⟩⟨ω , a∗a ⟩(4.2)

in the special case that b = 1. This has an important consequence: If a positive
Hermitian linear functional ω on A fulfils ⟨ω , 1 ⟩ = 0, then ω = 0. A state on A

is a positive Hermitian linear functional ω on A that fulfils ⟨ω , 1 ⟩ = 1. So every
ω̃ ∈ A∗,+

H /{0} is a multiple of a unique state ω on A, namely of ω = ⟨ ω̃ , 1 ⟩−1ω̃. The
set of all states on A will be denoted by S(A) and is clearly a convex (possibly empty)
subset of the real vector spaceA∗H. Again, note that by this definition, states are positive
on whole A+H, not just on squares.

A map Φ∶A→ B between two ∗-algebras is said to be multiplicative if Φ(aa′) =
Φ(a)Φ(a′) holds for all a, a′ ∈ A. Furthermore, it is called a unital∗-homomorphism
if it is linear and multiplicative, maps the unit of A to the unit of B and fulfils Φ(a∗) =
Φ(a)∗ for all a ∈ A. This last condition is equivalent to Φ(a) ∈ BH for all a ∈ AH. If A
andB are ordered ∗-algebras, then such a unital ∗-homomorphism Φ is called positive
or an order embedding if its restriction to an R-linear map between the ordered vector
spaces AH and BH is positive or an order embedding, respectively.

For ordered ∗-algebras, we are going to discuss two different types of representa-
tions, which correspond to the first two examples mentioned above.

Definition 4.1 Let A be an ordered ∗-algebra. Then a representation as functions of A
is a tuple (X , π) of a set X and a positive unital ∗-homomorphism π∶A→CX . Simi-
larly, a representation as operators of A is a tuple (D, π) of a pre-Hilbert space D and
a positive unital ∗-homomorphism π∶A→ L∗(D). Moreover, such a representation
(as functions or as operators) is called faithful if π is an order embedding.

Of course, representations as functions are especially interesting for commutative
ordered ∗-algebras. As we will see, the existence of faithful representations of an
ordered ∗-algebra A is closely linked to the question of whether or not the order on A

is induced by its (extremal) positive Hermitian linear functionals.

4.1 Representation as operators

The well-known construction of the Gelfand–Naimark–Segal (GNS) representation
yields a representation as operators of an ordered ∗-algebra A out of any positive
Hermitian linear functional.

Proposition 4.7 Let A be an ordered ∗-algebra, and let ω ∈ A∗,+
H . Then the map

⟨ ⋅ ∣ ⋅ ⟩ω ∶A ×A→C,

(a, b) ↦ ⟨ a ∣ b ⟩ω ∶= ⟨ω , a∗b ⟩,(4.3)

is sesquilinear (antilinear in the first, and linear in the second argument) and fulfils
⟨ a ∣ b ⟩ω = ⟨ b ∣ a ⟩ω as well as ⟨ a ∣ a ⟩ω ∈ [0,∞[ for all a, b ∈ A. Write ∥ ⋅ ∥ω for the
corresponding seminorm on A, defined as ∥a∥ω ∶= ⟨ a ∣ a ⟩1/2ω for all a ∈ A, and write
ker∥ ⋅ ∥ω ∶= { a ∈ A ∣ ∥a∥ω = 0} for its kernel. Then ⟨ ⋅ ∣ ⋅ ⟩ω remains well defined on
the quotient vector space A/ker∥ ⋅ ∥ω on which it describes an inner product. Now,
write Dω for the pre-Hilbert space of A/ker∥ ⋅ ∥ω with inner product ⟨ ⋅ ∣ ⋅ ⟩ω , and
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[b]ω ∈ A/ker∥ ⋅ ∥ω for the equivalence class of an element b ∈ A. Then, for every a ∈ A,
the map πω(a)∶Dω →Dω ,

[b]ω ↦ πω(a)([b]ω) ∶= [ab]ω ,(4.4)

is a well-defined linear endomorphism of Dω , it is adjointable with adjoint πω(a∗),
and the resulting map A ∋ a ↦ πω(a) ∈ L∗(Dω) is a positive unital ∗-homomorphism.
Altogether, (Dω , πω) is a representation as operators of the ordered ∗-algebra A.
Proof The only detail which is not completely part of the classical GNS construction
for ∗-algebras as described, e.g., in [12, Section 8.6], is the observation that πω is
not only a unital ∗-homomorphism, but also positive, because ⟨ [b]ω ∣ πω(a) [b]ω ⟩ =
⟨ω , b∗a b ⟩ ≥ 0 for all a ∈ A+H. ∎
Definition 4.2 Let A be an ordered ∗-algebra, and let ω ∈ A∗,+

H , then the representa-
tion as operators (Dω , πω) from Proposition 4.7 is called the GNS representation ofA
with respect toω.

The problem of existence of representations as operators of ordered ∗-algebras can
be treated completely analogous to the case of general ∗-algebras:
Proposition 4.8 Let A be an ordered ∗-algebra, then there exists a faithful representa-
tion as operators of A if and only if the order on A is induced by its positive Hermitian
linear functionals.
Proof Assume that there exists a faithful representation as operators (D, π) of A.
Given a ∈ AH/A+H, then there exists ϕ ∈D such that ⟨ϕ ∣ π(a)(ϕ) ⟩ < 0. However, A ∋
b ↦ ⟨ϕ ∣ π(b)(ϕ) ⟩ ∈C is a positive Hermitian linear functional. So we conclude that
the order on A is induced by its positive Hermitian linear functionals.

Conversely, assume that the order on A is induced by its positive Hermitian linear
functionals. Using the GNS representations of A, define the orthogonal sum of pre-
Hilbert spaces

Dtot ∶= ⊕
ω∈A∗,+

H

Dω

with inner product denoted by ⟨ ⋅ ∣ ⋅ ⟩tot, as well as for every element a ∈ A the linear
endomorphism

πtot(a) ∶= ⊕
ω∈A∗,+

H

πω(a)

of Dtot, i.e., ∑ω∈A∗,+
H
[b]ω ↦ πtot(a)(∑ω∈A∗,+

H
[b]ω) ∶= ∑ω∈A∗,+

H
πω(a)([b]ω). Then

it is easy to check that πtot(a) is adjointable with adjoint πtot(a∗) and that the
resulting map πtot ∶A→ L∗(Dtot), a ↦ πtot(a) is a positive unital ∗-homomorphism.
Moreover, πtot is an order embedding: Indeed, for every a ∈ AH/A+H, there exists an
ω ∈ A∗,+

H such that ⟨ω , a ⟩ < 0 and thus ⟨ [1]ω ∣ πtot(a)([1]ω) ⟩tot = ⟨ω , a ⟩ < 0. It
follows that (Dtot , πtot) is a faithful representation as operators. ∎

Application of Theorem 3.7 to Proposition 4.8 immediately yields the following
generalization of the (noncommutative) Gelfand–Naimark theorem.
Theorem 4.9 Let A be a σ-bounded ordered ∗-algebra, then A has a faithful represen-
tation as operators if and only if A is closed.
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The original (noncommutative) Gelfand–Naimark theorem is essentially the spe-
cial case of this Theorem 4.9 for ordered ∗-algebras A in which the multiplicative unit
1 is also a strong order unit. As discussed under Theorem 3.7, A is automatically σ-
bounded in this case. Note also that the image of a σ-bounded ordered ∗-algebra
A under a faithful representation as operators is an O∗-algebra with metrizable
graph topology in the language of [12], which, conversely, are always σ-bounded.
So Theorem 4.9 yields an order-theoretic characterization of the O∗-algebras with
metrizable graph topology. This goes in a similar direction as [11], where a topological
characterization of a large class of O∗-algebras has been given.

Despite being valid only in the σ-bounded case, Theorem 4.9 still implies that,
heuristically, every closed ordered ∗-algebra “behaves essentially like an O∗-algebra”.
In order to make this more precise, we need the following lemma.

Lemma 4.10 Let A be a ∗-algebra that is generated by a countable subset of A. If AH
is endowed with any partial order ≤ such that A becomes an ordered ∗-algebra, then A

with this order is σ-bounded.

Proof As A is generated by a countable subset, it has at most countable dimension,
so there exists a sequence (an)n∈N in AH such that the R-linear span of { an ∣ n ∈N}
is whole AH. Moreover, from (1 ± an)2 ∈ A+H, it follows that ±2an ≤ 1 + a2

n for all
n ∈N. So define the increasing sequence (v̂n)n∈N inA+H as v̂n ∶= n∑n

k=1(1 + a2
n), then

(v̂n)n∈N is a dominating sequence because for every b ∈ AH there exists an n ∈N such
that b can be expressed as b = ∑n

k=1 2βn an with coefficients β1 , . . . , βn ∈ [−n, n], and
hence b ≤ v̂n . ∎

Proposition 4.11 Let A be a closed ordered ∗-algebra, and let (an)n∈N be any sequence
in A. Then the unital ∗-subalgebra of A that is generated by { an ∣ n ∈N} has a faithful
representation as operators.

Proof By Lemma 4.10, the unital ∗-subalgebra of A that is generated by
{ an ∣ n ∈N} is σ-bounded, so Theorem 4.9 applies. ∎

4.2 Representation as functions

A slight modification of the well-known Gelfand transformation yields a representa-
tion as functions of any ordered ∗-algebra.

Definition 4.3 Let A be an ordered ∗-algebra, then the set of all multiplicative states
on A, i.e., of all positive unital ∗-homomorphisms from A to C, will be denoted by
Sm(A).

Proposition 4.12 Let A be an ordered ∗-algebra. Then the map πGelfand ∶A→CSm(A),
a ↦ πGelfand(a) with πGelfand(a)∶Sm(A) →C,

ω ↦ πGelfand(a)(ω) ∶= ⟨ω , a ⟩,(4.5)

is a positive unital ∗-homomorphism and (Sm(A), πGelfand) is a representation as
functions of A.

Proof Immediate consequence of the properties of the elements in Sm(A). ∎
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In order to guarantee the existence of many multiplicative states, we have to exam-
ine states which are at the same time extremal positive Hermitian linear functionals.

Definition 4.4 Let A be an ordered ∗-algebra. Then a state ω on A is called pure if ω
is also an extremal positive Hermitian linear functional on A. The set of all pure states
on A will be denoted by Sp(A) ∶= S(A) ∩A∗,+,ex

H .

The above definition of pure states is equivalent to the more common one as
extreme points of the convex set of states.

Proposition 4.13 Let A be an ordered ∗-algebra, then Sp(A) = ex(S(A)).

Proof If ω is an extreme point of S(A), then it is also an extremal positive Hermitian
linear functional, hence a pure state: Indeed, given ρ ∈ A∗,+

H such that ρ ≤ ω, then, as
a consequence of the Cauchy–Schwarz inequality, either both ⟨ ρ , 1 ⟩ and ⟨ω − ρ , 1 ⟩
are in ]0, 1[, or ρ = μω with μ ∈ {0, 1}. In the former case,

ω = ⟨ω − ρ , 1 ⟩(⟨ω − ρ , 1 ⟩−1(ω − ρ)) + ⟨ ρ , 1 ⟩(⟨ ρ , 1 ⟩−1ρ)

is a representation of ω as a nontrivial convex combination of two elements of S(A),
which implies that ρ = μω with μ = ⟨ ρ , 1 ⟩.

Conversely, if ω is pure state on A, then it is an extreme point of S(A): If ω =
λρ + (1 − λ)ρ′ with ρ, ρ′ ∈ S(A) and λ ∈ ]0, 1[, then λρ ≤ ω and (1 − λ)ρ′ ≤ ω. Con-
sequently, there are μ, μ′ ∈ [0, 1] such that λρ = μω and (1 − λ)ρ′ = μ′ω. Evaluation
on 1 shows that λ = μ and (1 − λ) = μ′, and hence ρ = ω = ρ′. ∎

The sets of pure states and of multiplicative states on an ordered ∗-algebra are
closely related. In order to see this, the following concept will be helpful.

Definition 4.5 Let A be an ordered ∗-algebra, let ω be a state on A, and let a ∈ A.
The variance of ω on a is defined as

Varω(a) ∶= ⟨ω , (a − ⟨ω , a ⟩1)∗(a − ⟨ω , a ⟩1) ⟩ .(4.6)

Note that Varω(a) ∈ [0,∞[ and that Varω(a) = ⟨ω , a∗a ⟩ − ∣⟨ω , a ⟩∣2 holds for
every state ω on every ordered ∗-algebra A and all a ∈ A.

Proposition 4.14 If A is an ordered ∗-algebra and ω is a multiplicative state on A, then
ω is a pure state on A.

Proof By Proposition 4.13, the pure states are precisely the extreme points of the set
of all states. So assume that ρ, ρ′ ∈ S(A) and λ ∈ ]0, 1[ fulfil ω = λρ + (1 − λ)ρ′, then
one can check that the identity

Varω(a) = Varλρ+(1−λ)ρ′(a) = λVarρ(a) + (1 − λ)Varρ′(a) + λ(1 − λ)∣⟨ ρ − ρ′ , a ⟩∣2

holds for all a ∈ A. Moreover, Varω(a) = 0 because ω is multiplicative. It follows that
∣⟨ ρ − ρ′ , a ⟩∣2 = 0 for all a ∈ A because Varρ(a) and Varρ′(a) are nonnegative, so ρ =
ρ′ = ω. ∎

In order to be able to obtain a converse statement, we need some more assumptions.
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Definition 4.6 An ordered ∗-algebra A is called radical if it has the following
property: Whenever a, b ∈ AH commute and fulfil 1 ≤ a and 0 ≤ ab, then 0 ≤ b.

There are some important examples of radical commutative ordered ∗-algebras.

Proposition 4.15 Let A be a commutative ordered ∗-algebra. If A has a faithful
representation as functions, then A is radical and closed.

Proof Let (X , π) be a faithful represent as functions of A. It is easy to check that CX

is radical and closed, essentially becauseC is radical and closed. Using that π∶A→CX

is a positive unital ∗-homomorphism and an order embedding, it follows immediately
that A has to be radical and closed as well. ∎

Proposition 4.16 Let A ∶= R⊗C be the complexification of a Φ-algebra R, then A is
a radical and closed commutative ordered ∗-algebra.

Proof As discussed in Example 4.3, A is a closed commutative ordered ∗-algebra.
Consider a, b ∈ AH such that 1 ≤ a and 0 ≤ ab. We can express b as the difference
b = b+ − b− of its positive and negative components, b+ ∶= b ∨ 0, and b− ∶= (−b) ∨
0. From b+ ∧ b− = 0, it follows that b+b− = 0. As A+H is closed under products by
definition of Φ-algebras, multiplication with b− yields 0 ≤ b− ab = −b− a b− ≤ 0, so
b− a b− = 0. From 1 ≤ a, it now follows that 0 ≤ (b−)2 ≤ b− a b− = 0, so (b−)2 = 0.
As a consequence, 2ε(ε1 − b−) = (ε1 − b−)2 + ε21 ≥ 0, and hence b− ≤ ε1 for all ε ∈
]0,∞[, which implies that b− ≤ 0 because A is closed by assumption. This finally
shows that b = b+ − b− ≥ 0. ∎

It is also worthwhile to mention an important nonexample.

Example 4.17 Consider the ∗-algebra C[x , y] of complex polynomials in two vari-
ables x and y with the ∗-involution given by complex conjugation of coefficients, and
thus C[x , y]H ≅R[x , y]. On C[x , y]H, choose the partial order that turns C[x , y]
into an ordered ∗-algebra with cone of positive elements given by sums of Hermitian
squares, i.e.,

C[x , y]+H ∶=C[x , y]++H = {∑
N
n=1 p∗n pn ∣ N ∈N; p1 , . . . , pN ∈C[x , y] } .

Note that C[x , y]+H ∩ (−C[x , y]+H) = {0} because every sum of Hermitian squares
of polynomials is pointwise positive on R2. Moreover, the product of two elements
of C[x , y]+H is again in C[x , y]+H. It is well known that there exist polynomials p ∈
C[x , y]H/C[x , y]+H that are pointwise positive on R2. An explicit example from [2]
is

p ∶= x2 y2(x2 + y2 − 1) + 1 = x4 y2 + x2 y4 − x2 y2 + 1.

Now, consider q ∶= x2 + y2 + 1 ∈C[x , y]+H, then

pq = x6 y2 + x4 y4 + x2 y6 + x2 y2 + x2 + y2 + (x2 y2 − 1)2 ∈C[x , y]+H .

As 1 ≤ q, we conclude that C[x , y] (with this choice for the order) is not a radical
ordered ∗-algebra and especially does not have a faithful representation as functions
due to Proposition 4.15. Closer inspection shows that this is indeed because of the
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existence of ill-behaved pure states (see, e.g., [12, Corollary 11.6.4] and the discussion
there for details).

We proceed with examining the relation between pure states and multiplicative
states.

Lemma 4.18 Let A be an ordered ∗-algebra, let ω be a state on A, and let a ∈ A with
Varω(a) = 0, then

⟨ω , b∗a ⟩ = ⟨ω , b∗ ⟩⟨ω , a ⟩ and ⟨ω , a∗b ⟩ = ⟨ω , a∗ ⟩⟨ω , b ⟩(4.7)

hold for all b ∈ A. A state ω on A thus is multiplicative if (and only if) Varω(a) = 0 for
all a ∈ A.

Proof The Cauchy–Schwarz inequality yields

∣⟨ω , a∗b ⟩ − ⟨ω , a∗ ⟩⟨ω , b ⟩∣2 = ∣⟨ω , (a − ⟨ω , a ⟩1)∗(b − ⟨ω , b ⟩1) ⟩∣
2

≤ Varω(a)Varω(b)
for all a, b ∈ A. If Varω(a) = 0, then this implies that (4.7) holds. ∎
Lemma 4.19 Let A be a commutative ordered ∗-algebra, and let ω ∈ S(A), then the
subset { a ∈ A ∣ Varω(a) = 0} of A is a unital ∗-subalgebra and this is the largest
(with respect to inclusion) unital ∗-subalgebra of A on which the restriction of ω is
multiplicative. In the special case that Varω(1 + a2) = 0 holds for all a ∈ AH, it follows
that ω is multiplicative on whole A.

Proof First assume that ω is an arbitrary state on A. Then it is easy to check
that Varω(λa) = ∣λ∣2Varω(a) and also (using the commutativity of A) Varω(a∗) =
Varω(a) hold for all a ∈ A and all λ ∈C. Moreover, if a, b ∈ A fulfil Varω(a) =
Varω(b) = 0, then one can check with the help of Lemma 4.18 that

Varω(a + b) = ⟨ω , a∗a + a∗b + b∗a + b∗b ⟩ − ∣⟨ω , a ⟩ + ⟨ω , b ⟩∣2 = 0

and

Varω(ab) = ⟨ω , b∗a∗a b ⟩ − ∣⟨ω , ab ⟩∣2 = 0 .

As Varω(1) = 0 is clearly fulfilled as well, one sees that { a ∈ A ∣ Varω(a) = 0} is a
unital ∗-subalgebra of A. From Lemma 4.18, it also follows that the restriction of
ω to { a ∈ A ∣ Varω(a) = 0} is multiplicative. Conversely, if B is another unital ∗-
subalgebra of A such that the restriction of ω to B is multiplicative, then it follows
that Varω(b) = ⟨ω , b∗b ⟩ − ∣⟨ω , b ⟩∣2 = 0 for all b ∈ B and therefore the inclusion
B ⊆ { a ∈ A ∣ Varω(a) = 0} holds.

Now, assume that Varω(1 + a2) = 0 holds for all a ∈ AH. As 4b = (1 + (b + 1)2) −
(1 + (b − 1)2) holds for all b ∈ AH, it follows from Varω(1 + (b ± 1)2) = 0 that
Varω(b) = 0 for all b ∈ AH, and hence Varω(c) = 0 for all c ∈ A because c = cr + ic i
with cr ∶= (c + c∗)/2 ∈ AH and c i ∶= (c − c∗)/(2i) ∈ AH. Application of Lemma 4.18
shows that ω is multiplicative on whole A. ∎
Theorem 4.20 Let A be a radical commutative ordered ∗-algebra, then Sp(A) =
Sm(A), i.e., a state on A is a pure state if and only if it is multiplicative.
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Proof Let ω be a state on A. If ω is multiplicative, then Proposition 4.14 shows that
ω is also a pure state. Conversely, if ω is a pure state, then it remains to show that the
identity Varω(a2 + 1) = 0 holds for all a ∈ AH, which, by Lemma 4.19, already implies
that ω is multiplicative.

So let a ∈ AH be given and define the subset Sa ∶= { (1 + a2)b ∣ b ∈ AH } of AH. It
is clear that Sa is a (real) linear subspace of AH. If (1 + a2)b = (1 + a2)b′ with b, b′ ∈
AH, then b − b′ = 0 because 0 = (1 + a2)(b − b′) and because A is radical. So every
element of Sa is of the form (1 + a2)b with a unique b ∈ AH and the map ρ̃∶ Sa →R,

(1 + a2)b ↦ ⟨ ρ̃ , (1 + a2)b ⟩ ∶= ⟨ω , b ⟩,

is well defined and is clearly R-linear. Moreover, for every c ∈ AH, there exists an
element (1 + a2)b ∈ Sa with b ∈ AH such that 0 ≤ (1 + a2)b and c ≤ (1 + a2)b, e.g.,
(1 + a2)b ∶= (1 + a2)(1 + c)2/2. Using again that A is radical one sees that ρ̃ is
positive with respect to the order on Sa inherited from AH, so the extension theorem
for positive linear functionals applies and shows that there exists a positive linear
functional ρ on AH fulfilling ⟨ ρ , (1 + a2)b ⟩ = ⟨ω , b ⟩ for all b ∈ AH. Using the
isomorphism between (AH)∗ and A∗H, we can also treat ρ as a positive Hermitian
linear functional on A.

As ⟨ ρ , b ⟩ ≤ ⟨ ρ , (1 + a2)b ⟩ = ⟨ω , b ⟩ holds for all b ∈ AH, it follows that ρ ≤
ω, and hence there exists μ ∈ [0, 1] such that ρ = μω because ω is a pure state by
assumption. From evaluation on 1 + a2 and (1 + a2)2, one gets

μ ⟨ω , 1 + a2 ⟩ = ⟨ ρ , 1 + a2 ⟩ = ⟨ω , 1 ⟩ = 1

and

μ ⟨ω , (1 + a2)2 ⟩ = ⟨ ρ , (1 + a2)2 ⟩ = ⟨ω , 1 + a2 ⟩ ,

which yields μ ≠ 0 and ⟨ω , 1 + a2 ⟩ = μ−1 as well as ⟨ω , (1 + a2)2 ⟩ = μ−2, and thus
Varω(1 + a2) = 0. ∎

Similar results about the relation between pure and multiplicative states on certain
∗-algebras have already occurred before, e.g., [3, Theorem 2] for Banach ∗-algebras
or [12, Proposition 11.3.9] for general ∗-algebras endowed with a special choice of a
(pre-)order.

Corollary 4.21 Let X be a set, and let A be a unital ∗-subalgebra of CX , endowed
with the pointwise order inherited from CX , then the pure states on A are precisely the
multiplicative ones.

Note, however, that there might be more multiplicative states on A than just
evaluation functionals at points of X.

Corollary 4.22 Let A be a radical commutative ordered ∗-algebra, then

A∗,+,ex
H = {ω ∈ A∗,+

H ∣ ∀a∈A ∶ ⟨ω , 1 ⟩⟨ω , a∗a ⟩ = ∣⟨ω , a ⟩∣2 }(4.8)

and the set A∗,+,ex
H of extremal positive Hermitian linear functionals on A is weak-∗-

closed in A∗H.
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Proof Let ω be a positive Hermitian linear functional on A. Then either ω = 0,
in which case ω ∈ A∗,+,ex

H and ⟨ω , 1 ⟩⟨ω , a∗a ⟩ = ∣⟨ω , a ⟩∣2 for all a ∈ A hold, or
⟨ω , 1 ⟩ > 0. In this second case, ω̃ ∶= ⟨ω , 1 ⟩−1ω is a state on A and the following
chain of equivalences holds: ω is an extremal positive Hermitian linear functional if
and only if ω̃ is a pure state, which is equivalent to ω̃ being multiplicative by Theorem
4.20, and Lemma 4.18 shows that this holds if and only if Varω̃(a) = 0 for all a ∈ A. As
⟨ω , 1 ⟩2Varω̃(a) = ⟨ω , 1 ⟩⟨ω , a∗a ⟩ − ∣⟨ω , a ⟩∣2, identity (4.8) is proved.

Finally, as A∗,+
H is weak-∗-closed in A∗H and as A∗H ∋ ω ↦ ⟨ω , 1 ⟩⟨ω , a∗a ⟩ −

∣⟨ω , a ⟩∣2 ∈R is a weak-∗-continuous function, one sees that the right-hand side of
(4.8) is weak-∗-closed in A∗H. ∎

Corollary 4.23 Let A be a radical commutative ordered ∗-algebra, then the following
are equivalent:

(1) The Gelfand transformation (Sm(A), πGelfand) of A discussed in Proposition 4.12
is a faithful representation as functions.

(2) There exists a faithful representation as functions of A.
(3) The order on A is induced by its extremal positive Hermitian linear functionals.

Proof The implication (1)%⇒ (2) is trivial.
Assume that there exists a faithful representation as functions (X , π) of A, and

let a ∈ AH/A+H be given. Then there exists x ∈ X fulfilling π(a)(x) < 0. However, the
linear functional A ∋ b ↦ π(b)(x) ∈C is a multiplicative state, hence a pure state by
Proposition 4.14, and thus especially an extremal positive Hermitian linear functional
on A. This proves the implication (2)%⇒ (3).

Finally, if the order on A is induced by its extremal positive Hermitian linear
functionals, then for every a ∈ AH/A+H, there exists an extremal positive Hermitian
linear functional ω̃ on A such that ⟨ ω̃ , a ⟩ < 0. From ω̃ ≠ 0, it follows that ⟨ ω̃ , 1 ⟩ >
0 and therefore ω ∶= ⟨ ω̃ , 1 ⟩−1ω̃ is a well-defined pure state on A, hence also a
multiplicative state by Theorem 4.20. So we see that πGelfand(a) cannot be positive
because πGelfand(a)(ω) < 0, and conclude that the Gelfand transformation of A is
faithful, i.e., (3)%⇒ (1) holds. ∎

There are some representation theorems for commutative ∗-algebras endowed with
a locally convex topology defined by submultiplicative seminorms, i.e., seminorms
fulfilling the estimate ∥ab∥ ≤ ∥a∥∥b∥ for all elements a and b of the algebra. One
example is of course the commutative Gelfand–Naimark theorem. However, for
radical commutative ordered ∗-algebras, Corollary 4.23 combined with Corollary 3.4
yields an approach using a rather different type of locally convex topologies.

Application of Theorem 3.7 to Corollary 4.23 immediately yields the following
generalization of the commutative Gelfand–Naimark theorem.

Theorem 4.24 Let A be a σ-bounded radical commutative ordered ∗-algebra, then A

has a faithful representation as functions if and only if A is closed.

Like before, this implies that, heuristically, every closed radical commutative
ordered ∗-algebra “behaves essentially like a ∗-algebra of functions.”

https://doi.org/10.4153/S0008414X22000359 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000359


1292 M. Schötz

Corollary 4.25 Let A be a closed radical commutative ordered ∗-algebra, and let
(an)n∈N be any sequence in A. Then the unital ∗-subalgebra of A that is generated by
{ an ∣ n ∈N} has a faithful representation as functions.

Proof By Lemma 4.10, the unital ∗-subalgebra of A that is generated by
{ an ∣ n ∈N} is σ-bounded, so Theorem 4.24 applies. ∎

Theorems 4.9 and 4.24 allow to develop a theory of ∗-algebras of (possibly
unbounded) operators in a representation-independent way. While the assumption
of being σ-bounded might be replaced by others, e.g., the existence of a well-behaved
locally convex topology, the property of being radical is necessary for a commutative
ordered ∗-algebra to have a faithful representation as functions (see Proposition 4.15).
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