AN APPLICATION OF THE ADDITION THEOREM FOR DETERMINANTS

by HENRY JACK (Received 30th June 1962)

THE integral evaluated in this note was suggested by the famous one connected with the Poincaré polynomials of the classical groups (see (1)).

Let X be an $n \times n$ matrix whose elements depend on k parameters. Denote by \mathscr{X} a manifold in Euclidean space of dimension n^2 , with the property that if $X \in \mathscr{X}$, then so does XI_{-i} for $1 \le i \le n$, where I_{-i} is the unit matrix I altered by a minus sign in the (i, i)th place. Suppose further that there exists on \mathscr{X} a measure which is invariant under the transformation $X \to XI_{-i}$. Such manifolds and measures exist. For example (see (2), § 5), the set of all proper and improper $n \times n$ orthogonal matrices H is such a manifold, the H depending on $\frac{1}{2}n(n-1)$ parameters because of the orthogonality and normality of the columns of H. Since the set of all H is a compact topological group, an invariant measure exists.

Theorem. If dX is an invariant measure on \mathscr{X} , such that $V = \int_{\mathscr{X}} dX$ exists and is finite, and if A, B, C are constant $n \times n$ matrices, and |M| is the determinant of M, then

Proof. Suppose $|C| \neq 0$, and let $D = AC^{-1}$, then

$$\int |A + BXC| dX = |C| \int |D + BX| dX$$

Since the measure dX is invariant under the transformation $X \rightarrow XI_{-i}$,

$$J = \int |D + BX| dX = \int |D + BXI_{-i}| dX$$

= $\frac{1}{2} \int \{ |D + BX| + |D + BXI_{-i}| \} dX.$

Now |D+BX| and $|D+BXI_{-1}|$ differ only in their first columns, so their sum is a determinant $|2d_1, (D+BX)_{n-1}|$, whose first column is twice the first column, d_1 , of |D| and whose remaining columns $(D+BX)_{n-1}$, are the last n-1 columns of |D+BX|. So

$$J = \int \left| d_1, (D+BX)_{n-1} \right| dX.$$

HENRY JACK

Now carry out the transformation $X \rightarrow XI_{-2}$ and let d_2 be the second column of |D| and

$$J = \int |d_1, d_2, (D+BX)_{n-2}| dX.$$

Continuing,

$$J = \int |d_1, d_2, ..., d_n| dX = V |D|.$$

This proves the theorem when $|C| \neq 0$. But when $|C| \neq 0$, (1) is an identity between two polynomials in the elements of C, and so by continuity, it still holds when |C| = 0.

Corollary. Let $E_r(X)$ be the elementary symmetric functions of the latent roots of X, then

$$\int_{\mathfrak{X}} E_r(X) dX = 0.$$

Proof. Let A = zI, B = C = I. Then since

$$|zI| = z^n \text{ and } |zI+X| = z^n + \sum_{r=1}^n z^{n-r} E_r(X),$$

$$\sum_{r=1}^n z^{n-r} \int E_r(X) dX = 0 \text{ for any number } z.$$

REFERENCES

(1) D. E. LITTLEWOOD, On the Poincaré polynomials of the classical groups, *Journ. London Math. Soc.* 28 (1953), 494-500.

(2) H. JACK and A. M. MACBEATH, The volume of a certain set of matrices, *Proc. Camb. Phil. Soc.* 55 (1959), 213-223.

QUEEN'S COLLEGE DUNDEE

166