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Abstract

We make a systematic study of a new combinatorial construction called a dual equivalence graph.
We axiomatize these graphs and prove that their generating functions are symmetric and Schur
positive. This provides a universal method for establishing the symmetry and Schur positivity of
quasisymmetric functions.
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1. Introduction

Symmetric function theory plays an important role in many areas of mathematics,
including combinatorics, representation theory, and algebraic geometry.
Multiplicities of irreducible components, dimensions of algebraic varieties,
and various other algebraic constructions that require the computation of certain
integers may often be translated to the computation of the Schur coefficients
of a given function. Thus a quintessential problem in symmetric functions is to
prove that a given function has nonnegative integer coefficients when expressed
as a sum of Schur functions. In this paper, we introduce a new combinatorial
construction, called a dual equivalence graph, by which one can establish the
symmetry and Schur positivity of a function.

To illustrate the general problem and to demonstrate this new solution, consider
the problem of expanding the product of two Schur functions as a sum of Schur
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functions, that is,
sµsν =

∑
λ

cλµ,νsλ. (1.1)

Since Schur functions are a basis for symmetric functions, this problem is
well posed, and since they are an integral basis, these so-called Littlewood–
Richardson coefficients cλµ,ν are integers. In fact, they are nonnegative. One way
to see this is to realize that the Schur functions are the characters for irreducible
representations of the general linear group, and so cλµ,ν counts multiplicities
of irreducible representations in tensor products. Another way to understand
the nonnegativity is to realize Schur polynomials as Schubert classes for the
cohomology of the Grassmannian, and so cλµ,ν counts objects in the intersection
of Schubert varieties. The celebrated Littlewood–Richardson rule gives a direct
combinatorial interpretation for cλµ,ν without appealing to representation theory or
geometry. Briefly, cλµ,ν counts the number of standard Young tableaux of shape
µ adjoin ν that rectify to a specified standard Young tableau of shape λ. Dual
equivalence graphs abstract this rule to a general tool with universal applicability.

The general set-up is as follows. Begin with a set A of combinatorial objects
together with a notion of a descent set Des sending an object to a subset of positive
integers. For Littlewood–Richardson coefficients, A is the set of standard Young
tableaux and Des is the usual notion of descents. Optionally, we may also have
a nonnegative, possibly multivariate, integer statistic associated to each object.
Define the quasisymmetric generating function for A with respect to Des by

f (X; q) =
∑
T∈A

qstat(T )QDes(T )(X),

where Q denotes the fundamental basis for quasisymmetric functions [5].
A dual equivalence for (A,Des) is a family of involutions on A whose local

equivalence classes are Schur functions and which commute when their indices
are far away. For Littlewood–Richardson coefficients, these are Haiman’s original
dual equivalence involutions [7]. A dual equivalence is compatible with a statistic
when the involutions preserve the statistic. From this framework, we obtain an
explicit set Dom ⊂ A such that

f (X; q) =
∑
λ

 ∑
S∈Dom(A)
α(S)=λ

qstat(S)

 sλ(X),

where α is an explicit map derived from Des that associates to each element
of Dom a partition. This is the generalized notion of implicit rectification. For
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example, in the Littlewood–Richardson case, the set Dom is precisely the set
of skew tableaux that rectify to a particular standard tableau of straight shape.
In particular, giving a dual equivalence for the data (A,Des) that is compatible
with the statistic proves that the generating function f (X; q) is symmetric and
Schur positive, and provides an explicit combinatorial formula for the Schur
coefficients.

After reviewing symmetric functions and the associated tableaux combinatorics
in Section 2, we review the dual equivalence relation on standard tableaux. In
Section 3, we use this relation to define an edge-colored graph on standard
tableaux. We axiomatize the graph, resulting in a new combinatorial method
for establishing the Schur positivity of a quasisymmetric function. In Section 4,
we reformulate this machinery in terms of involutions on a set and give a more
explicit characterization of the Schur coefficients. As a first application of this
theory, Section 5 defines involutions on k-tuples of tableaux that give a dual
equivalence when k = 2, giving a surprisingly short proof of Schur positivity
for the ribbon tableaux generating function introduced by Lascoux et al. [9] in
the case of dominoes. While these involutions on tuples of tableaux are not,
in general, a dual equivalence, we conjecture that the equivalence classes are
always Schur positive. These larger equivalence classes are studied further in a
forthcoming paper.

2. Preliminaries

2.1. Partitions and tableaux. We represent an integer partition λ by the
decreasing sequence of its (nonzero) parts

λ = (λ1, λ2, . . . , λl), λ1 > λ2 > · · · > λl > 0.

We denote the size of λ by |λ| =
∑

i λi . If |λ| = n, we say that λ is a partition of
n. The Young diagram of a partition λ is the set of points (i, j) in the Z×Z lattice
such that 1 6 i 6 λ j . We draw the diagram so that each point (i, j) is represented
by the unit cell southwest of the point; see Figure 1.

For partitions λ,µ, we write µ ⊂ λ whenever the diagram of µ is contained
within the diagram of λ; equivalently µi 6 λi for all i . In this case, we define
the skew diagram λ/µ to be the set-theoretic difference λ − µ; for an example,
see Figure 1. For our purposes, we depart from the norm by not identifying skew
shapes that are translates of one another.

A filling of a (skew) diagram λ is a map S : λ → Z+. A semistandard Young
tableau is a filling that is weakly increasing along each row and strictly increasing
along each column. A semistandard Young tableau is standard if it is a bijection
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Figure 1. The Young diagram for (5, 4, 4, 1) and the skew diagram for (5, 4, 4,
1)/(3, 2, 2).

Figure 2. The standard Young tableaux of shape (3, 2) with their content reading
words.

from λ to [n], where [n] = {1, 2, . . . , n}. For λ a diagram of size n, define

SSYT(λ) = {semi-standard tableaux T : λ→ Z+},
SYT(λ) = {standard tableaux T : λ→̃[n]}.

For T ∈ SSYT(λ), we say that T has shape λ. If T contains entries 1π1, 2π2, . . .

for some composition π , then we say that T has weight π . Thus T ∈ SYT(λ) if
and only if T has weight (1n).

The content of a cell of a diagram indexes the diagonal on which it occurs;
that is, c(x) = i − j , when the cell x lies in position (i, j) ∈ Z+ × Z+. The
content reading word of a semistandard tableau is obtained by reading the entries
in increasing order of content, going southwest to northeast along each diagonal
(on which the content is constant). For examples, see Figure 2.

2.2. Symmetric functions. We have the familiar integral bases forΛ, the ring
of symmetric functions, from [11], all indexed by partitions of n: the monomial
symmetric functions mλ, the elementary symmetric functions eλ, the complete
homogeneous symmetric functions hλ, and, most importantly, the Schur functions,
sλ, which may be defined in several ways. For the purposes of this paper, we take
the tableau approach:

sλ(x) =
∑

T∈SSYT(λ)

x T , (2.1)
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where x T is the monomial xπ1
1 xπ2

2 · · · when T has weight π . This formula also
defines the skew Schur functions, sλ/µ, by taking the sum over semistandard
tableaux of shape λ/µ.

As we shall see in Section 3, it will often be useful to express a function in terms
of Gessel’s fundamental quasisymmetric functions [5] rather than monomials. For
σ ∈ {±1}n−1, the fundamental quasisymmetric function Qσ (x) is defined by

Qσ (x) =
∑

i16···6in
σ j=−1⇒i j<i j+1

xi1 · · · xin . (2.2)

We have indexed quasisymmetric functions by sequences of +1 and −1, though,
by setting D(σ ) = {i |σi = −1}, we may change the indexing to the more familiar
one of subsets of [n − 1].

To connect quasisymmetric functions with Schur functions, for T a standard
tableau on [n]with content reading wordwT , define the descent signature σ(T ) ∈
{±1}n−1 by

σ(T )i =

{
+1 if i appears to the left of i + 1 in wT ,
−1 if i + 1 appears to the left of i in wT .

(2.3)

For example, the descent signatures for the tableaux in Figure 2 are + − ++,
− + −+, − + +−, + − +−, + + −+, from left to right. Note that, if we
replace the content reading word with either the row or column reading word, the
signature given by (2.3) remains unchanged.

PROPOSITION 2.1 [5]. The Schur function sλ is expressed in terms of
quasisymmetric functions by

sλ(x) =
∑

T∈SYT(λ)

Qσ(T )(x). (2.4)

Comparing (2.1) with (2.4), using quasisymmetric functions instead of
monomials allows us to work with standard tableaux rather than semistandard
tableaux. One advantage of this formula is that, unlike (2.1), the right-hand side
of (2.4) is finite. Continuing with the example in Figure 2,

s(3,2)(x) = Q+−++(x)+ Q−+−+(x)+ Q−++−(x)+ Q+−+−(x)+ Q++−+(x).

2.3. Dual equivalence. Dual equivalence was first explicitly defined by
Haiman [7] as a relation on tableaux dual to jeu de taquin equivalence under the
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Figure 3. The nontrivial dual equivalence classes of S4.

Figure 4. The nontrivial dual equivalence classes of SYT of size 4.

Schensted correspondence. The elementary moves defined below are sometimes
called dual Knuth moves, and they can be obtained by taking inverses of
permutations that are elementary Knuth equivalent.

DEFINITION 2.2 [7]. Define the elementary dual equivalence involution di , 1 <
i < n, on permutations w as follows. If i lies between i − 1 and i + 1 in w, then
di(w) = w. Otherwise, di interchanges i and whichever of i ± 1 is further away
from i . Two permutations w and u are dual equivalent if there exists a sequence
i1, . . . , ik such that u = dik · · · di1(w).

For examples, see Figure 3. Two standard tableaux of the same shape are dual
equivalent if their content reading words are; for examples, see Figure 4.

PROPOSITION 2.3 [7]. Two standard tableaux on partition shapes are dual
equivalent if and only if they have the same shape.

Propositions 2.1 and 2.3 together allow us to express a Schur function in terms
of dual equivalence classes as

sλ(X) =
∑

T∈[Tλ]

Qσ(T )(X), (2.5)

where [Tλ] denotes the dual equivalence class of some (any) fixed standard tableau
Tλ of shape λ. This paradigm shift to summing over objects in a dual equivalence
class is the main idea underlying dual equivalence graphs presented below.

Dual equivalence also applies to skew tableaux, and the involutions di commute
with rectification via jeu de taquin [7]. For example, the skew tableaux in Figure 5
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Figure 5. Dual equivalence classes for s(1)s(2,1).

Figure 6. The standard dual equivalence graphs G5,G4,1,G3,2, and G3,1,1.

respectively rectify to the tableaux in Figure 4. Taking generating functions,
we see that the dual equivalence classes correspond precisely to the Schur
expansion

s(1)s(2,1) = s(3,1) + s(2,2) + s(2,1,1).

3. Dual equivalence graphs

3.1. Axiomatization of dual equivalence. Construct a graph whose edges are
colored on standard tableaux of partition shape from the dual equivalence relation
in the following way. Whenever two standard tableaux T,U have content reading
words that differ by an elementary dual equivalence for i − 1, i, i + 1, connect T
and U with an edge colored by i . Associate to each tableau T the signature σ(T )
defined by (2.3). For an example, see Figure 6.

The connected components of the graph so constructed are the dual equivalence
classes of standard tableaux. Let Gλ denote the subgraph on tableaux of shape λ.
Proposition 2.3 states that the Gλ exactly give the connected components of the
graph.
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Define the generating function associated to Gλ by∑
v∈V (Gλ)

Qσ(v)(x) = sλ(x). (3.1)

By Proposition 2.1, this is Gessel’s quasisymmetric function expansion for a
Schur function. In particular, the generating function of any graph who vertices
have signatures and whose connected components are isomorphic to the graphs
Gλ is Schur positive.

In this section, we characterize Gλ in terms of edges and signatures so that we
can readily identify those graphs that are isomorphic to some Gλ.

DEFINITION 3.1. A signed colored graph of type (n, N ) consists of the following
data:

• a finite vertex set V ;

• a signature function σ : V → {±1}N−1;

• for each 1 < i < n, a collection Ei of pairs of distinct vertices of V .

We denote such a graph by G = (V, σ, E2 ∪ · · · ∪ En−1), or simply (V, σ, E).

DEFINITION 3.2. A signed colored graph G = (V, σ, E) of type (n, N ) is a dual
equivalence graph of type (n, N ) if n 6 N and the following hold.

(ax1) For w ∈ V and 1 < i < n, σ(w)i−1 = −σ(w)i if and only if there exists
x ∈ V such that {w, x} ∈ Ei . Moreover, x is unique when it exists.

(ax2) For {w, x} ∈ Ei , σ(w) j = −σ(x) j for j = i − 1, i , and σ(w)h = σ(x)h
for h < i − 2 and h > i + 1.

(ax3) For {w, x} ∈ Ei , if σ(w)i−2 = −σ(x)i−2, then σ(w)i−2 = −σ(w)i−1, and
if σ(w)i+1 = −σ(x)i+1, then σ(w)i+1 = −σ(w)i .

(ax4) Every connected component of (V, σ, Ei−1 ∪ Ei) appears in Figure 7 and
every connected component of (V, σ, Ei−2∪Ei−1∪Ei) appears in Figure 8.

(ax5) If {w, x} ∈ Ei and {x, y} ∈ E j for |i − j | > 3, then {w, v} ∈ E j and
{v, y} ∈ Ei for some v ∈ V .

(ax6) Any two vertices of a connected component of (V, σ, E2 ∪ · · · ∪ Ei) may
be connected by a path crossing at most one Ei edge.
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Figure 7. Allowed two-color connected components of a dual equivalence graph.

Figure 8. Allowed three-color connected components of a dual equivalence graph.

Note that, if n > 4, then the allowed structure for connected components of (V,
σ, Ei−2∪ Ei−1∪ Ei) dictates that every connected component of (V, σ, Ei−1∪ Ei)

appears in Figure 7.
Every connected component of a dual equivalence graph of type (n, N ) is again

a dual equivalence graph of type (n, N ).
It is often useful to consider a restricted set of edges of a signed colored graph.

To be precise, for m 6 n and M 6 N , the (m,M)-restriction of a signed colored
graph G of type (n, N ) consists of the vertex set V , signature function σ : V →
{±1}M−1 obtained by truncating σ at M − 1, and the edge set E2 ∪ · · · ∪ Em−1.
For m 6 n,M 6 N , the (m,M)-restriction of a dual equivalence graph of type
(n, N ) is a dual equivalence graph of type (m,M).

The graph for Gλ′ is obtained from Gλ by conjugating each standard tableau
and multiplying the signatures coordinatewise by −1. Therefore the structure of
G(2,1,1,1),G(2,2,1), and G(1,1,1,1,1) is also indicated by Figure 6. Comparing this with
Figure 8, axiom 4 stipulates that the components of a dual equivalence graph
restricted to three consecutive edge colors are exactly the graphs for Gλ when λ is
a partition of 5.

PROPOSITION 3.3. For λ a partition of n, Gλ is a dual equivalence graph of type
(n, n).

Proof. For T ∈ SYT(λ), σ(T )i−1 = −σ(T )i if and only if i does not lie between
i − 1 and i + 1 in the content reading word of T . In this case, there exists U ∈
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SYT(λ) such that T and U differ by an elementary dual equivalence for i − 1, i,
i+1. Therefore U is obtained from T by swapping i with i−1 or i+1, whichever
lies further away, with the result that σ(T ) j = −σ(U ) j for j = i − 1, i and also
σ(T )h = σ(U )h for h < i − 2 and i + 1 < h. This verifies axioms 1 and 2.

For axiom 3, if σ(T )i−2 = −σ(U )i−2, then i and i − 1 have interchanged
positions with i − 2 lying between, so that T and U also differ by an elementary
dual equivalence for i−2, i−1, i , and similarly for i + 1. From this, we obtain
an explicit description of double edges as those connecting vertices where i − 2
and i + 1 lie between i − 1 and i . Therefore axiom 4 becomes a straightforward
finite check on permutations of 5. If |i − j | > 3, then {i − 1, i, i + 1} ∩ { j−1, j,
j+1} = ∅, so the elementary dual equivalences for i−1, i, i+1 and for j−1, j, j+1
commute, thereby demonstrating axiom 5.

Finally, for T,U ∈ SYT(λ), |λ| = i + 1, we must show that there exists a path
from T to U crossing at most one Ei edge. Let CT (respectively CU ) denote the
connected component of the (i, i)-restriction of Gλ containing T (respectively U ).
Let µ (respectively ν) be the shape of T (respectively U ) with the cell containing
i + 1 removed. Then CT

∼= Gµ and CU
∼= Gν . If µ = ν, then, by Proposition 2.3,

CT = CU , and axiom 6 holds. Assume, then, that µ 6= ν. Since µ, ν ⊂ λ and
|µ| = |ν| = |λ| − 1, both cells λ/µ and λ/ν must be northeastern corners of λ.
Therefore there exists T ′ ∈ SYT(λ) with i in position λ/ν, i + 1 in position λ/µ,
and i−1 between i and i+1 in the content reading word of T ′. Let U ′ be the result
of swapping i and i + 1 in T ′, in particular, {T ′,U ′} ∈ Ei . By Proposition 2.3, T ′

is in CT and U ′ is in CU ; hence there exists a path from T to T ′ and a path from
U ′ to U , each crossing only edges Eh , h < i . This establishes axiom 6.

DEFINITION 3.4. For partitions λ ⊂ ρ, with |λ| = n and |ρ| = N , choose a
tableau A of shape ρ/λwith entries n+1, . . . , N . Define the set of standard Young
tableaux of shape λ augmented by A, denoted ASYT(λ, A), to be those T ∈
SYT(ρ) such that T restricted to ρ/λ is A. Let Gλ,A be the signed colored graph
of type (n, N ) constructed on ASYT(λ, A)with i-edges given by elementary dual
equivalences for i − 1, i, i + 1 with i < n.

Note that Gλ,A is a dual equivalence graph of type (n, N ), and the (n, n)-
restriction of Gλ,A is Gλ.

Proposition 3.3 is the first step toward justifying Definition 3.2, and it also
allows us to refer to Gλ as the standard dual equivalence graph corresponding
to λ. In order to show the converse, when two graphs satisfy axiom 1, as all
graphs in this paper do, we define an isomorphism between them to be a sign-
preserving bijection on vertex sets that respects color adjacency. Precisely, we
have the following.
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DEFINITION 3.5. A morphism between two signed colored graphs of type (n, N )
satisfying dual equivalence graph axiom 1, say G = (V, σ, E) and H = (W, τ,
F), is a map φ : V → W such that, for every u, v ∈ V ,

• for every 1 6 i < N , we have σ(v)i = τ(φ(v))i ; and

• for every 1 < i < n, if {u, v} ∈ Ei , then {φ(u), φ(v)} ∈ Fi .

A morphism is an isomorphism if it is a bijection on vertex sets.

LEMMA 3.6. If φ is a morphism from a signed colored graph G of type (n, N )
satisfying axiom 1 to an augmented standard dual equivalence graph Gλ,A, then
φ is surjective.

Proof. Suppose that T = φ(v) for some T ∈ ASYT(λ, A) and some vertex v
of G. Then, for every 1 < i < n, if {T,U } ∈ Ei , then, since σ(v) = σ(T ), by
axiom 1 there exists a unique vertex w of G such that {v,w} ∈ Ei in G. Since φ
is a morphism, we must have {T, φ(w)} ∈ Ei in Gλ,A. Thus, by the uniqueness
condition of axiom 1, φ(w) = U , and so U also lies in the image of φ. Therefore
the i-neighbor of any vertex in the image of φ also lies in the image, since φ
preserves i-edges. Since Gλ,A is connected, φ is surjective.

The final justification of this axiomatization is the following converse of
Proposition 3.3.

THEOREM 3.7. Every connected component of a dual equivalence graph of type
(n, n) is isomorphic to Gλ for a unique partition λ of n.

The proof of Theorem 3.7 is the content of Section 3.2. We conclude this
section by interpreting Theorem 3.7 in terms of symmetric functions.

COROLLARY 3.8. Let G be a dual equivalence graph of type (n, n) such that
every vertex is assigned some additional statistic α that is constant on connected
components of G. Then∑

v∈V (G)

qα(v)Qσ(v)(X) =
∑
λ

∑
C∼=Gλ

qα(C)sλ(X), (3.2)

where the inner sum is over connected components of G that are isomorphic to
Gλ. In particular, the generating function for G so defined is symmetric and Schur
positive.
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3.2. The structure of dual equivalence graphs. We begin the proof
of Theorem 3.7 by showing that the standard dual equivalence graphs are
nonredundant in the sense that they are mutually nonisomorphic and have no
nontrivial automorphisms. Both results stem from the observation that Gλ contains
a unique vertex such that the composition formed by the lengths of the runs of
+1 in the signature gives a maximal partition.

PROPOSITION 3.9. If φ : Gλ→ Gµ is an isomorphism, then λ = µ and φ = id.

Proof. Let Tλ be the tableau obtained by filling the numbers 1 through n into
the rows of λ from left to right, bottom to top, in which case σ(Tλ) = +λ1−1,−,

+
λ2−1,−, . . .. For any standard tableau T such that σ(T ) = σ(Tλ), the numbers

1 through λ1, and also λ1 + 1 through λ1 + λ2, and so on, must form horizontal
strips. In particular, if σ(T ) = σ(Tλ) for some T of shape µ, then λ 6 µ, with
equality if and only if T = Tλ.

Suppose that φ : Gλ → Gµ is an isomorphism. Let Tλ be as above for λ, and
let Tµ be the corresponding tableau for µ. Then, since σ(φ(Tλ)) = σ(Tλ), λ 6 µ.
Conversely, since σ(φ−1(Tµ)) = σ(Tµ), µ 6 λ. Therefore λ = µ. Furthermore,
φ(Tλ) = Tλ. For T ∈ SYT(λ) such that {Tλ, T } ∈ Ei , we have {Tλ, φ(T )} ∈ Ei , so
φ(T ) = T by dual equivalence axiom 1. Extending this, every tableau connected
to a fixed point by some sequence of edges is also a fixed point for φ, and hence
φ = id on each Gλ by Proposition 2.3.

In order to avoid cumbersome notation, as we investigate the connection
between an arbitrary dual equivalence graph and the standard one, we will often
abuse notation by simultaneously referring to σ and E as the signature function
and edge set for both graphs.

DEFINITION 3.10. Let G = (V, σ, E) be a signed colored graph of type (n, N )
satisfying axiom 1. For 1 < i < N , we say that a vertex w ∈ V admits an i-
neighbor if σ(w)i−1 = −σ(w)i .

For 1 < i < n, if σ(w)i−1 = −σ(w)i for some w ∈ V , then axiom 1 implies
the existence of x ∈ V such that {w, x} ∈ Ei . That is, if w admits an i-neighbor
for some 1 < i < n, then w has an i-neighbor in G. For n 6 i < N , though
i-edges do not exist in G, if G were the restriction of a graph of type (i + 1, N )
also satisfying axiom 1, then the condition σ(w)i−1 = −σ(w)i would imply the
existence of a vertex x such that {w, x} ∈ Ei in the type (i + 1, N ) graph. When
convenient, Ei may be regarded as an involution, where Ei(w) = x if w admits
an i-neighbor and {w, x} ∈ Ei , and otherwise Ei(w) = w.
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Figure 9. Identifying the unique position for n + 1 based on σn .

Recall the notion of augmenting a partition λ by a skew tableau A and the
resulting dual equivalence graph Gλ,A from Definition 3.4.

LEMMA 3.11. Let G = (V, σ, E) be a connected dual equivalence graph of type
(n, N ) with n < N, and let φ be an isomorphism from the (n, n)-restriction of
G to Gλ for some partition λ of n. Then there exists a semistandard tableau A of
shape ρ/λ, |ρ| = N, with entries n+ 1, . . . , N such that φ gives an isomorphism
from G to Gλ,A. Moreover, the position of the cell of A containing n+ 1 is unique.

Proof. By axiom 2 and the fact that G is connected, σh is constant on G for h >
n + 1. Therefore, once a suitable cell for n + 1 has been chosen, the cells for
n + 2, . . . , N may be chosen in any way that gives the correct signature. One
solution is to place j north of the first column if σ j−1 = −1 or east of the first row
if σ j−1 = +1 for j = n + 2, . . . , N . Assume, then, that N = n + 1.

By dual equivalence axiom 2, σn is constant on connected components of the
(n− 1, n+ 1)-restriction of G. By Proposition 2.3, a connected component of the
(n−1, n−1)-restriction of Gλ consists of all standard Young tableaux where n lies
in a particular northeastern cell of λ. Therefore, for each connected component of
the (n− 1, n+ 1)-restriction of G, we may identify its image under φ with Gµ for
some partition µ ⊂ λ, |µ| = n − 1, with n lying in position λ/µ. We will show
that σn has the monotonicity property on connected components of the (n − 1,
n+ 1)-restriction of G depicted in Figure 9; that is, there is an inner corner above
which σn = +1 and below which σn = −1.

Let C and D be two distinct connected components of the (n − 1,
n + 1)-restriction of G such that there exist vertices u of C and v of
D with {u, v} ∈ En−1. Let φ(C) ∼= Gµ, and let φ(D) ∼= Gν . Since {u,
v} ∈ En−1, φ(v) must have n − 1 in position λ/µ with n − 2 lying
between n − 1 and n in the content reading word. Since φ preserves
En−1 edges, φ(u) must be the result of an elementary dual equivalence on
φ(v) for n − 2, n − 1, n, which will necessarily interchange n − 1 and n.
Since φ preserves signatures, λ/ν lies northwest of the position of λ/µ if and
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only if σ(v)n−2,n−1 = +− and σ(u)n−2,n−1 = −+. If λ/ν lies northwest of the
position of λ/µ and σ(v)n = −1, then σ(v)n = σ(v)n−1. Thus, by axiom 3,
σ(u)n = σ(v)n = −1. Similarly, if λ/ν lies northwest of the position of λ/µ and
σ(u)n = +1, then σ(u)n = σ(u)n−1. Thus, by axiom 3, σ(v)n = σ(u)n = +1.

Abusing notation and terminology, we identify φ(C) with the cell of λ in
position λ/µ, where φ(C) ∼= Gµ. With this convention, we have shown that, if
σn(C) = +1 and D is any component connected to C by an n − 1-edge such that
φ(D) lies northwest of φ(C), then σn(D) = +1 as well. Similarly, if σn(C) = −1
and D is any component connected to C by an n − 1-edge such that φ(D) lies
southeast of φ(C), then σn(D) = −1 as well. By dual equivalence graph axiom
6, for any two distinct connected components C and D of the (n − 1, n + 1)-
restriction of G and any pair of vertices w on C and x on D, there is a path from w

to x crossing at most one, and hence exactly one, n−1 edge. Therefore, for any C
and D, there exist vertices v of C and u of D such that {v, u} ∈ En−1. Hence every
two connected components of the (n−1, n+1)-restriction of G are connected by
an n − 1-edge, thus establishing the monotonicity depicted in Figure 9.

This established, it follows that there exists a unique row such that σ(C)n = −1
whenever the φ(C) has n south of this row and σ(C)n = +1 whenever the φ(C)
has n north of this row. In this case, the cell containing n + 1 must be placed at
the eastern end of this pivotal row, and doing so extends φ to an isomorphism
between (n, n + 1) graphs.

Once Theorem 3.7 has been proved, Lemma 3.11 may be used to obtain the
following generalization of Theorem 3.7 for dual equivalence graphs of type
(n, N ).

COROLLARY 3.12. Every connected component of a dual equivalence graph of
type (n, N ) is isomorphic to Gλ,A for a unique partition λ and some skew tableau
A of shape ρ/λ, |ρ| = N, with entries n + 1, . . . , N.

Finally we have all of the ingredients necessary to prove the main result of this
section.

THEOREM 3.13. Let G be a connected signed colored graph of type (n+1, n+1)
satisfying axioms 1 through 5 such that each connected component of the (n, n)-
restriction of G is isomorphic to a standard dual equivalence graph. Then there
exists a morphism φ from G to Gλ for some unique partition λ of n + 1.

Proof. When n + 1 = 2 or, more generally, when G has no n-edges, the result
follows immediately from Lemma 3.11. Therefore we proceed by induction,
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Figure 10. An illustration of the gluing process.

assuming that G has at least one n-edge, and assuming the result for graphs of
type (n, n).

By induction, for every connected component C of the (n, n + 1)-restriction of
G, we have an isomorphism from the (n, n)-restriction of C to Gµ for a unique
partition µ of n. By Lemma 3.11, this isomorphism extends to an isomorphism
from C to Gµ,A for a unique augmenting tableau A, say with shape λ/µ. We will
show that for any C the shape of µ augmented with A is the same, and that we
may glue these isomorphisms together to obtain a morphism from G to Gλ.

Suppose that {w, x} ∈ En . Let C (respectively D) denote the connected
component of the (n, n + 1)-restriction of G containing w (respectively x). Let φ
(respectivelyψ) be the isomorphism from C (respectively D) to Gµ,A (respectively
Gν,B), and set T = φ(w); see Figure 10. We will show that ψ(x) = En(T ), and
hence, if µ, A has shape λ, then so does ν, B, and the maps φ and ψ glue together
to give an morphism from C∪D to Gλ that preserves n-edges. There are two cases
to consider, based on the relative positions of n − 1, n, n + 1 in T , regarded as a
tableau of shape λ.

First suppose that n + 1 lies between n and n − 1 in the reading word of T .
We will show that, in this case, C = D. Since n + 1 lies between n and n − 1
in the reading word of T , both n − 1 and n must be northeastern corners of µ,
and so there is a cell with entry less than n − 1 that also lies between them. By
Proposition 2.3, there exists a tableau T ′ with n−1, n, n+1 in the same positions
as in T , but now with n − 2 lying between n and n − 1 in the reading word of
T ′. Furthermore, since both T and T ′ lie on the (n− 2, n+ 1)-restriction of Gµ,A,
there is a path from T to T ′ in Gµ,A using only edges Eh with h 6 n − 3. Let
U ′ = En(T ′). Since n−2 lies between n and n−1 in U ′, we have U ′ = En−1(T ′)
as well. By axiom 5, all edges in the path from T to T ′ commute with En , and so
the same path takes U = En(T ) to U ′, and each pair of corresponding tableaux
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Figure 11. An illustration of the path from T to U in Gµ,A and its lift in C.

on the two paths is connected by an En edge; see Figure 11. We now embark on
a diagram chase around Figure 11, from w to x and from T to U , to show that
C = D.

Since the path from T to T ′ to U ′ to U uses only edges from Gµ,A, this path
lifts via the isomorphism φ to a path in C. Let w′ = φ−1(T ′) and x ′ = φ−1(U ′).
We will show that x = φ−1(U ), and so lies on C. Since φ preserves signatures,
both w′ and x ′ must admit an n-edge in G. As summarized in Figure 7, axioms 3
and 4 dictate that the only way for two vertices connected by an n − 1-edge both
to admit an n-edge is for {w′, x ′} ∈ En in G. By axioms 2 and 5, the path from
w′ to w gives an identical path from x ′ to φ−1(U ). Since each corresponding pair
along the two paths must be paired by an n-edge, we have φ−1(U ) = En(w) = x ,
as desired. Therefore x lies on C, and φ respects the n-edge between w and x . In
this case C = D and, by Proposition 3.9, ψ = φ.

For the second case, suppose that n−1 lies between n and n+1 in T . Consider
the subset of tableaux in Gµ,A with n and n + 1 fixed in the same position as in
T and n − 1 lying anywhere between them in the reading word. We claim that
this set uniquely determines µ and A. In terms of the graph structure, these are all
tableaux reachable from T using edges Eh with h 6 n − 3 and a certain subset
of the En−2 edges. We will return soon to the question of which En−2 edges these
are. For now, let T denote the union of the graphs Gρ,R , where ρ is a partition
of n − 2 with augmenting tableau R consisting of a single cell containing n − 1
such that ρ, R is the shape of T with n and n + 1 removed and the augmented
cell of R lies strictly between the positions of n and n + 1 in T . Clearly the set
of ρ, R uniquely determines the cells containing n and n + 1, and so uniquely
determines λ. Furthermore, which of n, n + 1 occupies which cell is determined
by σn , and this is constant on this subset by axioms 2 and 3. Lifting T to C using
φ−1 gives rise to an induced subgraph of C that completely determines λ as well
as the positions of n and n + 1 in the image of this subgraph under φ. We will
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Figure 12. An illustration of En−2 edges on T ∪ U and their lifts in C ∪D.

show that the corresponding induced subgraph for D is isomorphic but with the
opposite sign for σn .

To prove the assertion, we return to the question of which En−2 edges are
allowed in generating T . Any En−2 edge that keeps n − 1 between n and n + 1
clearly does not change σn−1 or σn . Therefore such En−2 edges must pair vertices
both of which admit an n-neighbor. Further, neither of these vertices may have En

as a double edge with En−1 since n − 1 lies between n and n + 1. By axiom
4, the En−2 edges that meet these conditions are precisely those in the lower
component of Figure 8. In particular, these En−2 edges commute with En edges
as depicted in Figure 12. By axiom 5, Eh also commutes with En for h 6 n − 3.
Therefore all edges on the induced subgraph of C containing φ−1(T ) commute
with En . Therefore En may be regarded as an isomorphism from this subgraph to
X = En(φ

−1(T )). Since {w, x} ∈ En and w ∈ φ−1(T ), we have x ∈ X . Since all
edges of the induced subgraph have color at most n − 2, it follows that X ⊂ D.

Let U = ψ(x), and let U = ψ(X ). Since φ,ψ and En are isomorphisms of the
(n − 2, n − 2)-restrictions, U together with its induced edges is isomorphic to T
together with its induced edges, though, by axiom 1, the signs for σn and σn+1 are
reversed. By the definition of T and the fact that it uniquely determines µ and A,
this implies that the tableaux in U have shape λ, with the cells containing n and
n + 1 reversed from that in T . In particular, U = En(T ); that is to say, φ and ψ
glue to give a morphism from C ∪ D ⊂ G to Gµ,A ∪ Gν,B ⊂ Gλ that respects En

edges of the induced subgraphs.
Since T admits an n-neighbor, n cannot lie between n − 1 and n + 1, so these

two are the only cases. Thus we now have a well-defined morphism from the (n,
n+ 1)-restriction of G to the (n, n+ 1)-restriction of Gλ that respects n-edges. As
such, this map lifts to a morphism from G to Gλ.

By Lemma 3.6, the morphism of Theorem 3.13 is necessarily surjective, though
in general it need not be injective. The smallest example where injectivity fails
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was first observed by Gregg Musiker in a graph of type (6, 6) with generating
function 2s(3,2,1)(X).

For any G satisfying the hypotheses of Theorem 3.13, the fiber over each vertex
of Gλ in the morphism from G to Gλ has the same cardinality. Letting φ be the
morphism from G to Gλ, there is a bijective correspondence between connected
components of φ−1(Gµ) and connected components of φ−1(Gν) that follows from
the following result.

COROLLARY 3.14. Let G satisfy the hypotheses of Theorem 3.13, and let φ be the
morphism from G to Gλ. For any connected component C of the (n, n)-restriction
of G, say with φ(C) = Gµ, and any partition ν ⊂ λ of size n, there is a unique
connected component D of the (n, n)-restriction of G with φ(D) = Gν that can
be reached from C by crossing at most one En edge.

Proof. To prove existence, if ν 6= µ, let T be a tableau of shape λ with n + 1
in position λ/µ, n in position λ/ν, and n − 1 lying between in the reading
word. Otherwise let T be a tableau with n + 1 in position λ/µ and n and
n − 1 lying on opposite sides in the reading word. Let w be the unique element
in φ−1(T ) ∩ C. Then w admits an n-neighbor, and, since φ is a morphism,
φ(En(w)) = En(φ(w)) ∈ Gν .

To prove uniqueness, let {w, x} ∈ En with w ∈ C ∼= Gµ and x ∈ D ∼= Gν . If
n + 1 lies between n and n − 1 in φ(w), then µ = ν, and, just as in the proof
of Theorem 3.13, we conclude that D = C, as desired. Alternately, assume that
n − 1 lies between n and n + 1 in φ(w), and suppose that {w′, x ′} ∈ En−1 with
w′ ∈ C and x ′ ∈ D′ ∼= Gν . Since φ(w) and φ(w′) have the same shape, and
En(φ(w)) = φ(En(w)) = φ(x) and En(φ(w

′)) = φ(En(w
′)) = φ(x ′) have the

same shape, just as in the proof of Theorem 3.13, there must be a path from φ(w)

to φ(w′) in Gν using only edges Eh with h 6 n − 3 and those En−2 that commute
with En . Therefore this path gives rise to the same path from φ(x) to φ(x ′) in Gµ.
The former path lifts to a path from w to w′ in C, and so the latter lifts to a path
from En(w) = x to En(w

′) = x ′ in D = D′, which is as desired.

In order to ensure that the morphism in the conclusion of Theorem 3.13 is
an isomorphism, and thereby complete the proof of Theorem 3.7, we need only
invoke the heretofore uninvoked axiom 6.

Proof of Theorem 3.7. Let G be a dual equivalence graph of type (n + 1, n + 1).
We aim to show that G is isomorphic to Gλ for a unique partition λ of n + 1. We
proceed by induction on n + 1, noting that the result is trivial for n + 1 = 2.
Every connected component of the (n, n)-restriction of G is a dual equivalence
graph, and so, by induction, is isomorphic to a standard dual equivalence graph.
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Thus, by Theorem 3.13, there exists a morphism, say φ, from G to Gλ for a unique
partition λ of n+ 1. By Corollary 3.14, for any connected component C of the (n,
n)-restriction of G and any partition ν ⊂ λ of size n, there is a unique connected
component D of the (n, n)-restriction of G that can be reached from C by crossing
at most one En edge such that φ(D) = Gν . By dual equivalence axiom 6, any two
connected components of the (n, n)-restriction of G can be connected by a path
using at most one En edge. Therefore the connected components of the (n, n)-
restriction of G are pairwise nonisomorphic. Hence the morphism from G to Gλ is
injective on the (n, n+1)-restrictions, and so it is injective on all of G. Surjectivity
follows from Lemma 3.6; thus φ is an isomorphism.

4. Abstract dual equivalence

4.1. A recharacterization of dual equivalence. The inspiration for dual
equivalence graphs comes from the elementary dual equivalence involutions. In
this section, we reformulate the machinery of dual equivalence graphs back in
terms of involutions. Given a set A of combinatorial objects together with a notion
of a descent set Des sending an object to a subset of positive integers, the goal is
to define equivalence relations on objects in A so that the sum over objects in any
single equivalence class is a single Schur function.

Given (A,Des) and involutions ϕ2, . . . , ϕn−1 on A, for 1 < h < i < n we
consider the restricted dual equivalence class [T ](h−1,i+1) generated by ϕh, . . . ,

ϕi . In addition, we consider the restricted and shifted descent set Des(h−1,i+1)(T )
obtained by intersecting Des(T ) with {h − 1, . . . , i} and subtracting h − 2 from
each element so that Des(h−1,i+1)(T ) ⊆ [i − h + 2].

DEFINITION 4.1. Let A be a finite set, and let Des be a map on A such that
Des(T ) ⊆ [n − 1] for all T ∈ A. A dual equivalence for (A,Des) is a family of
involutions {ϕi}1<i<n on A such that the following hold.

(i) For all i − h 6 3 and all T ∈ A, there exists a partition λ of i − h + 3 such
that ∑

U∈[T ](h,i)

QDes(h,i)(U )(X) = sλ(X).

(ii) For all |i − j | > 3 and all T ∈ A, we have

ϕ jϕi(T ) = ϕiϕ j(T ).

On the surface, Definition 4.1 appears to have only two conditions. However,
condition (i) includes four cases, for i − h = 0, 1, 2, 3. These cases correspond
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to the dual equivalence graph axioms as follows: i − h = 0 means there is one
edge color, and this corresponds to axioms 1 and 2; i − h = 1 means there are
two edge colors, and this corresponds to axiom 3 and the first half of axiom 4;
i − h = 2 means there are three edge colors, and this corresponds to the second
half of axiom 4; i − h = 3 means there are four edge colors, and this corresponds
to the axiom 6.

THEOREM 4.2. For {ϕi} a family of involutions on A, let G = (A, σ,Φ) be the
corresponding signed colored graph with descent signature and i-colored edges
given by

σ(T )i = −1⇔ i ∈ Des(T ) Φi = {{T, ϕi(T )} | T 6∈ Aϕi }. (4.1)

Then {ϕi} is a dual equivalence for (A,Des) if and only if G is a dual equivalence
graph.

Proof. We may assume that G is connected. If G is a dual equivalence graph, then,
by Theorem 3.7, we may assume that G = Gλ for some partition λ, and the result
follows from the observation that di is a dual equivalence for SYT(λ) [7].

Assume then that {ϕi} is a dual equivalence for (A,Des). If σ(w)i−1 = σ(w)i ,
then the degree-3 generating function of [w]i is s(3) or s(13), so w must be in an i-
equivalence class of its own; that is, ϕi(w) = w. On the other hand, if σ(w)i−1 =

−σ(w)i , then the equivalence class of w must have generating function s(2,1), so
there exists x 6= w such that ϕi(w) = x . Moreover, since ϕi is an involution, x is
unique. This establishes axiom 1. This also shows that, up to interchanging w and
x , σ(w)i−1,i = +− and σ(x)i−1,i = −+, satisfying the first half of axiom 2.

Assume that x = ϕi(w) 6= w, σ(w)i−2 = −σ(x)i−2 and, contrary to axiom 3,
σ(w)i−2 = σ(w)i−1. By axiom 1 and the first half of axiom 2, we may assume
that σ(w)i−1,i = +− and σ(x)i−1,i = −+. Therefore σ(w)i−2,i−1,i = ++− and
σ(x)i−2,i−1,i = −−+. By restricting to the (i −1, i)-equivalence class, condition
(i) implies that w must lie in a class with generating function s(3,1), and x must lie
in a class with generating function s(2,1,1), contradicting the fact thatw, x are in the
same restricted class with generating function a single Schur function. Therefore
axiom 3 must hold.

Now consider nontrivial connected components of Φi−1 ∪ Φi . Up to
conjugating, the restricted generating function is either s(3,1) or s(2,2). In the
latter case, there are two vertices, and neither can be a fixed point for ϕi−1

or ϕi , by axiom 1. Therefore the structure indeed matches the right graph of
Figure 7. In the former case, there are three vertices, say σ(w)i−2,i−1,i = ++−,
σ(x)i−2,i−1,i = + − +, and σ(u)i−2,i−1,i = − + +. By axiom 1 and the first half
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of axiom 2, we must have ϕi(w) = x , ϕi−1(u) = x , with w fixed for ϕi−1 and u
fixed for ϕi . Again, the structure indeed matches the middle graph of Figure 7.

Next we consider nontrivial connected components of Φi−1 ∪ Φi ∪ Φi+1. Up
to conjugating, the restricted generating function is either s(4,1), s(3,2), or s(3,1,1). In
the former case, by axiom 1, exactly two vertices are not fixed points for ϕ j for
each j = i − 1, i, i + 1, and making the forced pairing results in the structure of
G(4,1). In the other cases, there are four vertices that are not fixed points for ϕ j for
each j = i − 1, i, i + 1, so, taking the first half of axiom 2 into account, there are
two possible j-edge pairings for each j = i − 1, i, i + 1. For generating function
s(3,1,1), taking axiom 3 into account uniquely forces each edge pairing so that the
resulting graph has the structure of G(3,1,1). For generating function s(3,2), given
that two color components must appear in Figure 7, there are two possibilities:
the structure of G(3,2) or a vertex w with ϕi−1(w) = ϕi(w) = ϕi+1(w), in which
case the restricted equivalence class has only two elements and not the required
five. Therefore axiom 4 holds.

Axiom 5 is precisely condition (ii) for dual equivalence.
For the second half of axiom 2, assume that|i − j | > 3. If w is a fixed point

for ϕi , then, by axiom 5, ϕi(ϕ j(w)) = ϕ j(ϕi(w)) = ϕ j(w), so ϕ j(w) is a fixed
point for ϕi as well. In particular, if x = ϕi(w) 6= w and σ(w) j 6= σ(x) j for
some j < i − 2, then, by this observation and axiom 1, σ(w) j 6= σ(x) j for
every j < i − 2. Similarly, if x = ϕi(w) 6= w and σ(w) j 6= σ(x) j for some
j > i + 1, then σ(w) j 6= σ(x) j for every j > i + 1. Therefore it suffices to show
that σ(w) j 6= σ(x) j for j = i − 3 and j = i + 2. This follows by axioms 1 and 4
and the first half of axiom 2.

Finally, since axiom 6 follows from axiom 4 when n 6 5, we prove axiom 6 by
induction, and assume that i = n − 1. Since G has been shown to satisfy axioms
1 through 5 and the (n − 1, n − 1)-restriction satisfies axiom 6 by induction,
Theorem 3.7 ensures that the hypotheses of Theorem 3.13 and Corollary 3.14
are met. Therefore the generating function of G is ksλ for some positive integer k.
When n = 6, condition (i) ensures that k = 1 and the map to Gλ is an isomorphism.
In particular, we may assume that the restriction of G to edges Φn−4, . . . , Φn−1

satisfies dual equivalence graph axiom 6.
Suppose that T,U, V,W ∈ A, and that {T,U }, {V,W } ∈ Φn−1 and U and V

lie on the same connected component of Φ2 ∪ · · · ∪Φn−2. We will show that there
exist T ′,W ′ lying on the same connected component of Φ2 ∪ · · · ∪Φn−2 as T,W ,
respectively, such that there is a path from T ′ to W ′ crossing at most one Φn−1

edge; see Figure 13. This is enough to establish axiom 6.
By Theorem 3.7, every connected dual equivalence graph is isomorphic to

the graph on tableaux of a given shape. By the inductive hypothesis and
Theorem 3.13, we may identify T,U, V,W with tableaux of shape κ , |κ| = n,
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Figure 13. Establishing axiom 6 from local conditions.

and, when restricted to entries less than n, T,U, V,W have shapes µ, λ, λ, ν,
respectively, with µ, λ, ν distinct partitions contained in κ by Corollary 3.14.
Then κ\ξ must be a corner (end of row, top of column) for ξ = µ, λ, ν. There
are six cases to consider, based on the relative positions of κ\µ, κ\ν, and κ\λ
in κ . We treat one case in full detail, noting that the others can be resolved in a
completely analogous way.

Assume that these cells appear with κ\µ northwest of κ\ν northwest of κ\λ.
Let T ′ be any tableau of shape κ with n in position κ\µ, n − 1 in position κ\λ,
n−2 in position κ\ν, n−3 between n and n−2 in the reading order, n−4 between
n−1 and n−2 in the reading order, and n−5 between n−3 and n−4 in the reading
order. Set U ′ = ϕn−1(T ′). Since the shape of U ′ restricted to entries less than n is
λ, U ′ and U = ϕn−1(T ) must lie on the same connected component of Φ2 ∪ · · · ∪

Φn−2, as must V ′ = ϕn−2ϕn−4ϕn−2(U ′). Set W ′
= ϕn−1(V ′). Since the shape of W ′

restricted to entries less than n is ν, W ′ and W = ϕn−1(V ) must lie on the same
connected component ofΦ2∪· · ·∪Φn−2. Moreover, by unraveling the definitions
of U ′, V ′, and W ′, we have W ′

= ϕn−1ϕn−2ϕn−4ϕn−2ϕn−1(T ′). Therefore T ′ and
W ′ lie on the same restricted graph of size 6, so by induction there exists a path
from T ′ to W ′ using at most one edge in Φn−1.

REMARK 4.3. In practice, the characterization of dual equivalence being local
makes it far better than the axioms for a dual equivalence graph for establishing
Schur positivity. The equivalence of axiom 6 to a local condition was first
observed and proved by Roberts [12].

COROLLARY 4.4. If there exists a dual equivalence for (A,Des), then∑
T∈A

QDes(T )(X)

is symmetric and Schur positive.
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4.2. Formulas from dual equivalence. Dual equivalence may be used to
prove that a function is symmetric and Schur positive, and it gives a combinatorial
interpretation of the Schur coefficients as the number of equivalence classes or
connected components of a certain type. A classical example of a similar formula
is the standard tableau version of the Littlewood–Richardson rule.

THEOREM 4.5 (Littlewood–Richardson rule). Define integers cλµ,ν by

sµsν =
∑
λ

cλµ,νsλ. (4.2)

Then cλµ,ν is the number of standard tableaux of shape µ appended to ν that rectify
by jeu de taquin to a chosen standard Young tableau of shape λ.

We use dual equivalence to give a simple proof of this rule as a corollary (at
q = 1) to Theorem 5.4.

Dual equivalence for A can be regarded as implicitly giving a rectification rule
via the unique isomorphism, say θ , from (A, σ,Φ) to Gλ. That is, say that T ∈ A
rectifies to θ(T ) ∈ SYT(λ). Then choosing only those tableaux that rectify to
a fixed T ∈ SYT(λ) is equivalent to choosing a distinguished equivalence class
member and taking all objects that map to that member under θ .

In this section, we present two good choices for distinguished elements that
avoid the need for explicitly constructing the isomorphism θ .

For T ∈ A, let α(T ) be the composition of n corresponding to Des(T ). Recall
the dominance order on partitions of n, which we extend to compositions of n by

α > β ⇔ α1 + · · · + αk > β1 + · · · + βk ∀k. (4.3)

We can now define the set of distinguished elements.

DEFINITION 4.6. Let {ϕi} be a dual equivalence for (A,Des). Then T ∈ A is
called dominant if α(T ) > α(S) for every S in the dual equivalence class of T .

Since dominance order is a partial order, it is not immediately obvious that
dominant objects exist. Not only do they exist, but each dual equivalence class
contains a unique dominant element, and α(T ) is a partition for T dominant.

THEOREM 4.7. Let {ϕi} be a dual equivalence for (A,Des) preserving stat. Then

f (X; q) =
∑

T∈Dom(A)

qstat(T )sα(T )(X) =
∑
λ

( ∑
T∈Dom(A)
α(T )=λ

qstat(T )
)

sλ(X), (4.4)

where Dom(A) is the set of dominant objects of A with respect to {ϕi}.
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Figure 14. The superstandard (dominant) and substandard (subordinate) tableaux
of shape (4, 3, 2).

Proof. Given λ, let Tλ ∈ SYT(λ) denote the superstandard tableau of shape λ
obtained by filling the first row with 1, 2, . . . , λ1, the second row with λ1+1, . . . ,
λ1+ λ2, and so on. For an example, see Figure 14. For any T ∈ SYT(λ), we have
α(T ) 6 λ, with equality if and only if T = Tλ. Since the dual equivalence classes
on tableaux include all tableaux of a given shape, each dual equivalence class
contains a unique dominant element, and the map α gives the corresponding Schur
function for the class. The result for arbitrary A now follows from Corollary 4.4
since the descent sets must be the same for the elements of a dual equivalence
class and the set of tableaux of shape λ for some partition λ.

REMARK 4.8. Theorem 4.7 makes use of the implicit bijection between A and
tableaux that exists whenever there is a dual equivalence for A. This bijection can
be realized by identifying each T ∈ Dom(A) with the superstandard tableau Tα(T )
and then applying the same sequence of dual equivalence involutions to both.

REMARK 4.9. There is another distinguished element that can be chosen from
each equivalence class which is almost as natural as the dominant element. Say
that T ∈ A is subordinate if α(T ) 6 α(S) for every S in the dual equivalence
class of T . For example, the right tableau in Figure 14 is the subordinate
tableau of shape (4, 3, 2). Then each dual equivalence class contains a unique
subordinate object. Define a map β on subordinate objects by sending T to
α([n− 1] \Des(T ))′. That is, complement the set and conjugate the shape. Then,
in Theorem 4.7, the set Dom of dominant objects may be replaced with the set
Sub of subordinate objects when α is replaced with β.

5. A graph for LLT polynomials

5.1. LLT polynomials. The LLT polynomial G̃(k)
µ (x; q), originally defined by

Lascoux et al. [9] in 1997, is the q-generating function of k-ribbon tableaux
of shape µ weighted by a statistic called cospin. By the Stanton–White
correspondence [13], k-ribbon tableaux are in bijection with certain k-tuples of
tableaux, from which it follows that LLT polynomials are q-analogs of products
of Schur functions. An alternative definition of G̃µ(x; q) as the q-generating
function of tuples of semistandard tableaux of shapes µ = (µ(0), . . . , µ(k−1))
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Figure 15. A standard 4-tuple of shape ((3, 2), (2, 1),∅, (2, 2, 1)/(1)).

weighted by a statistic called diagonal inversions is given in [6]. For a detailed
account of the equivalence of these definitions (actually qaG̃(k)

µ (x; q) = G̃µ(x; q)
for a constant a > 0 depending on µ), see [2, 6].

Extending prior notation, for λ = (λ(0), . . . , λ(k−1)), define

SSYT(λ) = {semi-standard tuples of tableaux of shapes (λ(0), . . . , λ(k−1))},

SYT(λ) = {standard tuples of tableaux of shapes (λ(0), . . . , λ(k−1))}.

As with tableaux, if T = (T (0), . . . , T (k−1)) ∈ SSYT(λ) has entries 1π1, 2π2, . . .,
then we say that T has shape λ and weight π . Note that a standard tuple of
tableaux has weight (1n) (for an example, see Figure 15), and this is not the same
as a k-tuple of standard tableaux.

For a k-tuple of (skew) shapes (λ(0), . . . , λ(k−1)), define the shifted content of a
cell x by

c̃(x) = k · c(x)+ i (5.1)

when x is a cell of λ(i), where c(x) is the usual content of x regarded as a cell of
λ(i). For T ∈ SSYT(λ), let T(x) denote the entry of the cell x in T. Define the set
of diagonal inversions of T by

dInv(T) = {(x, y) | k > c̃(y)− c̃(x) > 0 and T(x) > T(y)}. (5.2)

Then the diagonal inversion number of T is given by

dinv(T) = |dInv(T)|. (5.3)

It will also be convenient to track the set of diagonal descents of T, defined by

dDes(T) = {(x, y) | c̃(y)− c̃(x) = k and T(x) > T(y)}. (5.4)

Of course, these descents are determined by the shape of T by the increasing rows
and columns condition for tableaux.

For example, suppose that T is the 4-tuple of tableaux in Figure 15. Since T is
standard, let us abuse notation by representing a cell of T by the entry it contains.
Then the set of diagonal inversions is

dInv(T) =
{
(9, 7), (9, 8), (7, 3), (8, 3), (8, 2), (3, 2), (3, 1),
(2, 1), (11, 1), (11, 5), (6, 4), (12, 4), (12, 10)

}
,
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and so dinv(T) = 13. The diagonal descents describe the shape of T. In this case,

dDes(T) = {(7, 2), (11, 6), (8, 1), (9, 3), (5, 4)}.

By [6], the LLT polynomial G̃µ(x; q) is given by

G̃µ(x; q) =
∑

T∈SSYT(µ)

qdinv(T)xT, (5.5)

where xT is the monomial xπ1
1 xπ2

2 · · · when T has weight π .
Notice that when q = 1, (5.5) reduces to a product of Schur functions:

∑
T∈SSYT(λ)

xT
=

k−1∏
i=0

∑
T (i)∈SSYT(λ(i))

x T (i)
=

k−1∏
i=0

sλ(i)(x). (5.6)

Define the content reading word of a tuple of tableaux to be the word obtained
by reading entries in increasing order of shifted content and reading diagonals
southwest to northeast. For the example in Figure 15, the content reading word is
(9, 7, 8, 3, 2, 11, 1, 5, 6, 12, 4, 10).

For T a standard tuple of tableaux, define σ(T) analogously to (2.3) using
the content reading word. Expressed in terms of quasisymmetric functions, (5.5)
becomes

G̃µ(x; q) =
∑

T∈SYT(µ)

qdinv(T)Qσ(T)(x). (5.7)

Using Fock space representations of quantum affine Lie algebras constructed
by Kashiwara et al. [8], Lascoux et al. [9] proved that G̃µ(x; q) is a symmetric
function. Thus we may define the Schur coefficients, K̃λ,µ(q), by

G̃µ(x; q) =
∑
λ

K̃λ,µ(q)sλ(x).

Using Kazhdan–Lusztig theory, Leclerc and Thibon [10] proved that K̃λ,µ(q) ∈
N[q] for µ a tuple of straight shapes. The original motivation for dual equivalence
graphs is to understand these Schur coefficients combinatorially and for arbitrary
skew shapes.

5.2. Dual equivalence for tuples of tableaux. Haiman’s dual equivalence
involutions do not always preserve the increasing row and column conditions for
a standard tuple of shapes. Therefore something more is needed.
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Figure 16. The two dual equivalences for S3.

DEFINITION 5.1. Define the elementary twisted dual equivalence involution d̃i ,
1 < i < n, on permutations w as follows. If i lies between i − 1 and i + 1 in w,
then d̃i(w) = w. Otherwise, d̃i cyclically rotates i − 1, i, i + 1 so that i lies on the
other side of i − 1 and i + 1.

Note that Haiman’s dual equivalence involutions and the twisted dual
equivalence involutions are the only two possible dual equivalences for S3;
see Figure 16. For the general case, the number of dual equivalences on Sn is
determined by the multiplicities of permutations of n with each possible inverse
descent set.

Define the distance between two entries i and j of T ∈ SYT(µ) to be the
difference of the shifted contents of their cells, with the extension dist(a1, . . . ,

al) = maxi, j {dist(ai , a j)}. Note that none of i − 1, i, i + 1 may occur with the
same content. For fixed k, combine these two dual equivalences into an involution
Di on k-tuples of tableaux by

Di(w) =

{
di(w) if dist(i − 1, i, i + 1) > k,
d̃i(w) if dist(i − 1, i, i + 1) 6 k,

(5.8)

where w is the content reading word of T.

PROPOSITION 5.2. For µ a tuple of shapes and T ∈ SYT(µ), T and Di(T)
have the same diagonal descent set and the same diagonal inversion number. In
particular, Di is a well-defined involution on SYT(µ) that preserves the number
of diagonal inversions.

Proof. If i lies between i−1 and i+1 inw(T), then the assertion is trivial. Assume
then that i does not lie between i −1 and i +1 in w(T). If dist(i −1, i, i +1) > k
in T, then the relative order of the middle letter with the two outer letters remains
unchanged, and the outer letters do not form a potential descent or a potential
inversion. Therefore dDes(T) = dDes(di(T)) and dInv(T) = dInv(di(T)).

If dist(i − 1, i, i + 1) 6 k in T, then the relative order of the outer letters in
T is the same as the relative order of the outer letters in d̃i(T). If these positions
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Figure 17. The graph on domino tableaux of shape ((2), (1, 1)).

form a potential descent, which happens if and only if dist(i − 1, i, i + 1) = k,
the descent or lack thereof between the outer two letters is preserved. Therefore
dDes(T) = dDes(d̃i(T)). In the case when dist(i − 1, i, i + 1) < k, these outer
letters form a potential inversion, which similarly is preserved. The map d̃i toggles
the middle letter between the smallest, i − 1, and the largest, i + 1. Therefore
exactly one of the potential inversions involving the middle letter is an inversion,
and this holds for T as well as for d̃i(T). Therefore dinv(T) = dinv(d̃i(T)), though
dInv(T) 6= dInv(d̃i(T)).

Since Di preserves the diagonal descent set, it is a well-defined involution on
SYT(µ).

Let Gµ be the signed colored graph on SYT(µ) determined by the involutions
Di . An example of Gµ is given in Figure 17.

Since the graph in Figure 17 is a dual equivalence graph, we have

G̃(2),(1,1)(x; q) = qs3,1(x)+ q2s2,1,1(x).

In general, Gµ does not satisfy dual equivalence axioms 4 or 6. Instead of having
restricted equivalence classes be single Schur functions, the restricted equivalence
classes for Di are conjecturally Schur positive.

DEFINITION 5.3. Let A be a finite set, and let Des be a descent set map on A
such that Des(T ) ⊆ [n− 1] for all T ∈ A. A weak dual equivalence for (A,Des)
is a family of involutions {ϕi}1<i<n on A such that the following hold.

(i) For all |i − j | 6 3 and all T ∈ A,∑
U∈[T ]( j,i)

QDes( j,i)(U )(X)

is Schur positive, and is a single Schur function if i = j .

(ii) For all |i − j | > 3 and all T ∈ A, we have

ϕ jϕi(T ) = ϕiϕ j(T ).

We refer to condition (i) of Definition 5.3 as local Schur positivity.
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Figure 18. Possible vertices and edges for graph using di or d̃i for edges colored
i = 2, 3.

THEOREM 5.4. For µ a tuple of shapes, the involutions {Di} give a weak dual
equivalence for SYT(µ), and when µ consists of at most two shapes, this is a
strong dual equivalence.

Proof. Condition (i) for i = j follows immediately from the fact that both di

and d̃i are dual equivalences for S3. Condition (ii) follows from the fact that, if
|i − j | > 3, then {i − 1, i, i + 1} and { j − 1, j, j + 1} are disjoint.

For |i − j | = 1, consider first a component of E2 ∪ E3 containing a vertex with
signature σ1,2,3 = −++. The only possible permutations with this descent pattern
are the three depicted on the left side of Figure 18. Applying d2 and d̃2 to each of
these gives one of the top four permutations in the middle of Figure 18. Applying
d3 and d̃3 to each of these gives either one of the three permutations on the right
of Figure 18, or the bottom permutation in the middle of Figure 18. Finally,
applying d2 and d̃2 to 2143 gives either 1342 or 3142, both of which appear in
the middle of Figure 18. Thus traversing the graph in Figure 18 by starting on
the left and alternating between 2-edges and 3-edges must eventually end on the
right. Taking signatures into account, the possible generating functions are of the
form s(3,1) + ms(2,2) for some m ∈ N (in fact, a more detailed analysis shows
that m = 0 or 1). In particular, a component containing a vertex with signature
σ1,2,3 = − + + is Schur positive. The same figure applies when working with a
vertex with signature σ1,2,3 = ++−. Reversing the permutations and multiplying
the signatures componentwise by −1 proves the result for components with a
vertex with signature σ1,2,3 = +−− or −−+. A component with a vertex with
signature σ1,2,3 = +++ or −−− is a single vertex and has generating function
s(4) or s(1,1,1,1), respectively. The only remaining case is an alternating loop of
vertices with signatures σ1,2,3 = + − + and − + −. As before, the top four
permutations in the middle of Figure 18 must connect by a 2-edge and a 3-edge
to 2143, and thus the component has two vertices and generating function s(2,2).
Similarly, the reverse of the top four permutations in the middle of Figure 18
must connect by a 2-edge and a 3-edge to 3412, and thus the component has
two vertices and generating function s(2,2). This covers all cases, so local Schur
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Figure 19. The nontrivial dual equivalence graphs on S4 using d̃i only when i−1,
i, i + 1 are adjacent.

positivity holds. Moreover, the case when µ has two shapes can be seen to be a
single Schur function directly from Figure 19.

For |i − j | = 2, 3, we enumerate all cases and check. Notice that one may
regard the shape µ as specifying attacking positions in a permutation. That is,
for a permutation w, say that wp attacks wq if p < q and the difference in shifted
contents between p and q is at most k. Therefore the structure of Gµ is given by the
graph on permutations where the edges are given by d̃i if i attacks the rightmost
of i ± 1 or if the leftmost of i ± 1 attacks i , and by di otherwise. Since attacking
positions are determined by distance, if wp attacks wr with p < q < r , then wp

attackswq as well. Therefore the graph on permutations of size n is determined by
(a1, . . . , an−1), where a j is the rightmost position that w j attacks. Since none of
i−1, i, i+1 can have the same shifted content, we may assume that each position
attacks its right neighbor, and so j +1 6 a j 6 n. Moreover, if wp attacks wr with
p < q < r , then wq attacks wr as well. Therefore ap 6 ap+1. Hence the number
of attacking vectors to consider for permutations of length n is the n−1th Catalan
number. In particular, there are 14 graph structures on permutations of 5 and 42
on permutations of 6. These cases can be checked by hand or by computer.

An alternative and completely elementary proof of Theorem 5.4 for µ

consisting of at most two shapes follows immediately from [1, Theorem 5.3].
Theorems 4.2 and 5.4 together with Proposition 5.2 prove the following, which

can also be found in [1, Corollary 5.4].

COROLLARY 5.5. For µ = (µ(0), µ(1)), the LLT polynomial G̃µ(x; q) is Schur
positive.

In 1995, Carré and Leclerc [3] gave a combinatorial interpretation of K̃λ,µ(q)
when µ has two shapes in their study of 2-ribbon tableaux, though a complete
proof of their result was not found until 2005 by van Leeuwen [14] using the
theory of crystal graphs. That proof is quite long and involved, as compared to
the one-page proof above using dual equivalence.
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Figure 20. The twisted dual equivalence classes of S4.

In general, Di is not a dual equivalence. For instance, if w has the pattern 2431
with dist(1, 2, 3) 6 k (which forces k > 3), then D2(w) contains the pattern 3412.
However, D3(w) contains the pattern 3241, which is not the same. For example,
see Figure 20. Therefore the restricted generating function is not a single Schur
function (though it is Schur positive).

CONJECTURE 5.6. For µ a tuple of shapes, each equivalence class under Di is
symmetric and Schur positive.

Conjecture 5.6 has been verified for n 6 12. Additionally, the extreme case
when each shape in µ is a single (nonskewed) box has connected components
with particularly nice Schur expansions that can be proved by more elementary
means.

In this case, Di = d̃i for all i , and so there are no double edges in Gµ. For the
standard dual equivalence graphs, Gλ has no double edges if and only if λ is a
hook, that is, λ = (m, 1n−m) for some m 6 n. Therefore the generating function
for a dual equivalence graph with no double edges is a sum of Schur functions
indexed by hooks. The analog of this fact for Gµ is that the generating function is
a sum of skew Schur functions indexed by ribbons.

Let ν be a ribbon of size n. Label the cells of ν from 1 to n in increasing order
of content. Define the descent set of ν, denoted Des(ν), to be the set of indices i
such that the cell labeled i + 1 lies south of the cell labeled i . Define the major
index of a ribbon by

maj(ν) =
∑

i∈Des(ν)

i. (5.9)

Any connected component of Gµ such that Di = d̃i on the entire component
not only has constant diagonal inversion number, but the relative ordering of the
first and last letters of each vertex is constant as well. This is because d̃i does not
change the relative order of the outer two letters among i − 1, i, i + 1. Therefore,
w1 > wn for somew ∈ [u] if and only ifw1 > wn for allw ∈ [u]. Whenw1 > wn ,
say that (1, n) is an inversion in [u].
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THEOREM 5.7. Let [U ] be an equivalence class for SYT(µ) under Di for which
Di(T ) = d̃i(T ) for all T ∈ [U ]. Then∑

T∈[U ]

Qσ(T )(x) =
∑

ν an n-ribbon
maj(ν)=dinv(U )

n−1∈Des(ν)⇔(1,n)∈dInv(U )

sν . (5.10)

Proof. We may assume that Di is acting by d̃i on the set of permutations of [n],
in which case diagonal inversions are the usual inversions for permutations. By
earlier remarks, for S, T ∈ [U ], inv(S) = inv(T ) and (1, n) ∈ Inv(S) if and only
if (1, n) ∈ Inv(T ). In fact, it is an easy exercise to show by induction that this
necessary condition for two vertices to coexist in [U ] is also sufficient. That is to
say, [U ] is the set of words S with inv(S) = inv(U ) and (1, n) ∈ Inv(S) if and
only if (1, n) is an inversion of U .

Recall Foata’s bijection on words [4]. For w a word and x a letter, φ is
built recursively using an inner function γx by φ(wx) = γx(φ(w))x . From this
structure it follows that the last letter of w is the same as the last letter of φ(w).
Furthermore, γx is defined so that the last letter of w is greater than x if and only
if the first letter of γx(w) is greater than x , and φ preserves the descent set of
the inverse permutation; that is, σ(w) = σ(φ(w)). Finally, the bijection satisfies
maj(w)= inv(φ(w)). Summarizing these properties, φ is a σ -preserving bijection
between the following sets:

{w | inv(w) = j and (1, n) ∈ Inv(w)}
∼

↔ {w | maj(w) = j and n − 1 ∈ Des(w)},

{w | inv(w) = j and (1, n) 6∈ Inv(w)}
∼

↔ {w | maj(w) = j and n − 1 6∈ Des(w)}.

A standard filling of a ribbon ν is just a permutation w such that Des(w) =
Des(ν). Therefore, by (2.4), the Schur function sν may be expressed as

sν(x) =
∑

Des(w)=Des(ν)

Qσ(w)(x). (5.11)

Applying φ to this formula yields (5.10).
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