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1. Introduction. Let Mm(F) be the vector space of m-square matrices 
X — (Xij), i,j= 1, . . . , m over a field F;f a function on Mm(F) to some set R. 
I t is of interest to determine the structure of the linear maps T: Mm{F) —» 
Mm(F) that preserve the values of the function/ (i.e.,f(T(x)) — f(x) for all X). 
For example, if we take/(x) to be the rank of X, we are asking for a determina­
tion of the types of linear operations on matrices that preserve rank (6). 
Other classical invariants that may be taken for/ are the determinant, the set 
of eigenvalues, and the rth elementary symmetric function of the eigenvalues. 
Dieudonné (2), Hua (3), Marcus (4; 5; 6) and others have conducted extensive 
research in this area. A class of matrix functions that have recently aroused 
considerable interest is the generalized matrix functions in the sense of 
I. Schur (7). These are defined as follows: let Sm be the full symmetric group 
of degree m and let X be a function on Sm with values in F. The matrix func­
tion associated with X is defined by 

m 

These functions clearly include the classical determinant, permanent (5), and 
immanent functions (8). 

Let G be a subgroup of Sm and X a non-trivial homomorphism of G into the 
multiplicative group of F (i.e., X is a character of degree one on G). If we 
extend X to all of Sm by defining X (a) = 0 if a g G, then the matrix function 
associated with X will be denoted by G\. Our main result is a characterization 
of all linear maps T: Mm(F) —> Mm(F) that satisfy: 

(1) Gx( rpO) =G X (X) for all X, 

where G is a doubly transitive or regular proper subgroup of Sm. 
If G = Sm and X is a character of degree one, then the function G\ is either 

the determinant or permanent. The structure of all linear maps satisfying (1) 
in these cases has been obtained by Marcus and May (5) and Marcus and 
Moyls (6). If G is transitive and cyclic and X is any function such that X(<r) = 0 
if or $ G, then I (1) have characterized the linear maps that preserve the values 
of the matrix function associated with X. 
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2. Definitions and main results. Throughout the remainder of this 
paper we suppose that the field F contains more than m elements, where m is 
the size of the matrices under consideration, and that m is greater than two. 

We shall also assume that G is either a proper doubly transitive or regular 
subgroup of Sm. We denote by G(i,j) the set of a G G such that a(i) = j . If 
G is doubly transitive, then clearly if i 9^ p, j 7^ q, there exists a G G(i, j) such 
that <r(p) = q. If G is regular, then G(i,j) consists of only one permutation 
for each i and j ; hence G is transitive and is of order m. 

Definition. A subspace A of Mm(F) is a O-subspace for G\ if dim A = m2 — m 
and if X G A implies GX(X) = 0. 

The following characterizations of 0-subspaces turn out to be very useful in 
the determination of all linear maps of Mm{F) into itself satisfying (1). 

PROPOSITION 1. Let G = {au . . . , am} be a regular subgroup of Sm. A subspace 
A is a O-subspace for G\ if and only if there exist m distinct pairs of integers 
( i i . j i ) , • • • , (im,jm), 1 <it,jt<m, such that <rk(ik) = j k and if I U , 
XitH = 0, / = 1, . . . ,m. 

PROPOSITION 2. Let G be a doubly transitive proper subgroup of Sm. A subspace 
A is a O-subspace for G\ if and only if there exists an integer i, 1 < i < m, such 
that A consists either of all matrices with row i zero or of all matrices with column 
i zero. 

If a G Sm, then the permutation matrix corresponding to a, P(a), is defined 
by P(v)ij = bi(ru) where 8st = 1 if 5 = t and 0 otherwise. If G = {aly . . . , am] 
is regular and X 6 Mm(F), then it is clear that we may uniquely write 

m 

X = Y,XiP{ai) 
z = l 

where the Xt are diagonal matrices. We use this representation to define the 
following type of maps of Mm{F) into itself: If /xi, • • . , M™> « G Sm, then 

m 

S(V>1, • • • ,Hm,Ot)(X) = ^2 X(o-«(i))FP((7a(i)) 
i=l 

where if Xt = diag(# a , . . . , xim), then 

Yi = diag(xz>(i), . . . , xÎM(m)), p = nt. 

If B and C belong to Mm(F), then the Hadamard product D = B * C is 
defined by dtj = bijCfj. If we denote by X' the transpose of the matrix X, 
we can now state our main results. 

THEOREM 1. Let G be a regular subgroup of Sm and X a character of degree one 
on G. A linear map T of Mm(F) into itself satisfies 

Gx(T(X)) = Gx(X) for all X 
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if and only if there exists a matrix C belonging to Mm (F) and a map 

K = S(m, . . . , nm, a) 

such that for each atin G 

m 

IT ci°tU) = M<Tt<rZu)) and T(X) = C*K(X). 
i=l 

THEOREM 2. Let G be a doubly transitive proper subgroup of Sm and X a character 
of degree one on G. A linear transformation T of Mm(F) into itself satisfies 

GX(T(X)) = Gx(X) for all X 

if and only if there exist permutations /x, T in Sm and a matrix C in Mm(F) such 
that \xr belongs to G ; and either 

m 

(a) T(X) = C*P(H)XP(T) with U cw) = X^r'1») 

for all a in G} or 
m 

(b) T(X) = C*P(r)X'P(M ) with Et CMO = X C^V V ) 
i=l 

for all a G G. 

When G = Sm and X is identically equal to one, the matrix function G\ is 
the permanent and it is known (5) that the same result holds and that C is 
of rank one, so C * X = DXL for suitable diagonal matrices D and L. This 
is not true in general, as the following example shows. Let G be the alternating 
group of degree four and suppose X is identically equal to one. Let 

[ 1 1 - 1 - l l 

r I - 1 1 1 - 1 
C ~ 1 1 1 1 * 

L-i i i iJ 
Clearly the rank of C is greater than one, so we cannot have C * X = DXL 
for any fixed diagonal matrices D and L. A direct computation shows that 
Gx(C*X) = Gx(X)iorsllX. 

When G = Sm and X(o-) = 1 or — 1 according as a is an even or odd permuta­
tion, then the matrix function G\ is the determinant. Marcus and Moyls (6) 
have shown that in this case det T{X) — d e t X for all X if and only if 
T(X) = UXVor TJX1 V for fixed non-singular 17 and F satisfying det UV = 1. 

If the group G is not transitive, then the transformations T satisfying (1) 
may be singular. If G is singly transitive but not regular or doubly transitive, 
then our techniques fail. In particular, the analogues of Propositions 1 and 2 
do not hold. A counterexample may be found by examining the dihedral 
group of degree four. 
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3. Proofs. Suppose A is a subspace of Mm(F), dim A = m2 — m. By 
using the reduction of a basis for A to Hermite normal form we can assume that 
there exist m distinct pairs of integers {(ii, j i ) , . . . , (im,jm)} = M such that 
the matrices 

m 

Atj = Ev + Y.cS'Euu, ttiS € F, frj) « ^ 

form a basis for A. Here E ^ is the matrix with a one in the (i,j) position and 
zeros elsewhere. 

If S is any finite set, |5 | will denote the number of elements in S. 
The group G is transitive so \G\ = nm and \G(i,j)\ = n for some integer 

n> 1 (9). If a e SmjletD(a) = {(*>(*)) :* = 1, ...,m}. 
We now establish some lemmas that will be used to prove Propositions 1 

and 2. 

LEMMA 1. If for some a G G, l-D(o-) H M\ > 1, /fegw /Aere exists r € G S^CÂ 

/ t o |P(r ) H ¥ | = 0. 

Proo/. If |£>0) H Af| > 1, then for some t ^ s, \G(is,js) H G0\, j * ) | > 1. 
We know that \G\ = nm and \G(i,j)\ = n\ hence 

U G(ik,jk) < Z |G(**,i*)l - |G(*.,i.) n G ( * „ i , ) | 
& = 1 

< M - 1 = \G\ ~ 1. 

Therefore there exist T £ G such that 

and clearly r has the desired properties. 

We may assume that the pairs (it,jt) of M are arranged so that if cT
ij = 0 

for i, j , then for all s > r, c / ' = 0 for all i, j . Let » ( 4 ) = max{0, t: ct
ij ^ 0 

for some i, j}. 

LEMMA 2. / / / o r seme a 6 G, |P(o-) H Jkf| = 0, /Aew //^re exists a matrix 
B G A such that: 

(a) 5 = P(a) + cEtljl, 
(b) Gx(B) * 0. 

Prw/ . If n(A) = 0, let 

m m 

Clearly (a) is satisfied and since G\(P(a)) = X(cr) ^ 0, (b) is satisfied. 
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n(A ) = l.let 
m m m 

i= l i= l i= l 

= P(<r) + cEiUl, c = É cf™. 

Clearly B satisfies (a). Now notice that if r ^ c, then there exist p, q (p ^ g) 
such that a(p) ^ r(p) and o-(g) ^ r(g). Therefore 

Gx(B) = E M r ) I l U 

= xoon bi*d) +z) Mon JMO-
i = l T^o- i = l 

For r ^ o-, let p and g be as above. We may assume that one of p and g, say p, 
is different from ilm Then (£, r(^)) $ {(iuji)} \J D(cr)\ hence 

bpT(p) = 0 and JJ[ biT^t) = 0. 
i= i 

Therefore Gx(£) = X(cr) ^ 0. 
Suppose that the result holds for all subspaces L with n(V) < k and that 

n(^4) = k > 1. Let £ be the subspace generated by the set 

{Etj: (i,j) 9* (ik,jk)}. 

Then dim B = m2 - 1. Let C = 4 H 5 ; then 

dim C > dim A + dim i? — m2 = m2 — m — 1. 

Now note that since C C A, Eiin $ C, and let (7 be the subspace generated 
by adjoining Etljl to C Clearly dim C = m2 — m and w(C) = 4 — 1. Hence, 
by the induction hypothesis, there exists B G C such that B = P(<r) + cEixH 

and Gx(J3) ^ 0. Now B = B - aEtljl for some 5 G C, a G i% so 

B = P(er) + (a + c J E , ^ , 

and since C C A, we know that B £ A. Clearly B satisfies (a) and the same 
computation as in the case of n(A) = 1 shows that G\(B) = \(a) =é 0. 

Using Lemmas 1 and 2, we see that if A is a 0-subspace for G\, then for all 
a G G, \D(a) r\ M\ = 1. Let x0-, (i , j) g if, and x be commuting indeter-
minates over F and 

Z/* = /^ ct Xij. 
a,3) (£ M 

If B G Ay then since {-4^: (i, j ) $ if} is a basis for A, it follows that 

B = 2-^ dijAij 

and 
6^ = a,, if (ij) £ M, buu = X w ct

ij atj. 
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LEMMA 3. If for each a Ç G, \D(<r) H M\ = 1 and for some t, Lt ^ 0, ^e» 
/feere exis/s a matrix B in A such that G\(B) ^ 0. 

Proof. Since Lt ^ 0, ct
ij ^ 0 ior some pair (i, j ) g M. Choose o- £ G(it,jt) 

and let 

5(x) = S -4 Mi) + *^u-

The element in the (it,jt) position of B(x) is a non-zero polynomial of degree 
one in x so we may choose c £ F such that this position is non-zero. Let 
B(c) = brs and note that brs = 0 if (r, s) g M U £((7) U {(i, j ) } , and 
&MO ^ 0, i = 1, . . . , ra. Then 

Gx(B(c)) = E M r ) I l U 

If r ^ o-, then there exist p ^ q such that r(^) ^ <r(£), r(#) ^ °"(<z)- If °ne 
of either (/>, T ( £ ) ) or (g, r(g)) does not belong t o i K U D f u J U j (^>i)}» then 

If this case does not occur, then we may assume that (p, r(p)) = (i,j) and 
(<Z> TGz)) = (isijs) for some s 5* t, because neither {p,r{p)) nor (q, r(q)) 
belongs to D(a) and \D{r) C\ M\ = 1. Further, notice that if k ^ p, q, then 
(jfe>T(Jfe)) = (k,a(k)), for otherwise (k, r(k)) £ M\JD{a)\J {(ij)}. 

If G is regular, this clearly implies o- = r, a contradiction. 
If G is doubly transitive, then notice that r~1a is the transposition (pq). If 

r ^ 5 , choose M G G such that /x(r) = £, JJL(S) = g. Then /X-1T"~VJU is the 
transposition (rs). Hence G contains all transpositions and is equal to Sm, 
contradicting the fact that G is a proper subgroup of Sm. 

I t now follows from Lemma 3 and the preceding remark that if A is a 
0-subspace for G\, then A consists of all matrices with m fixed positions 
(ii, j i ) , . . . , (imJm) equal to zero. 

To prove Proposition 1 we simply note that since \D(a) C\ M\ = 1, we have 
(itjjt) = (it, <r(it)) for some a G G. 

To prove Proposition 2 suppose that ^ F^ is,jt ^ is- Choose a £ G such that 
0"(̂ O = J«» °"(^) = js- Then |Z>(o-) P\ M\ > 1, so by Lemma 1 there exists 
B G A such that G\(B) 9e 0, a contradiction. 

The following proposition will be needed in the remaining portions of this 
paper and may be of some use in handling the simply transitive case. 

PROPOSITION 3. Suppose G is a transitive subgroup of Sm and A a character of 
degree one on G. Let T: Mm(F) —• Mm(F) be a linear transformation satisfying 

GX(T(X)) = GX(X) for all X. 

Then T is non-singular. 
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Proof. If T were singular, then for some A 9e 0, T(A) = 0. Then 

G(X + A)= GX(T(X + A)) = Gx(T(X) + T(A)) = G(T(X)) = GX(X) 

for all X. If we recall that G is transitive and use the techniques in (1), it is 
easy to construct a matrix B such that G\(B) 9e 0 but G\(B + A) = 0, a 
contradiction. 

Suppose now that J1 is a linear map of Mm{F) into itself satisfying 

GX(T(X)) = GX(X) 

for all X. I t is convenient to consider a matrix X of m2 indeterminates xtj and 
to consider the entries of T(X) as linear forms in the Xij. Write 

TO TO 

where c(iy j , r, s) £ F. Let î ^ (i^) be the subspace of Mm(F) consisting of all 
matrices with row i (column j) zero. Clearly Rt and Rj are 0-subspaces for G\. 
The map T is non-singular; hence by Propositions 1 and 2 T(Ri) and T(Rj) 
consist of all matrices with m fixed positions zero. Let {(r(i,t), s(i,t)): 
t — 1, . . . , m) be the positions that are zero in T{R^) and {(a(j, t), /3(j, t)): 
t — 1, . . . , m\ the positions that are zero in T(Rj). 

LEMMA 4. If i 9e k, then for all p, q = 1, . . . , m\ 
(a) (r{i,p),s(i,p)) 9^ (r(k, q), s(k, q)), 
(b) (a(i,p),P(i,p)) 9* (a(k,q),P(k,q)). 

Proof. Suppose that for some i 9e k there exist integers p and q such that 
(r(i,p),s(i,p)) = (r(k,q),s(k,q)) = (u,v). Then for all X € Rt + Rk, 
(T(X))UV = 0. However, Mm(F) = Rt + R^ since i 9e k. Therefore T is 
singular, a contradiction. The other case is identical. 

LEMMA 5. For each i,j = 1, . . . , m there exist integers p(i,j) and q(i,j) 
and a non-zero constant ciô such that Ltj = CijXpq (p = p(i,j), q = q(i,j))-
Further, if (i,j) 9* (k, n), then (p(i,j), q(i,j)) 9* (p(k, n), q(k, n)). 

Proof. By Lemma 4 there are m2 pairs (r(i, /), s(i, t)) and these are all 
distinct. Since 1 < r(i, t)} s(i, t) < m, the set of these pairs must be 

{(u,v): u,v = 1, . . . ,ni}. 

Hence, given 1 < ut v < my there exist unique integers i and j such that 
(u, v) = (r(i,j), s(i,j)). We know that if X (E Ru thenx^ = 0, k = 1, . . . , m. 
We also know that the zeros in T(Rt) appear in the (r(i, t)y s(i, t)) positions. 
Hence if xik = 0, k = 1, . . . , m\Luv = 0;u = r(i,j),v = s(i,j), t = 1 , . . . , m. 
I t follows thatc(r( i , t), s(i, t), p, q) = 0 unless £ = i. 

Similarly, there exist unique integers a and b such that 

(u,v) = (a(a, 6),/3(a, b)). 
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If we consider Rb and proceed as above, we may show that xkb = 0 
k = 1, . . . , m, implies that Luv = 0. Hence it follows that 

c(a(a,b),P(a,b),p,q) = 0 

unless q = b. Therefore Luv = c(u,v,i,b)xu» and since T is non-singular, 
c(u, v, i, b) = cuv 9e 0. 

I t is clear from Lemma 5 that the matrix representation of T with respect 
to the natural (i.e., £*/. i, j = 1, . . . , m) basis for Mm(F) is a generalized 
permutation matrix. Hence we have T(X) = C * P(X), where P(X) permutes 
the elements of X and ctj 9e 0. Further, if a G G, then there exists T £ G such 
that T(P(<r)) = C*P(T). Therefore, since 

Gx(P(<r)) = XO) and Gx(C*P(r)) = I I e « o X(T), 

we must have 

I l ^tr(t) = X(O-)/X(T) = X(orr_1). 

We now prove Theorem 1. Let G = {ci, . . . , o-m} ; then since G is regular, if 
X G Mm(F) we may uniquely write 

where the X* are diagonal matrices. Let T(P(a-i)) = C*P(jj). I t follows 
from the facts that G is regular and T non-singular that if i 9e j , then rt 9e r,; 
hence since |G| = m we know that r^ = <raa) for some « f 5 r If X = 
diag(xa, • • • , xim)P(<rj), then 

T(X) = C* diag(%^d), . . . , xilx{m))P{(ja{i)) 

for some yu = /̂ ^ G «Ŝ , because the polynomials G\(X) and G\(T(X)) in 
Xa, . . . , xim must be equal. 

A straightforward computation using the linearity of T shows that 

T(X) = C * S(m, . . . , /xw, a) (X), 
and that 

11 îcri(i) = X(o-t(Ta(f)) 

for each at £ G. Clearly, if i£ and C satisfy the conditions of the theorem, then 
G\(C * K(X)) = G\(X) for all X. This completes the proof of Theorem 1. 

Suppose now that the group G is doubly transitive. We first show that 
T(Rt) = Rj or Rj for some integer j . If this were not the case, then for some i 
there would exist integers j , k such that T{Etj) = aEPQ, T(Eik) = bEst, 
a, b G -F and p 9e s, q 9e t. Choose a G G such that (r(^) = g, (7(5) = /. Note 
that GxCT-HX)) = GX(X) for all X. However, T'1^^)) has two non-zero 
entries in row i and only m non-zero entries in all, so some row of T~l(P{v)) 
must be zero. Therefore G\(T~1(P(a)) = 0, a contradiction. Similarly we 
may show that T(R*) = Rj or R3 for some integer j . 
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We now show that if T(Rf) = Rj for some i , j , then T(Rk) = R^) and 
T(Rk) = RTik) for all k and some /x, r in 5OT. If this were not the case, then for 
some k 5* i we would have T{Rk) = Rn for some n. Then for all X £ Rt + Rki 

T(X)jn = 0. This contradicts the fact that T is non-singular, since 

Mm(F) = Ri + Rk. 

Similar arguments establish that if i 5^7, then T(Rt) 9e T(Rj), and that if 
T(R{) = Rj for some i,j, then T ( ^ ) = R>W and T ( ^ ) = £T(Jb) for all k and 
some /x, r in 5TO. 

Clearly, the above argument shows that either T(X) = C*P(ju)ZP(r) or 
C * P(IJ,)X'P(T). If the first case occurs, we take X to be the identity matrix 
and it follows that /XT must belong to G; for otherwise 

G X ( C * P ( M ) P ( T ) ) = G X ( C * P ( M T ) ) = 0. 

An easy computation shows that if /XT belongs to G, then 

Gx(P(fi)XP(r)) = \(T-WGX(X), 

and by taking X to be appropriate permutation matrices we find that for each 
a £ G 

m 

I l cMi) = AG"--1/*)-
i=\ 

If the second case occurs, then, as above, we must have \xr belonging to G. 
Then if a belongs to G, 

T(P(a)) = C*P(JX)P(<T)'P(T) = C*P(At)P(<r-1)P(r) = G,(T(P(v)) 
m 

= X(r-V)Gx(C*P(Cr-1)) = A C r - V O M O n ^ - H f l 

= Gx(P(<7)) = \{C). 
Hence 

m 

Ylci<r-Hi) = X(O-2)X(/X-1T) = X^ /x^r ) . 

Conversely, if 7" satisfies the conditions of Theorem 2, an easy computation 
shows that G\{T(X)) = G\{X) for all X. This completes the proof of Theorem 2. 

4. Related results. If the group G is regular, it is possible to remove the 
restriction that X be a character on G. By using the techniques in (1), in 
particular Lemma 7, it is possible to characterize the linear maps of Mm(F) 
into itself satisfying 

Gx(P(Z)) = Gx(X) for all X, 

where G is a regular subgroup of Sm and X is any function on G to the field F. 
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