LINEAR TRANSFORMATION ON MATRICES: THE INVARIANCE OF A CLASS OF GENERAL MATRIX FUNCTIONS. II

PETER BOTTA

1. Introduction. Let $M_m(F)$ be the vector space of *m*-square matrices $X = (x_{ij}), i, j = 1, \ldots, m$ over a field F; f a function on $M_m(F)$ to some set R. It is of interest to determine the structure of the linear maps $T: M_m(F) \rightarrow M_m(F)$ that preserve the values of the function f (i.e., f(T(x)) = f(x) for all X). For example, if we take f(x) to be the rank of X, we are asking for a determination of the types of linear operations on matrices that preserve rank (6). Other classical invariants that may be taken for f are the determinant, the set of eigenvalues, and the *r*th elementary symmetric function of the eigenvalues. Dieudonné (2), Hua (3), Marcus (4; 5; 6) and others have conducted extensive research in this area. A class of matrix functions that have recently aroused considerable interest is the generalized matrix functions in the sense of I. Schur (7). These are defined as follows: let S_m be the full symmetric group of degree m and let λ be a function on S_m with values in F. The matrix function associated with λ is defined by

$$d_{\lambda}(X) = \sum_{\sigma \in S_m} \lambda(\sigma) \prod_{i=1}^m x_{i\sigma(i)}.$$

These functions clearly include the classical determinant, permanent (5), and immanent functions (8).

Let G be a subgroup of S_m and λ a non-trivial homomorphism of G into the multiplicative group of F (i.e., λ is a character of degree one on G). If we extend λ to all of S_m by defining $\lambda(\sigma) = 0$ if $\sigma \notin G$, then the matrix function associated with λ will be denoted by G_{λ} . Our main result is a characterization of all linear maps $T: M_m(F) \to M_m(F)$ that satisfy:

(1)
$$G_{\lambda}(T(X)) = G_{\lambda}(X)$$
 for all X,

where G is a doubly transitive or regular proper subgroup of S_m .

If $G = S_m$ and λ is a character of degree one, then the function G_{λ} is either the determinant or permanent. The structure of all linear maps satisfying (1) in these cases has been obtained by Marcus and May (5) and Marcus and Moyls (6). If G is transitive and cyclic and λ is any function such that $\lambda(\sigma) = 0$ if $\sigma \notin G$, then I (1) have characterized the linear maps that preserve the values of the matrix function associated with λ .

Received October 24, 1966. Research supported in part by NSF GP 4147.

2. Definitions and main results. Throughout the remainder of this paper we suppose that the field F contains more than m elements, where m is the size of the matrices under consideration, and that m is greater than two.

We shall also assume that G is either a proper doubly transitive or regular subgroup of S_m . We denote by G(i, j) the set of $\sigma \in G$ such that $\sigma(i) = j$. If G is doubly transitive, then clearly if $i \neq p, j \neq q$, there exists $\sigma \in G(i, j)$ such that $\sigma(p) = q$. If G is regular, then G(i, j) consists of only one permutation for each i and j; hence G is transitive and is of order m.

Definition. A subspace A of $M_m(F)$ is a 0-subspace for G_{λ} if dim $A = m^2 - m$ and if $X \in A$ implies $G_{\lambda}(X) = 0$.

The following characterizations of 0-subspaces turn out to be very useful in the determination of all linear maps of $M_m(F)$ into itself satisfying (1).

PROPOSITION 1. Let $G = \{\sigma_1, \ldots, \sigma_m\}$ be a regular subgroup of S_m . A subspace A is a 0-subspace for G_{λ} if and only if there exist m distinct pairs of integers $(i_1, j_1), \ldots, (i_m, j_m), 1 \leq i_t, j_t \leq m$, such that $\sigma_k(i_k) = j_k$ and if $X \in A$, $X_{i_k j_k} = 0, t = 1, \ldots, m$.

PROPOSITION 2. Let G be a doubly transitive proper subgroup of S_m . A subspace A is a 0-subspace for G_{λ} if and only if there exists an integer $i, 1 \leq i \leq m$, such that A consists either of all matrices with row i zero or of all matrices with column i zero.

If $\sigma \in S_m$, then the permutation matrix corresponding to σ , $P(\sigma)$, is defined by $P(\sigma)_{ij} = \delta_{i\sigma(j)}$ where $\delta_{si} = 1$ if s = t and 0 otherwise. If $G = \{\sigma_1, \ldots, \sigma_m\}$ is regular and $X \in M_m(F)$, then it is clear that we may uniquely write

$$X = \sum_{i=1}^{m} X_i P(\sigma_i)$$

where the X_i are diagonal matrices. We use this representation to define the following type of maps of $M_m(F)$ into itself: If $\mu_1, \ldots, \mu_m, \alpha \in S_m$, then

$$S(\mu_1,\ldots,\mu_m,\alpha)(X) = \sum_{i=1}^m \lambda(\sigma_{\alpha(i)}) YP(\sigma_{\alpha(i)})$$

where if $X_i = \text{diag}(x_{i1}, \ldots, x_{im})$, then

$$Y_i = \operatorname{diag}(x_{i\mu(1)}, \ldots, x_{i\mu(m)}), \qquad \mu = \mu_i.$$

If B and C belong to $M_m(F)$, then the Hadamard product D = B * C is defined by $d_{ij} = b_{ij}c_{ij}$. If we denote by X' the transpose of the matrix X, we can now state our main results.

THEOREM 1. Let G be a regular subgroup of S_m and λ a character of degree one on G. A linear map T of $M_m(F)$ into itself satisfies

$$G_{\lambda}(T(X)) = G_{\lambda}(X)$$
 for all X

740

if and only if there exists a matrix C belonging to $M_m(F)$ and a map

$$K = S(\mu_1, \ldots, \mu_m, \alpha)$$

such that for each σ_{t} in G

$$\prod_{i=1}^m c_{i\sigma_t(i)} = \lambda(\sigma_t \sigma_{\alpha(i)}^{-1}) \quad and \quad T(X) = C * K(X).$$

THEOREM 2. Let G be a doubly transitive proper subgroup of S_m and λ a character of degree one on G. A linear transformation T of $M_m(F)$ into itself satisfies

$$G_{\lambda}(T(X)) = G_{\lambda}(X)$$
 for all X

if and only if there exist permutations μ , τ in S_m and a matrix C in $M_m(F)$ such that $\mu\tau$ belongs to G; and either

(a)
$$T(X) = C * P(\mu) X P(\tau) \quad with \prod_{i=1}^{m} c_{i\sigma(i)} = \lambda(\sigma \tau^{-1} \mu)$$

for all σ in G, or

(b)
$$T(X) = C * P(\tau)X'P(\mu) \text{ with } \prod_{i=1}^{m} c_{i\sigma(i)} = \lambda(\sigma^{-2}\mu^{-1}\tau)$$

for all $\sigma \in G$.

When $G = S_m$ and λ is identically equal to one, the matrix function G_{λ} is the permanent and it is known (5) that the same result holds and that C is of rank one, so C * X = DXL for suitable diagonal matrices D and L. This is not true in general, as the following example shows. Let G be the alternating group of degree four and suppose λ is identically equal to one. Let

$$C = \begin{bmatrix} 1 & 1 & -1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}.$$

Clearly the rank of C is greater than one, so we cannot have C * X = DXL for any fixed diagonal matrices D and L. A direct computation shows that $G_{\lambda}(C * X) = G_{\lambda}(X)$ for all X.

When $G = S_m$ and $\lambda(\sigma) = 1$ or -1 according as σ is an even or odd permutation, then the matrix function G_{λ} is the determinant. Marcus and Moyls (6) have shown that in this case det $T(X) = \det X$ for all X if and only if T(X) = UXV or UX'V for fixed non-singular U and V satisfying det UV = 1.

If the group G is not transitive, then the transformations T satisfying (1) may be singular. If G is singly transitive but not regular or doubly transitive, then our techniques fail. In particular, the analogues of Propositions 1 and 2 do not hold. A counterexample may be found by examining the dihedral group of degree four.

3. Proofs. Suppose A is a subspace of $M_m(F)$, dim $A = m^2 - m$. By using the reduction of a basis for A to Hermite normal form we can assume that there exist m distinct pairs of integers $\{(i_1, j_1), \ldots, (i_m, j_m)\} = M$ such that the matrices

$$A_{ij} = E_{ij} + \sum_{t=1}^{m} c_t^{ij} E_{i_t j_t}, \quad c_t^{ij} \in F, \ (i, j) \notin M,$$

form a basis for A. Here E_{ij} is the matrix with a one in the (i, j) position and zeros elsewhere.

If S is any finite set, |S| will denote the number of elements in S.

The group G is transitive so |G| = nm and |G(i, j)| = n for some integer $n \ge 1$ (9). If $\sigma \in S_m$, let $D(\sigma) = \{(i, \sigma(i)): i = 1, \ldots, m\}$.

We now establish some lemmas that will be used to prove Propositions 1 and 2.

LEMMA 1. If for some $\sigma \in G$, $|D(\sigma) \cap M| > 1$, then there exists $\tau \in G$ such that $|D(\tau) \cap M| = 0$.

Proof. If $|D(\sigma) \cap M| > 1$, then for some $t \neq s$, $|G(i_s, j_s) \cap G(i_t, j_t)| \ge 1$. We know that |G| = nm and |G(i, j)| = n; hence

$$\left| \bigcup_{k=1}^{m} G(i_{k}, j_{k}) \right| \leq \sum_{k=1}^{m} |G(i_{k}, j_{k})| - |G(i_{s}, j_{s}) \cap G(i_{t}, j_{t})|$$
$$\leq mn - 1 = |G| - 1.$$

Therefore there exist $\tau \in G$ such that

$$\sigma \notin \bigcup_{k=1}^m G(i_t, j_t)$$

and clearly τ has the desired properties.

We may assume that the pairs (i_i, j_i) of M are arranged so that if $c_r^{ij} = 0$ for i, j, then for all $s \ge r$, $c_s^{ij} = 0$ for all i, j. Let $n(A) = \max\{0, t: c_t^{ij} \ne 0$ for some $i, j\}$.

LEMMA 2. If for some $\sigma \in G$, $|D(\sigma) \cap M| = 0$, then there exists a matrix $B \in A$ such that:

- (a) $B = P(\sigma) + cE_{i_1j_1}$,
- (b) $G_{\lambda}(B) \neq 0$.

Proof. If n(A) = 0, let

$$B = \sum_{i=1}^{m} A_{i\sigma(i)} = \sum_{i=1}^{m} E_{i\sigma(i)} = P(\sigma).$$

Clearly (a) is satisfied and since $G_{\lambda}(P(\sigma)) = \lambda(\sigma) \neq 0$, (b) is satisfied.

If n(A) = 1, let $B = \sum_{i=1}^{m} A_{i\sigma(i)} = \sum_{i=1}^{m} E_{i\sigma(i)} + \sum_{i=1}^{m} c_1^{i\sigma(i)} E_{i_1j_1}$ $= P(\sigma) + cE_{i_1j_1}, \qquad c = \sum_{i=1}^{m} c_1^{i\sigma(i)}.$

Clearly *B* satisfies (a). Now notice that if $\tau \neq \sigma$, then there exist p, q $(p \neq q)$ such that $\sigma(p) \neq \tau(p)$ and $\sigma(q) \neq \tau(q)$. Therefore

$$G_{\lambda}(B) = \sum_{\tau \in G} \lambda(\tau) \prod_{i=1}^{m} b_{i\tau(i)}$$

= $\lambda(\sigma) \prod_{i=1}^{m} b_{i\sigma(i)} + \sum_{\tau \neq \sigma} \lambda(\tau) \prod_{i=1}^{m} b_{i\tau(i)}.$

For $\tau \neq \sigma$, let p and q be as above. We may assume that one of p and q, say p, is different from i_1 . Then $(p, \tau(p)) \notin \{(i_1, j_1)\} \cup D(\sigma)$; hence

$$b_{p\tau(p)} = 0$$
 and $\prod_{i=1}^{m} b_{i\tau(i)} = 0.$

Therefore $G_{\lambda}(B) = \lambda(\sigma) \neq 0$.

Suppose that the result holds for all subspaces L with n(L) < k and that n(A) = k > 1. Let B be the subspace generated by the set

$$\{E_{ij}: (i,j) \neq (i_k,j_k)\}.$$

Then dim $B = m^2 - 1$. Let $C = A \cap B$; then

$$\dim C \geqslant \dim A + \dim B - m^2 = m^2 - m - 1.$$

Now note that since $C \subset A$, $E_{i_1j_1} \notin C$, and let \overline{C} be the subspace generated by adjoining $E_{i_1j_1}$ to C. Clearly dim $\overline{C} = m^2 - m$ and $n(\overline{C}) = k - 1$. Hence, by the induction hypothesis, there exists $\overline{B} \in \overline{C}$ such that $\overline{B} = P(\sigma) + cE_{i_1j_1}$ and $G_{\lambda}(\overline{B}) \neq 0$. Now $\overline{B} = B - aE_{i_1j_1}$ for some $B \in C$, $a \in F$, so

$$B = P(\sigma) + (a+c)E_{i_1j_1},$$

and since $C \subset A$, we know that $B \in A$. Clearly B satisfies (a) and the same computation as in the case of n(A) = 1 shows that $G_{\lambda}(B) = \lambda(\sigma) \neq 0$.

Using Lemmas 1 and 2, we see that if A is a 0-subspace for G_{λ} , then for all $\sigma \in G$, $|D(\sigma) \cap M| = 1$. Let x_{ij} , $(i, j) \notin M$, and x be commuting indeterminates over F and

$$L_{\iota} = \sum_{(i,j) \notin M} c_{\iota}^{ij} x_{ij}$$

If $B \in A$, then since $\{A_{ij}: (i, j) \notin M\}$ is a basis for A, it follows that

$$B = \sum_{(i,j) \notin M} a_{ij} A_{ij}$$

and

$$b_{ij} = a_{ij}$$
 if $(i,j) \notin M$, $b_{iijt} = \sum_{(i,j) \notin M} c_i^{ij} a_{ij}$.

LEMMA 3. If for each $\sigma \in G$, $|D(\sigma) \cap M| = 1$ and for some t, $L_t \neq 0$, then there exists a matrix B in A such that $G_{\lambda}(B) \neq 0$.

Proof. Since $L_t \neq 0$, $c_t^{ij} \neq 0$ for some pair $(i, j) \notin M$. Choose $\sigma \in G(i_t, j_t)$ and let

$$B(x) = \sum_{k \neq i_t} A_{i\sigma(i)} + x A_{ij}.$$

The element in the (i_t, j_t) position of B(x) is a non-zero polynomial of degree one in x so we may choose $c \in F$ such that this position is non-zero. Let $B(c) = b_{rs}$ and note that $b_{rs} = 0$ if $(r, s) \notin M \cup D(\sigma) \cup \{(i, j)\}$, and $b_{i\sigma(i)} \neq 0, i = 1, \ldots, m$. Then

$$G_{\lambda}(B(c)) = \sum_{\tau \in G} \lambda(\tau) \prod_{k=1}^{m} b_{k\tau(k)}$$
$$= \lambda(\sigma) \prod_{k=1}^{m} b_{k\sigma(k)} + \sum_{\tau \neq \sigma} \lambda(\tau) \prod_{k=1}^{m} b_{k\tau(k)}$$

If $\tau \neq \sigma$, then there exist $p \neq q$ such that $\tau(p) \neq \sigma(p), \tau(q) \neq \sigma(q)$. If one of either $(p, \tau(p))$ or $(q, \tau(q))$ does not belong to $M \cup D(\sigma) \cup \{(i, j)\}$, then

$$\prod_{k=1}^m b_{k\tau(k)} = 0.$$

If this case does not occur, then we may assume that $(p, \tau(p)) = (i, j)$ and $(q, \tau(q)) = (i_s, j_s)$ for some $s \neq t$, because neither $(p, \tau(p))$ nor $(q, \tau(q))$ belongs to $D(\sigma)$ and $|D(\tau) \cap M| = 1$. Further, notice that if $k \neq p, q$, then $(k, \tau(k)) = (k, \sigma(k))$, for otherwise $(k, \tau(k)) \notin M \cup D(\sigma) \cup \{(i, j)\}$.

If G is regular, this clearly implies $\sigma = \tau$, a contradiction.

If G is doubly transitive, then notice that $\tau^{-1}\sigma$ is the transposition (pq). If $r \neq s$, choose $\mu \in G$ such that $\mu(r) = p$, $\mu(s) = q$. Then $\mu^{-1}\tau^{-1}\sigma\mu$ is the transposition (rs). Hence G contains all transpositions and is equal to S_m , contradicting the fact that G is a proper subgroup of S_m .

It now follows from Lemma 3 and the preceding remark that if A is a 0-subspace for G_{λ} , then A consists of all matrices with m fixed positions $(i_1, j_1), \ldots, (i_m, j_m)$ equal to zero.

To prove Proposition 1 we simply note that since $|D(\sigma) \cap M| = 1$, we have $(i_i, j_i) = (i_i, \sigma(i_i))$ for some $\sigma \in G$.

To prove Proposition 2 suppose that $i_t \neq i_s$, $j_t \neq j_s$. Choose $\sigma \in G$ such that $\sigma(i_t) = j_t$, $\sigma(i_s) = j_s$. Then $|D(\sigma) \cap M| > 1$, so by Lemma 1 there exists $B \in A$ such that $G_{\lambda}(B) \neq 0$, a contradiction.

The following proposition will be needed in the remaining portions of this paper and may be of some use in handling the simply transitive case.

PROPOSITION 3. Suppose G is a transitive subgroup of S_m and λ a character of degree one on G. Let $T: M_m(F) \to M_m(F)$ be a linear transformation satisfying

$$G_{\lambda}(T(X)) = G_{\lambda}(X)$$
 for all X.

Then T is non-singular.

744

Proof. If T were singular, then for some $A \neq 0$, T(A) = 0. Then

$$G(X+A) = G_{\lambda}(T(X+A)) = G_{\lambda}(T(X)+T(A)) = G(T(X)) = G_{\lambda}(X)$$

for all X. If we recall that G is transitive and use the techniques in (1), it is easy to construct a matrix B such that $G_{\lambda}(B) \neq 0$ but $G_{\lambda}(B + A) = 0$, a contradiction.

Suppose now that T is a linear map of $M_m(F)$ into itself satisfying

$$G_{\lambda}(T(X)) = G_{\lambda}(X)$$

for all X. It is convenient to consider a matrix X of m^2 indeterminates x_{ij} and to consider the entries of T(X) as linear forms in the x_{ij} . Write

$$T(X)_{ij} = L_{ij} = \sum_{\tau=1}^{m} \sum_{s=1}^{m} c(i, j, r, s) x_{\tau s}$$

where $c(i, j, r, s) \in F$. Let $R_i(R^j)$ be the subspace of $M_m(F)$ consisting of all matrices with row i (column j) zero. Clearly R_i and R^j are 0-subspaces for G_{λ} . The map T is non-singular; hence by Propositions 1 and 2 $T(R_i)$ and $T(R^j)$ consist of all matrices with m fixed positions zero. Let $\{(r(i, t), s(i, t)): t = 1, \ldots, m\}$ be the positions that are zero in $T(R_i)$ and $\{(\alpha(j, t), \beta(j, t)): t = 1, \ldots, m\}$ the positions that are zero in $T(R^j)$.

LEMMA 4. If $i \neq k$, then for all $p, q = 1, \ldots, m$: (a) $(r(i, p), s(i, p)) \neq (r(k, q), s(k, q))$, (b) $(\alpha(i, p), \beta(i, p)) \neq (\alpha(k, q), \beta(k, q))$.

Proof. Suppose that for some $i \neq k$ there exist integers p and q such that (r(i, p), s(i, p)) = (r(k, q), s(k, q)) = (u, v). Then for all $X \in R_i + R_k$, $(T(X))_{uv} = 0$. However, $M_m(F) = R_i + R_k$ since $i \neq k$. Therefore T is singular, a contradiction. The other case is identical.

LEMMA 5. For each i, j = 1, ..., m there exist integers p(i, j) and q(i, j)and a non-zero constant c_{ij} such that $L_{ij} = c_{ij} x_{pq}$ (p = p(i, j), q = q(i, j)). Further, if $(i, j) \neq (k, n)$, then $(p(i, j), q(i, j)) \neq (p(k, n), q(k, n))$.

Proof. By Lemma 4 there are m^2 pairs (r(i, t), s(i, t)) and these are all distinct. Since $1 \leq r(i, t), s(i, t) \leq m$, the set of these pairs must be

$$\{(u, v): u, v = 1, \ldots, m\}.$$

Hence, given $1 \le u, v \le m$, there exist unique integers *i* and *j* such that (u, v) = (r(i, j), s(i, j)). We know that if $X \in R_i$, then $x_{ik} = 0, k = 1, \ldots, m$. We also know that the zeros in $T(R_i)$ appear in the (r(i, t), s(i, t)) positions. Hence if $x_{ik} = 0, k = 1, \ldots, m; L_{uv} = 0; u = r(i, j), v = s(i, j), t = 1, \ldots, m$. It follows that c(r(i, t), s(i, t), p, q) = 0 unless p = i.

Similarly, there exist unique integers a and b such that

$$(u, v) = (\alpha(a, b), \beta(a, b)).$$

If we consider R^b and proceed as above, we may show that $x_{kb} = 0$ $k = 1, \ldots, m$, implies that $L_{uv} = 0$. Hence it follows that

$$\varepsilon(\alpha(a, b), \beta(a, b), p, q) = 0$$

unless q = b. Therefore $L_{uv} = c(u, v, i, b)x_{ib}$, and since T is non-singular, $c(u, v, i, b) = c_{uv} \neq 0$.

It is clear from Lemma 5 that the matrix representation of T with respect to the natural (i.e., E_{ij} : i, j = 1, ..., m) basis for $M_m(F)$ is a generalized permutation matrix. Hence we have T(X) = C * P(X), where P(X) permutes the elements of X and $c_{ij} \neq 0$. Further, if $\sigma \in G$, then there exists $\tau \in G$ such that $T(P(\sigma)) = C * P(\tau)$. Therefore, since

$$G_{\lambda}(P(\sigma)) = \lambda(\sigma)$$
 and $G_{\lambda}(C * P(\tau)) = \prod_{i=1}^{m} c_{i\tau(i)} \lambda(\tau),$

we must have

$$\prod_{i=1}^m c_{i\tau(i)} = \lambda(\sigma)/\lambda(\tau) = \lambda(\sigma\tau^{-1}).$$

We now prove Theorem 1. Let $G = \{\sigma_1, \ldots, \sigma_m\}$; then since G is regular, if $X \in M_m(F)$ we may uniquely write

$$X = \sum_{i=1}^{m} X_i P(\sigma_i),$$

where the X_i are diagonal matrices. Let $T(P(\sigma_i)) = C * P(\tau_j)$. It follows from the facts that G is regular and T non-singular that if $i \neq j$, then $\tau_i \neq \tau_j$; hence since |G| = m we know that $\tau_j = \sigma_{\alpha(i)}$ for some $\alpha \in S_m$. If $X = \text{diag}(x_{i1}, \ldots, x_{im})P(\sigma_j)$, then

$$T(X) = C * \operatorname{diag}(x_{i\mu(1)}, \ldots, x_{i\mu(m)}) P(\sigma_{\alpha(i)})$$

for some $\mu = \mu_i \in S_m$, because the polynomials $G_{\lambda}(X)$ and $G_{\lambda}(T(X))$ in x_{i1}, \ldots, x_{im} must be equal.

A straightforward computation using the linearity of T shows that

$$T(X) = C * S(\mu_1, \ldots, \mu_m, \alpha)(X),$$

and that

$$\prod_{i=1}^{m} c_{i\sigma_{t}(i)} = \lambda(\sigma_{i}\sigma_{\alpha(t)}^{-1})$$

for each $\sigma_t \in G$. Clearly, if *K* and *C* satisfy the conditions of the theorem, then $G_{\lambda}(C * K(X)) = G_{\lambda}(X)$ for all *X*. This completes the proof of Theorem 1.

Suppose now that the group G is doubly transitive. We first show that $T(R_i) = R_j$ or R^j for some integer j. If this were not the case, then for some i there would exist integers j, k such that $T(E_{ij}) = aE_{pq}$, $T(E_{ik}) = bE_{si}$, $a, b \in F$ and $p \neq s, q \neq t$. Choose $\sigma \in G$ such that $\sigma(p) = q, \sigma(s) = t$. Note that $G_{\lambda}(T^{-1}(X)) = G_{\lambda}(X)$ for all X. However, $T^{-1}(P(\sigma))$ has two non-zero entries in row i and only m non-zero entries in all, so some row of $T^{-1}(P(\sigma))$ must be zero. Therefore $G_{\lambda}(T^{-1}(P(\sigma)) = 0$, a contradiction. Similarly we may show that $T(R^i) = R^j$ or R_j for some integer j.

We now show that if $T(R_i) = R_j$ for some i, j, then $T(R_k) = R_{\mu(k)}$ and $T(R^k) = R^{\tau(k)}$ for all k and some μ, τ in S_m . If this were not the case, then for some $k \neq i$ we would have $T(R_k) = R^n$ for some n. Then for all $X \in R_i + R_k$, $T(X)_{jn} = 0$. This contradicts the fact that T is non-singular, since

$$M_m(F) = R_i + R_k.$$

Similar arguments establish that if $i \neq j$, then $T(R_i) \neq T(R_j)$, and that if $T(R_i) = R^j$ for some *i*, *j*, then $T(R_k) = R^{\mu(k)}$ and $T(R^k) = R_{\tau(k)}$ for all *k* and some μ, τ in S_m .

Clearly, the above argument shows that either $T(X) = C * P(\mu)XP(\tau)$ or $C * P(\mu)X'P(\tau)$. If the first case occurs, we take X to be the identity matrix and it follows that $\mu\tau$ must belong to G; for otherwise

$$G_{\lambda}(C * P(\mu)P(\tau)) = G_{\lambda}(C * P(\mu\tau)) = 0.$$

An easy computation shows that if $\mu\tau$ belongs to G, then

$$G_{\lambda}(P(\mu)XP(\tau)) = \lambda(\tau^{-1}\mu)G_{\lambda}(X),$$

and by taking X to be appropriate permutation matrices we find that for each $\sigma \in G$

$$\prod_{i=1}^m c_{i\sigma(i)} = \lambda(\sigma\tau^{-1}\mu).$$

If the second case occurs, then, as above, we must have $\mu\tau$ belonging to *G*. Then if σ belongs to *G*,

$$T(P(\sigma)) = C * P(\mu)P(\sigma)'P(\tau) = C * P(\mu)P(\sigma^{-1})P(\tau) = G_{\lambda}(T(P(\sigma)))$$
$$= \lambda(\tau^{-1}\mu)G_{\lambda}(C * P(\sigma^{-1})) = \lambda(\tau^{-1}\mu)\lambda(\sigma^{-1})\prod_{i=1}^{m} c_{i\sigma^{-1}(i)}$$
$$= G_{\lambda}(P(\sigma)) = \lambda(\sigma).$$

Hence

$$\prod_{i=1}^m c_{i\sigma^{-1}(i)} = \lambda(\sigma^2)\lambda(\mu^{-1}\tau) = \lambda(\sigma^2\mu^{-1}\tau).$$

Conversely, if T satisfies the conditions of Theorem 2, an easy computation shows that $G_{\lambda}(T(X)) = G_{\lambda}(X)$ for all X. This completes the proof of Theorem 2.

4. Related results. If the group G is regular, it is possible to remove the restriction that λ be a character on G. By using the techniques in (1), in particular Lemma 7, it is possible to characterize the linear maps of $M_m(F)$ into itself satisfying

$$G_{\lambda}(T(X)) = G_{\lambda}(X)$$
 for all X,

where G is a regular subgroup of S_m and λ is any function on G to the field F.

References

- 1. E. P. Botta, Linear transformations on matrices: The invariance of a class of general matrix functions, Can. J. Math., 19 (1967), 281–290.
- J. Dieudonné, Sur une généralisation du groupe orthogonale à quatre variables, Arch. Math., 1 (1948), 282-287.
- 3. L. K. Hua, Geometries of matrices. I. Generalizations of von Staudts' theorem, Trans. Amer. Math. Soc., 57 (1945), 441-481.
- 4. M. Marcus, Linear operations on matrices, Amer. Math. Monthly, 69 (1962), 837-847.
- 5. M. Marcus and F. May, The permanent function, Can. J. Math., 14 (1962), 177-189.
- 6. M. Marcus and B. N. Moyls, *Linear transformations on algebras of matrices*, Can. J. Math., 11 (1959), 61–66.
- 7. I. Schur, Über endliche Gruppen und Hermitesche Formen, Math. Z., 1 (1918), 184-207.
- 8. H. Weyl, The Classical groups (Princeton Univ. Press, Princeton, N.J., 1946).
- 9. H. Wielandt, Finite permutation groups (Academic Press, New York, 1964).

University of Michigan, Ann Arbor, Michigan; University of Toronto, Toronto, Ontario