LINEAR TRANSFORMATION ON MATRICES: THE INVARIANCE OF A CLASS OF GENERAL MATRIX FUNCTIONS. II

PETER BOTTA

1. Introduction. Let $M_{m}(F)$ be the vector space of m-square matrices $X=\left(x_{i j}\right), i, j=1, \ldots, m$ over a field $F ; f$ a function on $M_{m}(F)$ to some set R. It is of interest to determine the structure of the linear maps $T: M_{m}(F) \rightarrow$ $M_{m}(F)$ that preserve the values of the function f (i.e., $f(T(x))=f(x)$ for all X). For example, if we take $f(x)$ to be the rank of X, we are asking for a determination of the types of linear operations on matrices that preserve rank (6). Other classical invariants that may be taken for f are the determinant, the set of eigenvalues, and the r th elementary symmetric function of the eigenvalues. Dieudonné (2), Hua (3), Marcus $(4 ; 5 ; 6)$ and others have conducted extensive research in this area. A class of matrix functions that have recently aroused considerable interest is the generalized matrix functions in the sense of I. Schur (7). These are defined as follows: let S_{m} be the full symmetric group of degree m and let λ be a function on S_{m} with values in F. The matrix function associated with λ is defined by

$$
d_{\lambda}(X)=\sum_{\sigma \in S_{m}} \lambda(\sigma) \prod_{i=1}^{m} x_{i \sigma(i)}
$$

These functions clearly include the classical determinant, permanent (5), and immanent functions (8).

Let G be a subgroup of S_{m} and λ a non-trivial homomorphism of G into the multiplicative group of F (i.e., λ is a character of degree one on G). If we extend λ to all of S_{m} by defining $\lambda(\sigma)=0$ if $\sigma \notin G$, then the matrix function associated with λ will be denoted by G_{λ}. Our main result is a characterization of all linear maps $T: M_{m}(F) \rightarrow M_{m}(F)$ that satisfy:

$$
\begin{equation*}
G_{\lambda}(T(X))=G_{\lambda}(X) \text { for all } X \tag{1}
\end{equation*}
$$

where G is a doubly transitive or regular proper subgroup of S_{m}.
If $G=S_{m}$ and λ is a character of degree one, then the function G_{λ} is either the determinant or permanent. The structure of all linear maps satisfying (1) in these cases has been obtained by Marcus and May (5) and Marcus and Moyls (6). If G is transitive and cyclic and λ is any function such that $\lambda(\sigma)=0$ if $\sigma \notin G$, then I (1) have characterized the linear maps that preserve the values of the matrix function associated with λ.

Received October 24, 1966. Research supported in part by NSF GP 4147.
2. Definitions and main results. Throughout the remainder of this paper we suppose that the field F contains more than m elements, where m is the size of the matrices under consideration, and that m is greater than two.

We shall also assume that G is either a proper doubly transitive or regular subgroup of S_{m}. We denote by $G(i, j)$ the set of $\sigma \in G$ such that $\sigma(i)=j$. If G is doubly transitive, then clearly if $i \neq p, j \neq q$, there exists $\sigma \in G(i, j)$ such that $\sigma(p)=q$. If G is regular, then $G(i, j)$ consists of only one permutation for each i and j; hence G is transitive and is of order m.

Definition. A subspace A of $M_{m}(F)$ is a 0 -subspace for G_{λ} if $\operatorname{dim} A=m^{2}-m$ and if $X \in A$ implies $G_{\lambda}(X)=0$.
The following characterizations of 0 -subspaces turn out to be very useful in the determination of all linear maps of $M_{m}(F)$ into itself satisfying (1).

Proposition 1. Let $G=\left\{\sigma_{1}, \ldots, \sigma_{m}\right\}$ be a regular subgroup of S_{m}. A subspace A is a 0 -subspace for G_{λ} if and only if there exist m distinct pairs of integers $\left(i_{1}, j_{1}\right), \ldots,\left(i_{m}, j_{m}\right), 1 \leqslant i_{t}, j_{t} \leqslant m$, such that $\sigma_{k}\left(i_{k}\right)=j_{k}$ and if $X \in A$, $X_{i_{t} j_{t}}=0, t=1, \ldots, m$.

Proposition 2. Let G be a doubly transitive proper subgroup of S_{m}. A subspace A is a 0 -subspace for G_{λ} if and only if there exists an integer $i, 1 \leqslant i \leqslant m$, such that A consists either of all matrices with row i zero or of all matrices with column izero.

If $\sigma \in S_{m}$, then the permutation matrix corresponding to $\sigma, P(\sigma)$, is defined by $P(\sigma)_{i j}=\delta_{i \sigma(j)}$ where $\delta_{s t}=1$ if $s=t$ and 0 otherwise. If $G=\left\{\sigma_{1}, \ldots, \sigma_{m}\right\}$ is regular and $X \in M_{m}(F)$, then it is clear that we may uniquely write

$$
X=\sum_{i=1}^{m} X_{i} P\left(\sigma_{i}\right)
$$

where the X_{i} are diagonal matrices. We use this representation to define the following type of maps of $M_{m}(F)$ into itself: If $\mu_{1}, \ldots, \mu_{m}, \alpha \in S_{m}$, then

$$
S\left(\mu_{1}, \ldots, \mu_{m}, \alpha\right)(X)=\sum_{i=1}^{m} \lambda\left(\sigma_{\alpha(i)}\right) Y P\left(\sigma_{\alpha(i)}\right)
$$

where if $X_{i}=\operatorname{diag}\left(x_{i 1}, \ldots, x_{i m}\right)$, then

$$
Y_{i}=\operatorname{diag}\left(x_{i \mu(1)}, \ldots, x_{i \mu(m)}\right), \quad \mu=\mu_{i}
$$

If B and C belong to $M_{m}(F)$, then the Hadamard product $D=B * C$ is defined by $d_{i j}=b_{i j} c_{i j}$. If we denote by X^{\prime} the transpose of the matrix X, we can now state our main results.

Theorem 1. Let G be a regular subgroup of S_{m} and λ a character of degree one on G. A linear map T of $M_{m}(F)$ into itself satisfies

$$
G_{\lambda}(T(X))=G_{\lambda}(X) \text { for all } X
$$

if and only if there exists a matrix C belonging to $M_{m}(F)$ and a map

$$
K=S\left(\mu_{1}, \ldots, \mu_{m}, \alpha\right)
$$

such that for each σ_{t} in G

$$
\prod_{i=1}^{m} c_{i \sigma_{t}(i)}=\lambda\left(\sigma_{t} \sigma_{\alpha(t)}^{-1}\right) \quad \text { and } \quad T(X)=C * K(X)
$$

Theorem 2. Let G be a doubly transitive proper subgroup of S_{m} and λ a character of degree one on G. A linear transformation T of $M_{m}(F)$ into itself satisfies

$$
G_{\lambda}(T(X))=G_{\lambda}(X) \text { for all } X
$$

if and only if there exist permutations μ, τ in S_{m} and a matrix C in $M_{m}(F)$ such that $\mu \tau$ belongs to G; and either

$$
\begin{equation*}
T(X)=C * P(\mu) X P(\tau) \quad \text { with } \prod_{i=1}^{m} c_{i \sigma(i)}=\lambda\left(\sigma \tau^{-1} \mu\right) \tag{a}
\end{equation*}
$$

for all σ in G, or
(b)

$$
T(X)=C * P(\tau) X^{\prime} P(\mu) \quad \text { with } \prod_{i=1}^{m} c_{i \sigma(i)}=\lambda\left(\sigma^{-2} \mu^{-1} \tau\right)
$$

for all $\sigma \in G$.
When $G=S_{m}$ and λ is identically equal to one, the matrix function G_{λ} is the permanent and it is known (5) that the same result holds and that C is of rank one, so $C * X=D X L$ for suitable diagonal matrices D and L. This is not true in general, as the following example shows. Let G be the alternating group of degree four and suppose λ is identically equal to one. Let

$$
C=\left[\begin{array}{rrrr}
1 & 1 & -1 & -1 \\
-1 & 1 & 1 & -1 \\
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right]
$$

Clearly the rank of C is greater than one, so we cannot have $C * X=D X L$ for any fixed diagonal matrices D and L. A direct computation shows that $G_{\lambda}(C * X)=G_{\lambda}(X)$ for all X.

When $G=S_{m}$ and $\lambda(\sigma)=1$ or -1 according as σ is an even or odd permutation, then the matrix function G_{λ} is the determinant. Marcus and Moyls (6) have shown that in this case $\operatorname{det} T(X)=\operatorname{det} X$ for all X if and only if $T(X)=U X V$ or $U X^{\prime} V$ for fixed non-singular U and V satisfying $\operatorname{det} U V=1$.

If the group G is not transitive, then the transformations T satisfying (1) may be singular. If G is singly transitive but not regular or doubly transitive, then our techniques fail. In particular, the analogues of Propositions 1 and 2 do not hold. A counterexample may be found by examining the dihedral group of degree four.
3. Proofs. Suppose A is a subspace of $M_{m}(F), \operatorname{dim} A=m^{2}-m$. By using the reduction of a basis for A to Hermite normal form we can assume that there exist m distinct pairs of integers $\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{m}, j_{m}\right)\right\}=M$ such that the matrices

$$
A_{i j}=E_{i j}+\sum_{t=1}^{m} c_{t}{ }^{i j} E_{i_{t} j t}, \quad c_{t}{ }^{i j} \in F,(i, j) \notin M
$$

form a basis for A. Here $E_{i j}$ is the matrix with a one in the (i, j) position and zeros elsewhere.

If S is any finite set, $|S|$ will denote the number of elements in S.
The group G is transitive so $|G|=n m$ and $|G(i, j)|=n$ for some integer $n \geqslant 1$ (9). If $\sigma \in S_{m}$, let $D(\sigma)=\{(i, \sigma(i)): i=1, \ldots, m\}$.

We now establish some lemmas that will be used to prove Propositions 1 and 2.

Lemma 1. If for some $\sigma \in G,|D(\sigma) \cap M|>1$, then there exists $\tau \in G$ such that $|D(\tau) \cap M|=0$.

Proof. If $|D(\sigma) \cap M|>1$, then for some $t \neq s,\left|G\left(i_{s}, j_{s}\right) \cap G\left(i_{t}, j_{t}\right)\right| \geqslant 1$. We know that $|G|=n m$ and $|G(i, j)|=n$; hence

$$
\begin{aligned}
\left|\bigcup_{k=1}^{m} G\left(i_{k}, j_{k}\right)\right| \leqslant & \leqslant \sum_{k=1}^{m}\left|G\left(i_{k}, j_{k}\right)\right|-\left|G\left(i_{s}, j_{s}\right) \cap G\left(i_{t}, j_{t}\right)\right| \\
& \leqslant m n-1=|G|-1
\end{aligned}
$$

Therefore there exist $\tau \in G$ such that

$$
\sigma \notin \bigcup_{k=1}^{m} G\left(i_{t}, j_{t}\right)
$$

and clearly τ has the desired properties.
We may assume that the pairs $\left(i_{t}, j_{t}\right)$ of M are arranged so that if $\mathrm{c}_{\boldsymbol{r}}{ }^{i j}=0$ for i, j, then for all $s \geqslant r, c_{s}{ }^{i j}=0$ for all i, j. Let $n(A)=\max \left\{0, t: c_{t}{ }^{i j} \neq 0\right.$ for some $i, j\}$.

Lemma 2. If for some $\sigma \in G,|D(\sigma) \cap M|=0$, then there exists a matrix $B \in A$ such that:
(a) $B=P(\sigma)+c E_{i_{1} 1_{1}}$,
(b) $G_{\lambda}(B) \neq 0$.

Proof. If $n(A)=0$, let

$$
B=\sum_{i=1}^{m} A_{i \sigma(i)}=\sum_{i=1}^{m} E_{i \sigma(i)}=P(\sigma) .
$$

Clearly (a) is satisfied and since $G_{\lambda}(P(\sigma))=\lambda(\sigma) \neq 0,(\mathrm{~b})$ is satisfied.

If $n(A)=1$, let

$$
\begin{aligned}
B & =\sum_{i=1}^{m} A_{i \sigma(i)}=\sum_{i=1}^{m} E_{i \sigma(i)}+\sum_{i=1}^{m} c_{1}^{i \sigma(i)} E_{i_{1} j_{1}} \\
& =P(\sigma)+c E_{i_{1} j_{1}}, \quad c=\sum_{i=1}^{m} c_{1}^{i \sigma(i)}
\end{aligned}
$$

Clearly B satisfies (a). Now notice that if $\tau \neq \sigma$, then there exist $p, q(p \neq q)$ such that $\sigma(p) \neq \tau(p)$ and $\sigma(q) \neq \tau(q)$. Therefore

$$
\begin{aligned}
G_{\lambda}(B) & =\sum_{\tau \in G} \lambda(\tau) \prod_{i=1}^{m} b_{i \tau(i)} \\
& =\lambda(\sigma) \prod_{i=1}^{m} b_{i \sigma(i)}+\sum_{\tau \neq \sigma} \lambda(\tau) \prod_{i=1}^{m} b_{i \tau(i)} .
\end{aligned}
$$

For $\tau \neq \sigma$, let p and q be as above. We may assume that one of p and q, say p, is different from i_{1}. Then $(p, \tau(p)) \notin\left\{\left(i_{1}, j_{1}\right)\right\} \cup D(\sigma)$; hence

$$
b_{p \tau(p)}=0 \quad \text { and } \quad \prod_{i=1}^{m} b_{i \tau(i)}=0
$$

Therefore $G_{\lambda}(B)=\lambda(\sigma) \neq 0$.
Suppose that the result holds for all subspaces L with $n(L)<k$ and that $n(A)=k>1$. Let B be the subspace generated by the set

$$
\left\{E_{i j}:(i, j) \neq\left(i_{k}, j_{k}\right)\right\}
$$

Then $\operatorname{dim} B=m^{2}-1$. Let $C=A \cap B$; then

$$
\operatorname{dim} C \geqslant \operatorname{dim} A+\operatorname{dim} B-m^{2}=m^{2}-m-1
$$

Now note that since $C \subset A, E_{i_{1} j_{1}} \notin C$, and let \bar{C} be the subspace generated by adjoining $E_{i_{1} j_{1}}$ to C. Clearly $\operatorname{dim} \bar{C}=m^{2}-m$ and $n(\bar{C})=k-1$. Hence, by the induction hypothesis, there exists $\bar{B} \in \bar{C}$ such that $\bar{B}=P(\sigma)+c E_{i_{1 j 1}}$ and $G_{\lambda}(\bar{B}) \neq 0$. Now $\bar{B}=B-a E_{i_{1} j_{1}}$ for some $B \in C, a \in F$, so

$$
B=P(\sigma)+(a+c) E_{i_{1} j_{1}}
$$

and since $C \subset A$, we know that $B \in A$. Clearly B satisfies (a) and the same computation as in the case of $n(A)=1$ shows that $G_{\lambda}(B)=\lambda(\sigma) \neq 0$.

Using Lemmas 1 and 2, we see that if A is a 0 -subspace for G_{λ}, then for all $\sigma \in G,|D(\sigma) \cap M|=1$. Let $x_{i j},(i, j) \notin M$, and x be commuting indeterminates over F and

$$
L_{t}=\sum_{(i, j) \notin M} c_{t}^{i^{i j}} x_{i j}
$$

If $B \in A$, then since $\left\{A_{i j}:(i, j) \notin M\right\}$ is a basis for A, it follows that

$$
B=\sum_{(i, j) \notin M} a_{i j} A_{i j}
$$

and

$$
b_{i j}=a_{i j} \quad \text { if }(i, j) \notin M, \quad b_{i t j_{t}}=\sum_{(i, j) \notin M} c_{t}^{i j} a_{i j} .
$$

Lemma 3. If for each $\sigma \in G,|D(\sigma) \cap M|=1$ and for some $t, L_{t} \neq 0$, then there exists a matrix B in A such that $G_{\lambda}(B) \neq 0$.

Proof. Since $L_{t} \neq 0, c_{t}{ }^{i j} \neq 0$ for some pair $(i, j) \notin M$. Choose $\sigma \in G\left(i_{t}, j_{t}\right)$ and let

$$
B(x)=\sum_{k \neq i_{t}} A_{i \sigma(i)}+x A_{i j} .
$$

The element in the $\left(i_{t}, j_{t}\right)$ position of $B(x)$ is a non-zero polynomial of degree one in x so we may choose $c \in F$ such that this position is non-zero. Let $B(c)=b_{r s}$ and note that $b_{r s}=0$ if $(r, s) \notin M \cup D(\sigma) \cup\{(i, j)\}$, and $b_{i \sigma(i)} \neq 0, i=1, \ldots, m$. Then

$$
\begin{aligned}
G_{\lambda}(B(c)) & =\sum_{\tau \in G} \lambda(\tau) \prod_{k=1}^{m} b_{k \tau(k)} \\
& =\lambda(\sigma) \prod_{k=1}^{m} b_{k \sigma(k)}+\sum_{\tau \neq \sigma} \lambda(\tau) \prod_{k=1}^{m} b_{k \tau(k)} .
\end{aligned}
$$

If $\tau \neq \sigma$, then there exist $p \neq q$ such that $\tau(p) \neq \sigma(p), \tau(q) \neq \sigma(q)$. If one of either $(p, \tau(p))$ or ($q, \tau(q)$) does not belong to $M \cup D(\sigma) \cup\{(i, j)\}$, then

$$
\prod_{k=1}^{m} b_{k \tau(k)}=0
$$

If this case does not occur, then we may assume that $(p, \tau(p))=(i, j)$ and $(q, \tau(q))=\left(i_{s}, j_{s}\right)$ for some $s \neq t$, because neither $(p, \tau(p)$) nor $(q, \tau(q)$) belongs to $D(\sigma)$ and $|D(\tau) \cap M|=1$. Further, notice that if $k \neq p, q$, then $(k, \tau(k))=(k, \sigma(k))$, for otherwise $(k, \tau(k)) \notin M \cup D(\sigma) \cup\{(i, j)\}$.

If G is regular, this clearly implies $\sigma=\tau$, a contradiction.
If G is doubly transitive, then notice that $\tau^{-1} \sigma$ is the transposition ($p q$). If $r \neq s$, choose $\mu \in G$ such that $\mu(r)=p, \mu(s)=q$. Then $\mu^{-1} \tau^{-1} \sigma \mu$ is the transposition $(r s)$. Hence G contains all transpositions and is equal to S_{m}, contradicting the fact that G is a proper subgroup of S_{m}.

It now follows from Lemma 3 and the preceding remark that if A is a 0 -subspace for G_{λ}, then A consists of all matrices with m fixed positions $\left(i_{1}, j_{1}\right), \ldots,\left(i_{m}, j_{m}\right)$ equal to zero.

To prove Proposition 1 we simply note that since $|D(\sigma) \cap M|=1$, we have $\left(i_{t}, j_{t}\right)=\left(i_{t}, \sigma\left(i_{t}\right)\right)$ for some $\sigma \in G$.

To prove Proposition 2 suppose that $i_{t} \neq i_{s}, j_{t} \neq j_{s}$. Choose $\sigma \in G$ such that $\sigma\left(i_{t}\right)=j_{t}, \sigma\left(i_{s}\right)=j_{s}$. Then $|D(\sigma) \cap M|>1$, so by Lemma 1 there exists $B \in A$ such that $G_{\lambda}(B) \neq 0$, a contradiction.

The following proposition will be needed in the remaining portions of this paper and may be of some use in handling the simply transitive case.

Proposition 3. Suppose G is a transitive subgroup of S_{m} and λ a character of degree one on G. Let $T: M_{m}(F) \rightarrow M_{m}(F)$ be a linear transformation satisfying

$$
G_{\lambda}(T(X))=G_{\lambda}(X) \quad \text { for all } X
$$

Then T is non-singular.

Proof. If T were singular, then for some $A \neq 0, T(A)=0$. Then

$$
G(X+A)=G_{\lambda}(T(X+A))=G_{\lambda}(T(X)+T(A))=G(T(X))=G_{\lambda}(X)
$$

for all X. If we recall that G is transitive and use the techniques in (1), it is easy to construct a matrix B such that $G_{\lambda}(B) \neq 0$ but $G_{\lambda}(B+A)=0$, a contradiction.

Suppose now that T is a linear map of $M_{m}(F)$ into itself satisfying

$$
G_{\lambda}(T(X))=G_{\lambda}(X)
$$

for all X. It is convenient to consider a matrix X of m^{2} indeterminates $x_{i j}$ and to consider the entries of $T(X)$ as linear forms in the $x_{i j}$. Write

$$
T(X)_{i j}=L_{i j}=\sum_{r=1}^{m} \sum_{s=1}^{m} c(i, j, r, s) x_{r s}
$$

where $c(i, j, r, s) \in F$. Let $R_{i}\left(R^{j}\right)$ be the subspace of $M_{m}(F)$ consisting of all matrices with row i (column j) zero. Clearly R_{i} and R^{j} are 0 -subspaces for G_{λ}. The map T is non-singular; hence by Propositions 1 and $2 T\left(R_{i}\right)$ and $T\left(R^{j}\right)$ consist of all matrices with m fixed positions zero. Let $\{(r(i, t), s(i, t))$: $t=1, \ldots, m\}$ be the positions that are zero in $T\left(R_{i}\right)$ and $\{(\alpha(j, t), \beta(j, t))$: $t=1, \ldots, m\}$ the positions that are zero in $T\left(R^{j}\right)$.

Lemma 4. If $i \neq k$, then for all $p, q=1, \ldots, m$:
(a) $(r(i, p), s(i, p)) \neq(r(k, q), s(k, q))$,
(b) $(\alpha(i, p), \beta(i, p)) \neq(\alpha(k, q), \beta(k, q))$.

Proof. Suppose that for some $i \neq k$ there exist integers p and q such that $(r(i, p), s(i, p))=(r(k, q), s(k, q))=(u, v)$. Then for all $X \in R_{i}+R_{k}$, $(T(X))_{u v}=0$. However, $M_{m}(F)=R_{i}+R_{k}$ since $i \neq k$. Therefore T is singular, a contradiction. The other case is identical.

Lemma 5. For each $i, j=1, \ldots, m$ there exist integers $p(i, j)$ and $q(i, j)$ and a non-zero constant $c_{i j}$ such that $L_{i j}=c_{i j} x_{p q}(p=p(i, j), q=q(i, j))$. Further, if $(i, j) \neq(k, n)$, then $(p(i, j), q(i, j)) \neq(p(k, n), q(k, n))$.

Proof. By Lemma 4 there are m^{2} pairs $(r(i, t), s(i, t))$ and these are all distinct. Since $1 \leqslant r(i, t), s(i, t) \leqslant m$, the set of these pairs must be

$$
\{(u, v): u, v=1, \ldots, m\} .
$$

Hence, given $1 \leqslant u, v \leqslant m$, there exist unique integers i and j such that $(u, v)=(r(i, j), s(i, j))$. We know that if $X \in R_{i}$, then $x_{i k}=0, k=1, \ldots, m$. We also know that the zeros in $T\left(R_{i}\right)$ appear in the $(r(i, t), s(i, t))$ positions. Hence if $x_{i k}=0, k=1, \ldots, m ; L_{u v}=0 ; u=r(i, j), v=s(i, j), t=1, \ldots, m$. It follows that $c(r(i, t), s(i, t), p, q)=0$ unless $p=i$.

Similarly, there exist unique integers a and b such that

$$
(u, v)=(\alpha(a, b), \beta(a, b)) .
$$

If we consider R^{b} and proceed as above, we may show that $x_{k b}=0$ $k=1, \ldots, m$, implies that $L_{u v}=0$. Hence it follows that

$$
c(\alpha(a, b), \beta(a, b), p, q)=0
$$

unless $q=b$. Therefore $L_{u v}=c(u, v, i, b) x_{i b}$, and since T is non-singular, $c(u, v, i, b)=c_{u v} \neq 0$.

It is clear from Lemma 5 that the matrix representation of T with respect to the natural (i.e., $\left.E_{i j}: i, j=1, \ldots, m\right)$ basis for $M_{m}(F)$ is a generalized permutation matrix. Hence we have $T(X)=C * P(X)$, where $P(X)$ permutes the elements of X and $c_{i j} \neq 0$. Further, if $\sigma \in G$, then there exists $\tau \in G$ such that $T(P(\sigma))=C * P(\tau)$. Therefore, since

$$
G_{\lambda}(P(\sigma))=\lambda(\sigma) \quad \text { and } \quad G_{\lambda}(C * P(\tau))=\prod_{i=1}^{m} c_{i \tau(i)} \lambda(\tau),
$$

we must have

$$
\prod_{i=1}^{m} c_{i \tau(i)}=\lambda(\sigma) / \lambda(\tau)=\lambda\left(\sigma \tau^{-1}\right)
$$

We now prove Theorem 1. Let $G=\left\{\sigma_{1}, \ldots, \sigma_{m}\right\}$; then since G is regular, if $X \in M_{m}(F)$ we may uniquely write

$$
X=\sum_{i=1}^{m} X_{i} P\left(\sigma_{i}\right)
$$

where the X_{i} are diagonal matrices. Let $T\left(P\left(\sigma_{i}\right)\right)=C * P\left(\tau_{j}\right)$. It follows from the facts that G is regular and T non-singular that if $i \neq j$, then $\tau_{i} \neq \tau_{j}$; hence since $|G|=m$ we know that $\tau_{j}=\sigma_{\alpha(i)}$ for some $\alpha \in S_{m}$. If $X=$ $\operatorname{diag}\left(x_{i 1}, \ldots, x_{i m}\right) P\left(\sigma_{j}\right)$, then

$$
T(X)=C * \operatorname{diag}\left(x_{i \mu(1)}, \ldots, x_{i \mu(m)}\right) P\left(\sigma_{\alpha(i)}\right)
$$

for some $\mu=\mu_{i} \in S_{m}$, because the polynomials $G_{\lambda}(X)$ and $G_{\lambda}(T(X))$ in $x_{i 1}, \ldots, x_{i m}$ must be equal.

A straightforward computation using the linearity of T shows that

$$
T(X)=C * S\left(\mu_{1}, \ldots, \mu_{m}, \alpha\right)(X)
$$

and that

$$
\prod_{i=1}^{m} c_{i \sigma_{t}(i)}=\lambda\left(\sigma_{t} \sigma_{\alpha(t)}^{-1}\right)
$$

for each $\sigma_{t} \in G$. Clearly, if K and C satisfy the conditions of the theorem, then $G_{\lambda}(C * K(X))=G_{\lambda}(X)$ for all X. This completes the proof of Theorem 1.

Suppose now that the group G is doubly transitive. We first show that $T\left(R_{i}\right)=R_{j}$ or R^{j} for some integer j. If this were not the case, then for some i there would exist integers j, k such that $T\left(E_{i j}\right)=a E_{p q}, T\left(E_{i k}\right)=b E_{s t}$, $a, b \in F$ and $p \neq s, q \neq t$. Choose $\sigma \in G$ such that $\sigma(p)=q, \sigma(s)=t$. Note that $G_{\lambda}\left(T^{-1}(X)\right)=G_{\lambda}(X)$ for all X. However, $T^{-1}(P(\sigma))$ has two non-zero entries in row i and only m non-zero entries in all, so some row of $T^{-1}(P(\sigma))$ must be zero. Therefore $G_{\lambda}\left(T^{-1}(P(\sigma))=0\right.$, a contradiction. Similarly we may show that $T\left(R^{i}\right)=R^{j}$ or R_{j} for some integer j.

We now show that if $T\left(R_{i}\right)=R_{j}$ for some i, j, then $T\left(R_{k}\right)=R_{\mu(k)}$ and $T\left(R^{k}\right)=R^{\tau(k)}$ for all k and some μ, τ in S_{m}. If this were not the case, then for some $k \neq i$ we would have $T\left(R_{k}\right)=R^{n}$ for some n. Then for all $X \in R_{i}+R_{k}$, $T(X)_{j n}=0$. This contradicts the fact that T is non-singular, since

$$
M_{m}(F)=R_{i}+R_{k}
$$

Similar arguments establish that if $i \neq j$, then $T\left(R_{i}\right) \neq T\left(R_{j}\right)$, and that if $T\left(R_{i}\right)=R^{j}$ for some i, j, then $T\left(R_{k}\right)=R^{\mu(k)}$ and $T\left(R^{k}\right)=R_{\tau(k)}$ for all k and some μ, τ in S_{m}.

Clearly, the above argument shows that either $T(X)=C * P(\mu) X P(\tau)$ or $C * P(\mu) X^{\prime} P(\tau)$. If the first case occurs, we take X to be the identity matrix and it follows that $\mu \tau$ must belong to G; for otherwise

$$
G_{\lambda}(C * P(\mu) P(\tau))=G_{\lambda}(C * P(\mu \tau))=0
$$

An easy computation shows that if $\mu \tau$ belongs to G, then

$$
G_{\lambda}(P(\mu) X P(\tau))=\lambda\left(\tau^{-1} \mu\right) G_{\lambda}(X),
$$

and by taking X to be appropriate permutation matrices we find that for each $\sigma \in G$

$$
\prod_{i=1}^{m} c_{i \sigma(i)}=\lambda\left(\sigma \tau^{-1} \mu\right)
$$

If the second case occurs, then, as above, we must have $\mu \tau$ belonging to G. Then if σ belongs to G,

$$
\begin{aligned}
T(P(\sigma)) & =C * P(\mu) P(\sigma)^{\prime} P(\tau)=C * P(\mu) P\left(\sigma^{-1}\right) P(\tau)=G_{\lambda}(T(P(\sigma)) \\
& =\lambda\left(\tau^{-1} \mu\right) G_{\lambda}\left(C * P\left(\sigma^{-1}\right)\right)=\lambda\left(\tau^{-1} \mu\right) \lambda\left(\sigma^{-1}\right) \prod_{i=1}^{m} c_{i \sigma^{-1}(i)} \\
& =G_{\lambda}(P(\sigma))=\lambda(\sigma) .
\end{aligned}
$$

Hence

$$
\prod_{i=1}^{m} c_{i \sigma^{-1}(i)}=\lambda\left(\sigma^{2}\right) \lambda\left(\mu^{-1} \tau\right)=\lambda\left(\sigma^{2} \mu^{-1} \tau\right)
$$

Conversely, if T satisfies the conditions of Theorem 2, an easy computation shows that $G_{\lambda}(T(X))=G_{\lambda}(X)$ for all X. This completes the proof of Theorem 2.
4. Related results. If the group G is regular, it is possible to remove the restriction that λ be a character on G. By using the techniques in (1), in particular Lemma 7, it is possible to characterize the linear maps of $M_{m}(F)$ into itself satisfying

$$
G_{\lambda}(T(X))=G_{\lambda}(X) \text { for all } X
$$

where G is a regular subgroup of S_{m} and λ is any function on G to the field F.

References

1. E. P. Botta, Linear transformations on matrices: The invariance of a class of general matrix functions, Can. J. Math., 19 (1967), 281-290.
2. J. Dieudonné, Sur une généralisation du groupe orthogonale à quatre variables, Arch. Math., 1 (1948), 282-287.
3. L. K. Hua, Geometries of matrices. I. Generalizations of von Staudts' theorem, Trans. Amer. Math. Soc., 57 (1945), 441-481.
4. M. Marcus, Linear operations on matrices, Amer. Math. Monthly, 69 (1962), 837-847.
5. M. Marcus and F. May, The permanent function, Can. J. Math., 14 (1962), 177-189.
6. M. Marcus and B. N. Moyls, Linear transformations on algebras of matrices, Can. J. Math., 11 (1959), 61-66.
7. I. Schur, Über endliche Gruppen und Hermitesche Formen, Math. Z., 1 (1918), 184-207.
8. H. Weyl, The Classical groups (Princeton Univ. Press, Princeton, N.J., 1946).
9. H. Wielandt, Finite permutation groups (Academic Press, New York, 1964).

> University of Michigan,
> Ann Arbor, Michigan;
> University of Toronto,
> Toronto, Ontario

